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With the development of technology, the humanoid robot is no longer a concept,
but a practical partner with the potential to assist people in industry, healthcare
and other daily scenarios. The basis for the success of humanoid robots is not
only their appearance, but more importantly their anthropomorphic behaviors,
which is crucial for the human-robot interaction. Conventionally, robots are
designed to follow meticulously calculated and planned trajectories, which
typically rely on predefined algorithms and models, resulting in the
inadaptability to unknown environments. Especially when faced with the
increasing demand for personalized and customized services, predefined
motion planning cannot be adapted in time to adapt to personal behavior. To
solve this problem, anthropomorphic motion planning has become the focus of
recent research with advances in biomechanics, neurophysiology, and exercise
physiology which deepened the understanding of the body for generating and
controlling movement. However, there is still no consensus on the criteria by
which anthropomorphic motion is accurately generated and how to generate
anthropomorphic motion. Although there are articles that provide an overview of
anthropomorphic motion planning such as sampling-based, optimization-based,
mimicry-based, and othermethods, thesemethods differ only in the nature of the
planning algorithms and have not yet been systematically discussed in terms of
the basis for extracting upper limb motion characteristics. To better address the
problem of anthropomorphic motion planning, the key milestones and most
recent literature have been collated and summarized, and three crucial topics are
proposed to achieve anthropomorphic motion, which are motion redundancy,
motion variation, and motion coordination. The three characteristics are
interrelated and interdependent, posing the challenge for anthropomorphic
motion planning system. To provide some insights for the research on
anthropomorphic motion planning, and improve the anthropomorphic motion
ability, this article proposes a new taxonomy based on physiology, and a more
complete system of anthropomorphic motion planning by providing a detailed
overview of the existing methods and their contributions.
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1 Introduction

Robots, following meticulously calculated and planned
trajectories, have been providing safer and more efficient working
environments for humans with superior quality in many scenarios.
Especially in industrial manufacturing, robotic arms can even
independently perform various tasks such as handling,
machining, and assembling in specified conditions, which
dramatically improves the productivity.

However, conventional motion planning techniques typically
rely on predefined algorithms and models that may not be adaptable
to new environments. Especially when faced with the increasing
demand for personalized and customized services, predefined
motion planning cannot be adjusted in time to adapt to personal
behavior, which will seriously affect the efficiency of task
completion. In this case, robots need to establish a stronger
connection with humans by increasing interaction and expanding
the human-robot sharing space in order to develop algorithms and
models that could adapt to the individual preferences, habits,
and needs.

Recent researches demonstrated that humans are more inclined
to accept actions similar to themselves during human-robot
interactions (Arkin and Moshkina, 2014; Dragan and Srinivasa,
2014). To meet this requirement, researches across the world have
been initiated to improve human-robot interaction by enhancing the
anthropomorphism of robot motion (Kiesler et al., 2008; Kühnlenz
et al., 2013). There are three main scenarios, service robots, new
industrial robots, and wearable robots (exoskeletons), where
anthropomorphism of robot arm motion is highly demanding
and the robots need to interact and collaborate with humans in a
shared human-robot interaction space. For anthropomorphic
service robots, adopting anthropomorphic motion can
significantly enhance the robot’s similarity to humans, foster a
greater sense of familiarity, and thus increase the robot’s
acceptance among users. For new industrial robots,
anthropomorphic motion can enhance not only the synchronicity
between the workers and the robots during collaborative process,
but also the efficiency and overall safety of the human-robot
interaction. During the interaction, the workers can accurately
and promptly comprehend the robots’ behavior, which enables
them to make rational assumptions about the robots’ motion
patterns. When there is a risk of collision between a robot and a
worker or the environment, the worker can take prompt action to
avoid collisions and increase the safety. In addition,
anthropomorphic motion provides a better way to interact,
which greatly reduces the training time of the worker. For
wearable robots, anthropomorphic motion has a more direct
impact on the therapeutic performance of rehabilitation training.
For exoskeletons used to enhance human function, if the motion
does not match the way that the patients move, the rehabilitation
training will not only fail to enable the patient to regain movement
ability, but may cause secondary damage to the patient.

How to achieve anthropomorphic motion in robots? An analysis
of human movement shows that the process of human movement at
the physiological level can be represented by the process chain:
neural commands-muscle activation-joint motion-handmovement-
task goal (Flash et al., 2013). Inspired by this chain, current
researches on anthropomorphic motion mainly focus on three

directions: anthropomorphic structural design, anthropomorphic
trajectory generation, and anthropomorphic motion control (Kulic
et al., 2016).

In anthropomorphic structural design, researchers have
developed humanoid robots that closely resemble humans in
appearance, joint structure, and motion by modeling the human
musculoskeletal system. This kind of design is inspired by biology
and based on research in human anatomy, kinesiology, and
biomechanics (Ogawa et al., 2011; Paik et al., 2012; Lenzi et al.,
2016), which has contributed to an increased acceptance and trust
among users. However, these robots are still challenged in
mimicking the flexibility, elasticity and stability of the human limbs.

In anthropomorphic trajectory generation, researchers tried to
explore the human upper limb movement laws from the motion
posture and trajectory, combine it with human kinematics and
physiology, and determine the optimal motion trajectories and
movement sequences through simulation and experimental
validation, so as to make the robot’s motion more natural,
smooth, and match the physiological characteristics of the
human. Specifically, by studying the correlations and variations
between the rotation angles of certain joints (e.g., elbow elevation
angle (Kim et al., 2006)) and hand postures, researchers have
generated anthropomorphic motion for robotic arms (Zanchettin
et al., 2013; Su et al., 2018). In addition, the researchers found some
motion characteristics, such as bell-shaped velocity curve (Ferrer
et al., 2023), sinusoidal acceleration curve (Morasso, 1981), bell-
shaped positional variance (Taniai et al., 2022), Fitts’s Law (Fitts,
1954), and temporal distribution (Young et al., 2009), for analyzing
physical quantities, such as joint velocities, accelerations, and
trajectories during the natural movement of the upper limbs, and
used them as criteria for generating anthropomorphic trajectories
for robotic arms. However, these studies only focus on the kinematic
nature of upper limb movement, and have not tapped into the
cornerstones of upper limb movement laws that underlie
anthropomorphic motion generation in robotic arms. Guigon
et al. (2007) assumed that the motor control is governed by four
principles (separation principle, optimal feedback control principle,
maximum efficiency principle, constant effort principle) by building
a computational model, and attempted to provide a unified
explanation of biological motor behavior. von Zitzewitz et al.
(2013) argued that robot perception plays a crucial role in
human-robot interaction, and anthropomorphism as a factor of
interaction efficiency should not be considered as a single parameter,
but as a variable influenced by other parameters. They proposed to
divide the network of parameter fields describing
anthropomorphism into two categories: appearance and behavior
(Minato et al., 2012) to describe the static and dynamic states of the
robot, respectively. However, these motion parameters only describe
possible similar aspects of robots and humans from multiple
perspectives, but do not provide quantitative anthropomorphic
metrics that can be directly used as criteria for generating
anthropomorphic motion.

In anthropomorphic motion control, researchers are trying to
explore how to achieve precise control and adaptive regulation of
robot motion by mimicking human movement styles and behavioral
characteristics, so that robot motion will have similar motor
capabilities to those of humans, which includes accurate
collection and processing of sensor data, as well as real-time
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adjustment and optimization of control algorithms. Most
approaches rely on high-gain control and fast control loops that
enable robots to perform specific tasks in structured environments,
but are unable to deal with unexpected disturbances or system
variations, and do not simulate the flexibility, versatility, and
robustness of human movement control.

Among the three research directions, anthropomorphic
trajectory generation can provide input for anthropomorphic
motion planning based on human motion characteristics, which
is crucial for robots to realize anthropomorphic motion. It enables
robots with natural and smooth motion, enhances their adaptability
and safety, and improves the performance of human-robot
interaction so that robots have more anthropomorphic motion
and behavior characteristics. Overall, current studies have made
some progress in improving the anthropomorphism of robot
motion, but there is still no consensus on the criteria by which
anthropomorphic motion is accurately generated. The main reason
is the criteria derived from existing research may not be able to fully
cover the most important aspects concerning the similarity between
robots and humans.

In recent years, researchers have gradually deepened the study of
anthropomorphic motion planning and applied it to humanoid
robots, which has made considerable progress. Service robots
have gradually been a part of people’s daily lives, cooperating
with them in a friendly way (Potkonjak et al., 2001). New
industrial robots can not only work closely with human workers
to perform complex manufacturing and assembly tasks, but can also
operate independently in harsh environments such as high
temperatures and pressures, increasing the efficiency of industrial
production and ensuring worker safety (Zacharias et al., 2011).
Wearable robots enhance or reconstruct the natural movement of
disabled limbs (Soltani Zarrin et al., 2021). These products
dramatically improve efficiency and deliver better care and
services that not only improve quality of life, but also drive
technological advancement and innovation. At the same time,
biomechanics, neurophysiology, and exercise physiology have
advanced our understanding of the body’s mechanisms for
generating and controlling movement, and upper limb motion
patterns were progressively resolved, which provides a
physiological basis for motion characteristic extraction. With the
help of tools in statistics and computer graphics, researchers can
discover the laws embedded in the upper limb movement data (or
movement sequences), extract the motion characteristics, describe
them intuitively and quantitatively, realistically show the upper limb
movement status and motion characteristics, build models to
describe human movement behaviors, so as to replicate human
movement on a humanoid robot as closely as possible through
motion planning. In addition, the increasing computational
capability of motion models has facilitated the continuous
improvement of motion control schemes, which in turn has
promoted in-depth exploration of the nature of motion. At the
same time, concepts such as the “spatiotemporal characteristics”
inherent in the movement process have been proposed as new
anthropomorphic evaluation criteria. With the development of
virtual reality, machine learning, intent recognition, semantic
grasping, and other related technologies, motion accuracy has
been significantly improved, which has driven the emerge of new
anthropomorphic motion planning methods to some extent.

However, the current anthropomorphic motion planning
algorithms still have some problems in practical applications, that
need to be further improved and solved. First, the modeling of the
biomechanical characteristics of the human movement is not
investigated enough. Anthropomorphic motion planning
algorithms are often based on simplified models of human
biomechanics, ignoring many details and complexities, which can
result in the differences between the movements of robots and
human, and the lack of biomechanical naturalness. As a result,
biomechanical characteristics such as human bones, muscles, and
joints must be more accurately and meticulously modeled to
improve the realism and fidelity of robotic motion. Second, there
is a lack of understanding of human movement variation. Human
upper limb movement has some individual variation and can vary
considerably from person to person. Moreover, unlike the lower
limbs, the upper limbs do not have a single, periodic functional
activity, which makes it difficult to establish a standardized
experimental paradigm for the upper limbs. However, current
anthropomorphic motion planning algorithms are typically
modeled based on average motion data or data from a small
number of subjects, ignoring the individual variation, which leads
to a lack of personalization and diversity in robot motion. Third,
there is a lack of in-depth research on neurophysiology and exercise
physiology. Human upper limb movement involves the
coordination of multiple neuromuscular systems and complex
neural signaling control processes. However, current
anthropomorphic motion planning algorithms have an
insufficient understanding of these neurophysiological and
exercise physiological mechanisms and lack detailed modeling
and simulation of neuromuscular models and motor control
signals. Therefore, further in-depth studies of neurophysiology
and exercise physiology are needed to incorporate these
physiological characteristics into anthropomorphic motion
planning algorithms to improve the biomimicry and realism of
motion. Fourth, the problem of motion planning and obstacle
avoidance in complex environments has not been fully solved. In
practical applications, robots often need to plan their motion and
avoid obstacles in complex, dynamic environments. The potential
failures coming from the unpredictability of robot-human
interactions still troubles the users, which seriously hinders the
large-scale application of humanoid robots. Further research is
needed on how to generate adaptive and flexible
anthropomorphic motion that take into account environmental
constraints. This may involve the integration of perception,
planning, and control, as well as accurate modeling and real-time
updating of environmental information. Fifth, current humanoid
robots still have limited autonomy and adaptability. Most
anthropomorphic motion planning algorithms (including inverse
kinematics methods (Li G. et al., 2019; Li et al., 2022), visual teaching
(Kuniyoshi et al., 1994), reference path generation for upper limb
rehabilitation exoskeletons (Soltani-Zarrin et al., 2017), optimal
control methods (Taïx et al., 2013; Geoffroy et al., 2014), etc.)
rely on offline planning and must be pre-programmed or rely on
external commands to perform the task, and are simply not capable
of continuously performing complex tasks outside of a specific work
environment. Sixth, the complexity of the human body’s own
movement laws leads to the fact that a single (or several)
anthropomorphic criterion is still unable to describe most of the
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human movements, resulting in a lack of anthropomorphism in
robot motion, which is far from natural human movement behavior.
Therefore, the existing anthropomorphic motion planning methods
are still not sufficient for practical applications.

Despite the existence of articles that provide a cursory overview
of classification methods for anthropomorphic motion planning of
robotic arms, including sampling-based (random search),
optimization-based (constrained optimization), and imitation-
based (demonstration learning) approaches, these overviews
typically rely on simple distinctions based on the nature of the
planning algorithms. However, they lack a systematic examination
of the rationale behind the extraction of upper limb motion
characteristics using these methods. Furthermore, these
characteristics do not comprehensively capture the full range of
upper limb motion patterns and fail to elaborate on their specific
roles in the development of an anthropomorphic motion planning
framework. Some research has revealed the existence of invariant
motion characteristics in the natural movement of human upper
limbs (Soechting and Lacquaniti, 1981; Atkeson and Hollerbach,
1985), which contribute to the uniqueness of human motion
behavior and its difficulty to emulate or replicate. Despite the
general similarity in morphological structure and motion patterns
between current humanoid robotic arms and human upper limbs,
the lack of comprehensive guidance from human upper limb
movement laws prevents the achievement of highly
anthropomorphic motion.

To facilitate the realization of more natural anthropomorphic
motion in humanoid robotic arms, the key milestones and most
recent literature have been collated and summarized, and three
essential conditions have been identified. These are: 1) Motion
redundancy. It is crucial for achieving the flexibility and accuracy
of human upper limb movement through different motion patterns,
serving as the foundation for humans’ robust motion capabilities

and interactive abilities. 2) Motion variation. It accounts for the
diversity and individual variation in human upper limb movement,
representing a unique capacity for adaptation, self-learning, and
continuous evolution. 3) Motion coordination. It ensures the
efficiency and stability of human upper limb movement by
functional control, providing a safeguard for generating and
controlling motion while maintaining inertia. These three
characteristics are interrelated and interdependent, as shown in
Figure 1, posing a challenge for the anthropomorphic motion
planning framework. Therefore, this article systematically
analyzes the anthropomorphic motion planning methods in
recent years, with a particular focus on the concepts of motion
redundancy, motion variation and motion coordination, and
discusses the limitations and challenges.

2 Motion redundancy

Humans can adjust the posture of the upper limbs according to
the position of the target to perform the task with appropriate
movements, such as surgeons operating on small wounds according
to different circumstances, “cutting”, “suturing”, “knotting” and
others to ensure the success of the operation, all of which rely on
the flexibility provided by the redundancy of the upper limbs. The
redundancy of the upper limbs provides humans with a wealth of
motor skills, adaptations, and means of perceptual communication
that enhance their ability to interact and adapt with others and the
environment.

In practical scenarios, robotic arms not only have to interact
with humans, but also have to take into account obstacle avoidance
and joint limitations. A common method for generating
anthropomorphic motion trajectories is to preplan the collision-
free waypoints of the end-effector in Cartesian space using path

FIGURE 1
A frame of anthropomorphic motion planning system composed of three components.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Zheng et al. 10.3389/fbioe.2024.1388609

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1388609


planning algorithms such as PRM (Kavraki et al., 1996), RRT
(Kuffner and LaValle, 2000), and CHOMP (Zucker et al., 2013),
and then establish a mapping relationship between Cartesian space
and joint space, and solve for the joint angles of the robotic arm at
different moments by inverse kinematics. The trajectories of each
joint are generated by interpolation. Commonly used interpolation
methods are cubic polynomials, quintic polynomials, and spline
curves (Xie et al., 2011; Hu et al., 2023; Li et al., 2019; Wang et al.,
2020). The key to this approach is to develop an appropriate
kinematic/dynamical model for the upper limbs to solve the
inverse kinematics.

In studies, human upper limbs are often regarded as an
articulated structure composed of connecting rods (bones) and
joints with a high degree of redundancy, where different joints
cooperate in a variety of combinations to perform complex tasks
according to different needs (Kulic et al., 2016;Wei and Zhao, 2019).
It is generally accepted that the human upper limbs have 10 DoFs,
while the 10-DoFs robotic arm is too flexible to control (Liu and
Xiong, 2013). For simplicity, a simplified 7-DoFs robotic arm with
only three joints: shoulder, elbow, and wrist, was as a sphere-
revolute-sphere structure (Xia et al., 2021), which was roughly
the same as the human upper limb in shape and motion style,
and has become the mainstream approach. This kind of
anthropomorphic design is the basis for realizing human-like
behaviors (Fang et al., 2019). Meanwhile, a study proposed the
use of Rapid Upper Limb Assessment (RULA) to evaluate the
naturalness of the humanoid robotic arm configuration
(Zacharias et al., 2011). However, the human-like appearance and
configuration of a robotic arm alone is not enough to generate
anthropomorphic motion. The reason is the generation mechanism
of natural human movement is still not fully revealed, that is, how
humans deal with redundancy in the upper limbs during complex
motion. From a physiological perspective, the redundancy of the
human upper limbs is primarily attributable to the central nervous
system’s ability to control the contraction and relaxation of muscle
groups through intricate neural networks and signaling pathways.
This control mechanism enables the precise control of multiple
muscles corresponding to multiple joints, thereby facilitating the
precise control of multiple joints in the upper limbs. The problem of
redundancy in humanoid robotic arms exists at the level of
kinematics and dynamics, which leads to an infinite number of
inverse kinematics solutions. How to solve the inverse kinematics
problem and find the best solution that fits the configuration of the
robotic arm among countless solutions is one of the difficulties in
anthropomorphic motion planning.

Overall, there are three typical redundancy problems in the
human upper limbs: 1) Trajectory redundancy in Cartesian space.
That is, for a given task, the hand has multiple realization paths with
non-unique trajectories. 2) Trajectory redundancy in joint space.
That is, given a time-varying motion trajectory of the hand, it is still
not possible to uniquely determine the kinematic parameters such as
direction, angle, and velocity of each joint over time. 3) Redundancy
in joint muscle forces andmoments. Even after the trajectories of the
joints over time are determined, it is still not possible to uniquely
determine the forces and moments exerted on the joints by each
muscle. A plethora of studies have been conducted to investigate
these issues. Based on the laws presented during the natural
movement of the human upper limbs for classification, the

prevailing methodologies can be broadly categorized into two
main categories. The first category involves constraining the
optimization of a cost function representing the natural motion
characteristics. The second category leverages the unique
relationship between the joints of the upper limbs presented in
natural motion.

2.1 Constrained optimization

A robotic arm may face multiple constraints, such as
environmental constraints, task constraints, and coordination
constraints, as it performs various operational tasks in an
unstructured scenario. These constraints increase the difficulty of
solving inverse kinematics. There is an argument that the
redundancy problem can be viewed as a constrained optimization
problem (Tommasino and Campolo, 2017). Solving inverse
kinematics is essentially solving a nonlinear optimization
problem where the optimal solution can be obtained by
minimizing the cost function as follows

min f x( ) overx
s.t.gi x( )≤ 0
hj x( ) � 0

⎧⎪⎨
⎪⎩ (1)

where f is a nonlinear function/cost function, x is the state vector of
the robotic arm, that is, the values for all joint space. In motion
planning, x is not a single state at a given moment, but all states
along the entire planning path, that is, x � [x0,/, xt,/, xT]. g is an
inequality constraint, including linear and nonlinear constraints,
which aims to strictly control the feasibility of the trajectory of the
robotic arm and ensure that the robotic arm does not collide with
objects. h is the equation constraint, that is, the target assigned to the
robotic arm.

The cost function is mainly derived from the laws of natural
movement of upper limbs. The study of point-to-point reaching
movement of the human upper limbs revealed two of the most
important motion characteristics, straight paths and bell-shaped
speed profiles (Flash and Hogan, 1985; Todorov, 2004). In (Arimoto
and Sekimoto, 2006), these two characteristics were used as criteria
to determine the degree of anthropomorphism of the robotic arm’s
trajectories. However, the criteria may not be sufficient for complex
upper limb movement such as manual dexterity tasks like writing
with a pen, threading a needle, or carving with a knife (Shin and
Kim, 2015). To solve this problem, by thoroughly studying the
smoothness of the upper limb trajectories, Todorov and Jordan
(1998) found that a significant acceleration can cause a shock or jolt
in the movement process, and that the human body maintains a very
small acceleration during movement to prevent self-injury of the
musculoskeletal system, which led to the proposal of an
optimization criterion that used the minimum acceleration as a
cost function. Li et al. (2020) used the minimum potential energy as
an optimization criterion to achieve precise control of the motion to
reduce the magnitude of the potential energy change of the upper
limb exoskeleton and ensure the smoothness of the motion
trajectory. In addition, many studies also used other laws of
motion as cost functions, such as minimum torque (Kang et al.,
2003), minimum time (Tangpattanakul and Artrit, 2009), and
minimum joint torque change (Wada et al., 2001). These cost
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functions were used to explain the principles of how humans
generate natural movement, that is, the existence of invariant
motion characteristics in the upper limbs that are independent of
factors such as target, motion magnitude and direction, initial
position, and external loads. These criteria chosen for the cost
function were derived from the regular analysis of human upper
limb trajectories, which represent the common characteristics of
most upper limb movement, and were used in most studies to
evaluate whether the trajectory is anthropomorphic or not.

However, the application scenarios of the above methods are
limited to point-to-point movement (where the shoulder is assumed
to be stationary during movement) and are not suitable for activities
of daily living (scenarios where the center of the shoulder is moving
in real time). Therefore, it has been suggested that a single cost
function can only partially explain the anthropomorphism of the
upper limb movement, which only works under special movement
and cannot be applied to most scenarios. As a result, it does not
provide enough flexibility to the robotic arm. The combination of
several cost functions may be the solution to this problem (Berret
et al., 2011).

By investigating the interaction between nonlinear muscle
dynamics and control principles based on previous work,
Wochner et al. (2020) argued that the human body follows a
combination of independent and recognized criteria for
optimality when controlling the upper limbs to generate optimal
trajectories. They used the combined cost function of smoothness
(to prevent damage to the musculoskeletal system itself), energy (to
reduce energy consumption during movement), and internal force
(necessary for human movement) as a new optimization criterion to
reveal the contribution of human muscle dynamics in point-to-
manifold motion, which in turn generates anthropomorphic
trajectories. Based on this research, Albrecht et al. (2011)
assigned weighting factors to different optimization criteria to

combine them into a new cost function, and simplified the
multi-objective optimization problem by adjusting the weight
factors to balance the relationship between multiple objectives,
thus finding the optimal anthropomorphic trajectory that
matches the configuration of the robotic arm. For conciseness, a
brief summary of constrained optimization methods is shown
in Table 1.

These approaches can accurately identify the optimal solution
that satisfies the constraints through mathematical optimization
techniques. However, they entail a significant computational
burden, particularly when searching for the optimal solution in a
high-dimensional space, which may result in high
computational costs.

2.2 Special relationships between joints

In addition to optimization methods, dimensionality reduction
is another idea for dealing with redundancy: explore the special
relationships between the shoulder, elbow, and wrist in the natural
motion of the upper limbs to reduce redundant DoFs so as to obtain
optimal inverse kinematic solutions.

The complete movement process of the upper limbs can be
regarded as a process quantity. Each moment in the process
corresponds to the posture of the upper limb and can be
considered as a state quantity. The solution of the inverse
kinematics of redundant arms can be decomposed into a finite
number of state quantities. In order to find a suitable state quantity
to describe the upper limb posture, the concept of arm triangle was
introduced in (Berman et al., 2008). In (Seraji, 1989), a plane
consisting of the shoulder, elbow, and wrist joints is used to
describe the posture of the upper limbs, and the upper limbs are
free to rotate around the shoulder and elbow joints, respectively. Liu

TABLE 1 Approaches of constrained optimization.

Study Task Anthropomorphic criterion Approach Contribution

Todorov and Jordan
(1998)

Complex arm
movements

Maximum smoothness Constrained minimum-jerk
model

Stronger relationship between the path
and the speed profile

Wada et al. (2001) Point-to-point
movements

Minimum commanded torque change A prediction algorithm using
the Euler-Poisson equation

Obtain the converged solution in a very
short time

Kang et al. (2003) Reaching movements Minimum joint torque Minimum-torque model Determine arm configurations during
normal and natural movements

Arimoto and
Sekimoto (2006)

Reaching movements Straight paths, bell-shaped speed profiles Virtual spring-damper
hypothesis

Resolve the ill-posedness of inverse
kinematics

Tangpattanakul and
Artrit (2009)

Simulation of
consecutive via-

points

Minimum time Harmony search algorithm Obtain the optimal interval time and
reduce complication and time

consuming

Albrecht et al. (2011) Reaching-to-a-bar
tasks

mechanical energy, joint smoothness Inverse optimal control Support the cost combination
hypothesis

Shin and Kim (2015) Reaching, grasping,
moving an object

Compare the hand and elbow trajectories
through the simulations and experiments

Lagrangian multiplier
optimization method

Human-likeness depends on the
purpose of given tasks

Li et al. (2020) Path tracking Minimal potential energy Zeroing dynamics method Track the desired motion path
accurately

Wochner et al. (2020) Point-to-manifold
reaching movements

Smoothness, energy, internal force Bayesian optimization A mixed cost function replicates the
behavior much better than single

criterion
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et al. (2016) proposed a wrist-elbow-in-line method based on the
similarity of the kinematic structures of the human upper limb and
the humanoid robotic arm. The method introduced the elbow and
wrist joint positions as key positions and reduced redundancy by
using them as end-effector orientation constraints of the robotic
arm. The positions of elbow and wrist joints in Cartesian space were
used as configuration parameters of the robotic arm, and the
anthropomorphic configuration was obtained by inverse
kinematic analysis. However, due to the different lengths and
joint limitations of the human upper limb and the robotic arm,
the robotic arm is unable to create an anthropomorphic
configuration at all times, which makes it difficult to perform
fully anthropomorphic motion throughout the workspace.
Artemiadis et al. (2010) realized that the shoulder and elbow
joints are more flexible than the wrist joint by observing human
writing movements. They also found that the three joints of the
shoulder, elbow, and wrist are highly interconnected to form a
specific plane, and this plane is deflected during movement. The
angle of rotation formed by the deflection is unique, and is defined as
the elbow elevation angle (Kim et al., 2006). Then they used the
constraint equation formed by the elbow elevation angle to reduce
the redundancy to obtain the kinematic inverse solution, and then
obtain the best anthropomorphic motion trajectory that meets the
human posture. However, this method ignores the effect of wrist
posture on upper limbmovement. Zanchettin et al. (2011) improved
this method by taking wrist posture into account and using least-
squares cluster analysis to derive the relationship with elbow
elevation. Kim et al. (2012) proposed an inverse kinematics-based
rotation angle estimation algorithm by linearly combining two
different rotation angles resulting from kinematic and dynamic
constraints. The algorithm successfully reproduced the natural
motion of the human upper limbs with an error of less than 5°

compared to real human movement and can be applied to wearable
exoskeleton robots. Su et al. (2019) used a new deep convolutional
neural network to establish the mapping relationship between
rotation angle and hand pose, which improves the accuracy and
iteration speed of motion reconstruction with strong robustness. A
brief summary of using special relationships between joints to solve
motion redundancy listed in Table 2.

In comparison to complex mathematical optimization methods,
these methods may exhibit higher computational efficiency and be
suitable for application scenarios with high real-time requirements.
However, due to the complexity of human motion, a single natural

motion relation may not be applicable to all types of redundancy
problems, thus requiring customized designs for different problems.

The motion redundancy in the upper limbs is of great
importance as a primary solution in anthropomorphic motion
planning. A variety of inverse kinematics methods proposed by
the researchers provide ideas for solving the redundancy problem,
which greatly advance the development of anthropomorphic motion
planning. However, there are still some problems with current
methods: inverse kinematics solution methods in the joint space
lack sufficient physiological basis and it is inadequate to ensure the
variations in the motion process and vulnerable to interference.

3 Motion variation

Humans can accomplish the same task in different ways, for
example, when a blacksmith repeatedly strikes an iron block, the
trajectory of the strike is different each time, which suggests that
there is no rigidly fixed pattern of repetitive movements. We call this
phenomenon motion variation. A large number of studies have
confirmed that kinematic variation is considered to be a control
strategy for the human motor system and also an intrinsic
characteristic of multi-degree-of-freedom limb motion (Latash
et al., 2002).

Motion variation represents the diversity of human movement,
which is the difference in control, motion patterns, and experience
habits of different individuals. These differences include the pattern
of muscle activity, the variation of joint angles, and the way of force
application, which are indispensable for humanoid robots to realize
anthropomorphic motion planning. How do humanoid robots
exploit these differences in motion? Imitating and learning
human movement may solve this problem.

It is a great idea to accurately reproduce human movement on a
robot. A motion capture system can be utilized to gather data on
natural human movement and construct a motion database. By
comparing the end-effector trajectory with the database, the robot
joint configuration and motion trajectories can be predicted
(Yamane, 2020). The approach not only avoids the joint
redundant, but also controls the grasping force and posture, and
predicts the position and time of grasping. However, the large
dataset may reduce the prediction efficiency. The human position
is collected by the motion capture system in advance and then
converted into joint angle information offline, then sent to the robot

TABLE 2 Approaches of special relationships between joints.

Study Task Anthropomorphic
criterion

Approach Contribution

Kim et al. (2006) Point-to-point hand
motion

Elbow elevation angle Response surface
methodology

First propose a mathematical representation for
characterizing human arm motion

Zanchettin et al.
(2011)

Hand motion along a
sphere

Swivel angle Cluster and weighted least-
square approach

Provide a repeatable and identifiable kinematic constraint

Kim et al. (2012) Natural human arm
movement

Swivel angle Kinematic and dynamic
constraint

Reproduces natural human armmovement with less than
five degrees of estimation error

Liu et al. (2016) Self-motion Self-motion angle Wrist-elbow-in-line method Validated in practice and extended for obstacle avoidance

Su et al. (2019) Swivel motion Elbow angle Deep convolutional neural
network

Reduce online prediction time, noise robustness
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controller for execution, so that the robot’s movements are modeled
after human movements, which is only applicable in weak
interaction scenarios (Liu et al., 2012; Zuher and Romero, 2012).
However, the limitation of these approaches is that they rely
exclusively on pre-collected data that do not cover all possible
human-robot interaction situations. Consequently, the robot’s
responses may not be sufficiently flexible. Furthermore, since the
robots’ movements are entirely derived from pre-existing human
movements, they can only move in a repetitive manner, which
greatly limits their use in humanoid robots that require frequent
interaction with the outside world.

To address this issue, it is necessary to adopt a more flexible and
adaptable approach to the movement of humanoid robots. In
addition to replicating human movements, the robot must also
learn the motion patterns of the human upper limbs, which enables
robots to transfer human motor skills into their own systems in a
straightforward manner and employ appropriate methods to
replicate anthropomorphic motor trajectories. These trajectories
exhibit similar or comparable motor characteristics to humans,
making them suitable for practical applications.

The motion patterns of the human upper limbs are unique and
rely on a strong learning capacity, which enables humans to adapt to
complex and changing environments based on previous experience
(Huang and Zhang, 2020). Even without prior knowledge, humans
are still able to interact correctly with objects in the surrounding
environment. (Nagahama et al., 2021). The variation and
adaptability of humans are crucial in achieving effective motion
in various situations. It has been a challenging problem to equip
robots with learning and motor skills of humans. Researchers
attempt to understand the laws governing upper limb movement
at the physiological level and map human behavior patterns to
robotic motion strategies.

Neurophysiological studies have shown that the natural
movement of the human upper limbs can be decomposed into a
large number of small movement units that can be combined in an
orderly fashion to produce a variety of complex movement, which
researchers call movement primitives (Giszter, 2015). In fact,
research results from several fields has shown that human upper
limb movement exhibits “primitive” properties at the level of brain
motor cortex (Averbeck et al., 2002), kinematics (Rohrer et al.,
2002), and dynamics (Mussa-Ivaldi and Bizzi, 2000). Therefore, the
movement primitives can be regarded as the implicit embodiment of
human motion characteristics, which cannot only explain the law
governing upper limb movement and enhance the understanding of
their own motion, but also serve as a carrier to transfer the
movement law from the human upper limb to the humanoid
robotic arm, so as to make its motion anthropomorphic.

Based on the human upper limb movement dataset, the
researchers proposed a demonstration-learning-reconstruction
method to extract the movement primitives. Firstly, they used
human natural motion data as demonstration trajectories. Then,
they constructed a learning model using statistical methods to
encode them. Finally, they applied upper limb motion
characteristics to the robotic arm motion to reconstruct similar
behaviors. The most common learning models are Gaussian mixture
model (GMM), Dynamic movement primitives (DMP), and hidden
Markov model (HMM). Specifically, GMM has powerful coding and
noise reduction capabilities and is often used to solve high-

dimensional problems. Deng et al. (2020) proposed a strategy for
learning human motor skills using GMM, which allowed robots to
learn how to successfully perform fixed impedance-based tasks and
achieve safe human-robot cooperation. DMP has strong adaptability
and robustness. Lauretti et al. (2019) proposed a method to obtain
joint space and Cartesian space anthropomorphic trajectories using
DMP and extracted DMP parameters as motion characteristics to
obtain obstacle avoidance trajectories via locally weighted
regression, which was finally experimentally validated on a
humanoid robotic arm LWR4+ (KUKA, Augsburg, Germany).
HMM has strong predictive ability and can easily extract motion
characteristics. Takano and Nakamura (2017) proposed a method
for extracting motion data information using HMM, which could
control the moments of all joints of a humanoid robot to achieve the
desired contact force and overall motion. Furthermore, Zhang et al.
(2020) proposed a new anthropomorphic motion control
framework using GMM and DMP to learn the demonstration
trajectories and generate the anthropomorphic motion
trajectories, which was tested on a mobile service robot to prove
its effectiveness.

The anthropomorphic motion generated by the above work are
all simple reachingmovement. There are also many studies that have
reproduced complex movement. Pignat and Calinon (2017) used a
hidden semi-Markov model (HSMM) to enable the robot to
successfully assist humans in dressing. Koenig and Matarić
(2016) used Bayesian networks to enable the robot to perform
basic movement such as grasping and releasing. Mülling et al.
(2013) and Calinon et al. (2010) developed table tennis robotic
systems for anthropomorphic motion using mixture of motor
primitives (MoMP), HMM and Gaussian mixture regression
(GMR), respectively. Yi et al. (2022) developed an autonomous
robotic grasping system using an imitation learning algorithm
consisting of K-means clustering and DMP, which could be
finely manipulated using a variety of machine learning methods,
and proved its reliability through evaluation. There are also studies
on improving individual algorithms or combining multiple
algorithms to improve iterative efficiency and reproduction
accuracy, such as task-parameterized GMM is used to learn the
demonstration trajectory to obtain motion characteristics, which
enables the robot to perform the dual-arm sweeping task smoothly
(Silvério et al., 2015). However, the reference movement for
demonstration learning relies on the richness of experimental
data. When adding new sample data to the training model for
training, it is common practice to retrain the original model after
increasing the number of network layers or changing the structure,
which consumes a lot of time. This problem is simplified by the
broad learning system based on incremental learning principle
(Huang and Zhang, 2020). In the broad learning system, even if
new sample data is added, there is no need to retrain the existing
structure and parameters even if new sample data is added. We only
need to compute the added parameters and assign new
computational weights to easily achieve incremental learning of
input samples, characteristic nodes, and enhancement nodes.

Even as the dataset continues to grow, new questions also arise.
Researchers expect that robots with human motor skills will also
have the ability to understand and predict in the same way that
humans do. Humans participate in interactions by predicting the
behavior of others (Wenderoth et al., 2012), while the robot’s motion
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commands are issued by a controller, whose output commands are
preset by a human input program, and the accuracy of the preset
program commands affects the anthropomorphism of the
movement trajectories to some extent. The anthropomorphic
motion trajectories generated by demonstration learning are too
dependent on the reference trajectory, which means that changes in
the content of the demonstration may lead to different extracted
movement primitives. Therefore, each trajectory iteration
accumulates small prediction errors, which leads to the
deformation of the robotic arm motion (Sasagawa et al., 2021).
To overcome this problem and avoid the chance of the parameters of
the upper limb model, Yang et al. (2021) combined the multiple
characteristics of the human upper limbmovement process, adopted
the reward function, and used reinforcement learning to plan the
anthropomorphic motion of the humanoid robotic arm, and verified
the feasibility and validity of the robotic arm in anthropomorphic
motion through experiments.

Furthermore, imitation-based motion planning algorithms
commonly utilize motion datasets derived from demonstrative
samples to create motion models. However, these models display
limited generalization, thereby limiting their usability in
unstructured scenarios. As a result, the motion variation of the
upper limbs is compromised. Therefore, to enhance robots’ capacity
to mimic human-environment interaction, it is crucial to enhance
the generalization of these models. The main factors affecting the
generalization ability are the unknown environment and the targets.
Learning reference inputs through DMP algorithm and adaptive
optimal admittance control method can effectively improve the
robot’s ability to interact with unknown environment (Xue et al.,
2022). Compared to other algorithms, the traditional DMP
algorithm has excellent generalization and anti-interference
capabilities (Gong et al., 2020). However, the limitation of this
algorithm is that when the demonstration trajectory is learned, the
trajectory characteristics represented by the basis functions are fixed.
Even if the starting point and scaling factor are changed, the result is
only a change in speed and the scaling of the trajectory, which
cannot be applied to different complex tasks and environments.
Although some studies have improved the DMP by adding
constraints, the results are still unsatisfactory (Gams et al., 2014;
Huang et al., 2019). Qian et al. (2020) proposed a hierarchical
demonstration learning framework that combined symbolic and
trajectory learning to improve a robot’s ability to adapt to new tasks
and environmental changes. Lu et al. (2023) combined DMP with
neural networks and admittance control to incrementally update the
nonlinear function by adding new basis functions and weights to
mimic the new trajectory, and finally experimentally demonstrated
that the generalization of the trajectory was improved. Averta et al.
(2020) used functional principal component analysis (fPCA) to
extract functional principal components/basis functions
(describing the motion variance of each joint trajectory at the
time level) from human upper limb movement data, and argued
that a general upper limb motion trajectory can be described as an
ordered combination of a set of functional principal components,
and that an anthropomorphic motion trajectory could be generated
by optimizing the weights of these functional principal components.

In order to quantify the variation of human movement, Gielniak
et al. (2013) adopted variance as a variable in the algorithm when
studying anthropomorphic motion planning, and used variance as a

measure of the motion variation, and concluded through
experiments that highly constrained movement or body parts
have less variance (or motion variability), which is basically the
same as the intuitive feeling of human movement. Table 3 gives an
overview of 12 approaches to solve motion variation.

Most of the current methods to solve the problem of robot
motion variation are demonstration learning. Although they can
effectively reproduce human upper limb movement under specific
environments and tasks, the generalization ability is weak and
difficult to apply to complex scenarios. In addition, the data
samples must be expanded to improve the accuracy of the
motion, but the large number of operations severely affects the
efficiency of the robot motion. Therefore, the study of motion
variation from a statistical point of view alone remains deficient
and needs to be synthesized in terms of the hypostasis of
human movement.

4 Motion coordination

The human body is a complex bio-motor system, and each of its
movement behaviors requires coordination inside and outside the
body, that is, the ability of a system’s various joints, components, or
systems to work together and cooperate with each other in the
execution of complex actions or task, which enables the system to
achieve the efficient and precise completion of the task. In particular,
the upper limbs play a very important role in human life (the
function of the upper limbs accounts for about 60% of the whole
body), and almost all daily activities require some coordination
between the upper limbs (Guiard, 1987), and the level of
coordination directly affects human movement ability (Freitas
et al., 2016).

To successfully perform a daily activity, the human body
requires a number of sensory organs to process information and
control upper limb movement, a process whose mechanism is not
fully understood. In neurophysiology, there is evidence that the
central nervous system is responsible for the vast majority of human
movement. When confronted with different external stimuli,
humans are always able to respond appropriately, which relies
heavily on human sensorimotor modeling (Wolpert and
Ghahramani, 2000). According to the model, there is a
relationship between sensory inputs and motor outputs in the
human body, in which the particular patterns present are likely
to be the criteria for the generation and control of movement by the
central nervous system, which provides a physiological basis for
anthropomorphic motion planning for robotic arms.

Some studies have designed mechanical musculoskeletal
structures that mimic the human upper limbs based on the
musculoskeletal kinesiology, and have used control strategies
involving internal force kinematics (Tahara et al., 2006) to
reproduce muscle activities as closely as possible in a biological
motion pattern (Northrup et al., 2001), which provides an
achievable platform for anthropomorphic motion planning. On
this basis, how to provide the humanoid robotic arm with highly
anthropomorphic motion ability becomes a challenge.

When people interact with the outside world, the whole process
from contacting information to making a response is about 0.2–0.4 s
(Otaki and Shibata, 2019). It remains an unsolved question how
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humans can easily coordinate multiple redundant DoFs of the body
in a short period of time during movement. The causes of motion
coordination are multifaceted and can stem from both intrinsic and
extrinsic factors. The physiological basis of motion coordination is
synergy, which is a key component throughout the entire motion
process of the upper limbs and changes accordingly with different
motion patterns. Motion coordination is specifically manifested as
the precise control of the timing and spatial position of multi-
degree-of-freedom movements during the movement process
(temporal and spatial coordination), which is mainly dependent
on the control of the nervous system. The internal neural control is
further complemented by the coordination of the arms (inter-arm
coordination) and body language (coordination of different limbs),
which enables the coordinated movement of the limbs. Motion
coordination of the upper limbs is a key component of the human
motor system, which relies on the central nervous system and the
cooperation of multiple muscles and joints, and involves fluidity,
timing, and precision of movement, which is a challenge that is still
not fully solved in the anthropomorphic motion planning system.

Classical neuromechanics suggests that the central nervous
system relies on the interlocking of the muscular and skeletal
systems to coordinate body movement, which is often called
“synergy”. Recent research has revealed the existence of synergies
at three levels, including kinematics, muscle mechanics, and neural
centers (Bruton and O’dwyer, 2018), and has been widely applied to
robotic arms to reproduce reaching movement (Liu et al., 2018) and
grasping movement (Ficuciello et al., 2014) of the upper limbs.

During human movement, the nervous system dynamically adjusts
the synergies by regulating the control strategy to control the
coordinated movement of the limbs to meet the requirements of
the task. Hierarchical theory states that human high-level motion
control units focus on generating upper limb configurations during
reaching movement, and that low-level motor units synergistically
control the joints associated with the movement to ensure
coordination of upper limbs (Gosselin-Kessiby et al., 2008;
Herbort and Butz, 2010). Correspondingly, by investigating the
role of different synergy components in the reaching movement,
Tang et al. (2019) found that the high percentage synergy is related
to the movement trend, while the low percentage synergy is related
to the specific task movements. Different principal components have
some effects on the movement trajectory and endpoint accuracy,
and the synergies are dynamically adjusted with different tasks. At
the same time, the expressions of synergies in different motion
patterns vary. Zhao et al. (2022) extracted the synergies under
different numbers of trials and different arrival directions in
point-to-point reaching movement experiments and found that
the synergies increased with the number of trials or the number
of arrival directions. When the number of experiments or the
number of arrival directions reached a threshold, the synergies
did not change significantly. The researchers hypothesized that
different training patterns (number of trials, target category)
affected muscle activation modules, which in turn affected synergies.

The study of synergistic movement of upper limbs is based on
the foundation that humans activate discrete motion modules to

TABLE 3 Approaches to solve motion variation.

Study Task Anthropomorphic
criterion

Approach Contribution

Calinon et al. (2010) Hitting a ball with a table
tennis racket

Movement primitives HMM and GMR Present and evaluate an approach to allow robots to
acquire new skills

Mülling et al. (2013) Striking movements in
table tennis

Movement primitives MoMP Presented a framework that allows a robot to play
table tennis with a human

Gielniak et al. (2013) Mimicking performance Spatiotemporal correspondence Human-like and variance
optimization

Present a quantitative metric for human-like motion

Koenig and Matarić
(2016)

A set of basic actions A series of actions with features Bayesian networks Presents a framework for lifelong robot task learning
from demonstrations

Pignat and Calinon
(2017)

Dressing task Movement primitives HSMM Propose a method for efficient skill acquisition

Takano and
Nakamura (2017)

Touching an object with
the right hand

Synthesis of joint angle sequences HMM Propose a method for motion synthesis and force
control

Lauretti et al. (2019) Reaching and pouring task Four performance indices Hybrid Joint/Cartesian
DMPs

100% in avoiding obstacles and high Cartesian
accuracy

Deng et al. (2020) Drawing specific lines Movement primitives GMM Present a hierarchical control scheme for human-
robot co-manipulation

Zhang et al. (2020) Feeding meals to patients Human activity recognition Combine GMM with DMP Propose a novel human-like control framework for
the mobile medical service robot

Averta et al. (2020) 30 activities of daily living A variety of movement parameters fPCA Embed synergies of human movements for robot
motion generation

Yang et al. (2021) Reaching motion Feature variables of human arm Reinforcement learning Present a humanoid method, and verify
humanization, feasibility, and effectiveness

Yi et al. (2022) Grasping complex-shaped
objects

Movement primitives K-means clustering
and DMP

Presents an autonomous grasping approach for
complex-shaped objects

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Zheng et al. 10.3389/fbioe.2024.1388609

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1388609


perform biological activities through the cooperation and
collaboration of different muscle groups to meet the needs of
basic daily activities (Bizzi and Cheung, 2013). It is mainly
categorized into three main components: synergistic control of
nervous system (d’Avella, 2016), synergistic contraction of
muscles (Pham et al., 2014; Tang et al., 2014), and synergistic
movement of joints (Garcia-Rosas et al., 2018; Moiseev and
Gorodnichev, 2022). The central nervous system receives
information from the outside world as input, integrates and
processes it to generate motor commands. The commands are
transmitted and delivered, whose output is manifested as precise
synergistic control of the relevant muscles and joints. The upper
limb muscle groups take the received motor commands as input,
then trigger the synergistic contraction of the corresponding
muscles depending on the complexity of the commands, to
produce the appropriate force to control skeletal movement. The
synergistic contraction of muscles causes the attachment points on
the corresponding bones to move, resulting in the simultaneous
movement of multiple bones, which in turn causes synergistic
movement of joints. The overall motion of the upper limbs is
controlled by the motion of specific bones, whose specific path of
motion is determined by the additional motion of specific joints. At
the same time, the sensory and feedback mechanisms of the nervous
system are able to provide timely information to the brain about the
position, force, and movement status of the upper limbs, thus
realizing more precise synergistic movement.

The study of synergistic movement of upper limbs is based on
the foundation that humans activate discrete motor modules to
perform biological activities through the cooperation and
collaboration of different muscle groups to meet the needs of
basic daily activities (Bizzi and Cheung, 2013). An important
part of the synergistic movement of the upper limbs is the
synergistic contraction of the muscles, which is accompanied by
the synergistic movement of the muscles. Coscia et al. (2014) studied
hand trajectories and shoulder and elbow angular displacement
trajectories of an upper limb weight support in different horizontal
planes, analyzed the synergy patterns of muscles, and found that
modular organization activated by synergistic movement of muscle
groups underlies upper limb reaching movement generation.

Synergistic movement of upper limbs also involve motion
learning and memory processes. The human nervous system uses
hundreds of millions of nerve cells to precisely regulate the body’s
more than 600 muscles, turning flexion, extension, rotation, and
grasping into functions that can run in the background without
thinking. Through constant practice and repetitive movement, the
brain can gradually build up the appropriate neural pathways and
patterns to form a memory of muscle coordination.

Theoretical perspectives related to neuroscience and motion
control suggest that the central nervous system views the multiple
Dofs of the upper limbs as a luxury tool rather than a burden of
control. In motion control of the human body, it is not necessary for
the nervous system, which is the endpoint, to control all DoFs, which
can lead to a lack of stability in the system. In motion coordination,
stability and coordination do not coexist. To resolve this
contradiction, Scholz and Schöner (1999) skillfully combine
stability and coordination by designing experiments using a
dynamical systems approach to approximate control structures in
joint space. They proposed the uncontrolled manifold (UCM)

hypothesis to quantify the joint coordination of human
movement. Togo et al. (2016) proposed a UCM reference
feedback control method that incrementally generated a target
UCM from a given target end-effector trajectory and combined it
with the target joint in joint space to minimize the cost function with
respect to the input joint torque and torque variation. They also
quantitatively compared the results of simulation and measurement
experiments for a target tracking task. Statistical results showed that
the proposed method quantitatively reproduced the kinematics and
dynamics properties of the upper limbs (end-effector posture, end-
effector velocity, and joint torque, etc.).

In upper limb rehabilitation, temporal and spatial coordination
serve as an important indicator of whether the human body has
normal motion ability, which directly reflects the rehabilitation
effect of patients with physical disabilities. In complex scenarios
such as industrial and service, temporal and spatial coordination can
reflect the degree of collaboration of multiple robotic arms and
directly affect the efficiency of task completion (Zhao et al., 2021).
Gielniak et al. (2013) used motion clarity as a measure of a robot’s
ability to understand humanmovement and engage in human-robot
interaction, and used spatiotemporal coordination as a factor in
synchronizing robotic arm movement with human movement in an
anthropomorphic motion generation algorithm.

The aforementioned work is concerned with intra-arm
coordination in single-arm movement, in addition to inter-arm
coordination between dual-arm movement and coordination
between the upper limbs and other parts of the body. Qu et al.
(2019) constructed a learning model including PCA, GMM and
GMR to extract the intra-arm and inter-arm coordination
characteristics of the human upper limbs by analyzing the
human bimanual motion data, derived the anthropomorphic
coordination motion equations by combining the intra-arm and
inter-arm coordination constraints, generated anthropomorphic
trajectories of bimanual robots, and experimentally reproduced
the anthropomorphic coordination motion, which could improve
the human-robot interaction capability of the bimanual robots.

Furthermore, body language (gestures, body postures, facial
expressions, etc.) is also an important part of conveying social
information in human-computer interaction (Lütkebohle et al.,
2010). Through body language, complemented by coordinated
body movement to signal or imply goals, express emotions or
intentions, and obtain status or feedback, human-computer
interaction can be more natural and efficient. However,
sometimes the information expected to be expressed by head
movement is not perfect and the interacting objects cannot
understand the full meaning, and then the auxiliary functions of
other limbs become extremely important. Researchers have explored
the role of coordination movement of different limbs (e.g., hand-eye
coordination (Chao et al., 2018; Olson et al., 2020), head-eye
coordination (Omrcen and Ude, 2010; Milighetti et al., 2011),
neck-eye coordination (Rajruangrabin and Popa, 2010), etc.) in
augmenting head movement at the level of information
conveyance, as well as their planning and control schemes. Based
on these studies, Zhang et al. (2015) proposed a new online
generation method of anthropomorphic motion based on head-
arm coordination, which considered not only the two-arm
coordination motion, but also the head-arm coordination, and
finally verified by computer simulation and physical experiments.

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Zheng et al. 10.3389/fbioe.2024.1388609

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1388609


Table 4 gives an overview of main approaches to solve motion
coordination.

Although researchers have proposed various coordination
algorithms to control the coordinated motion of the robotic arm,
due to the limitation of the understanding of the human movement
control mechanism, the researches on motion coordination can only
reduce the motion errors of the robotic arm in most cases, and
cannot make it eliminated. By further studying the human-robot
interaction mechanism and assisting more accurate and sensitive
sensor technology to provide better theoretical guidance for the
robot’s motion control strategy, it is possible to better optimize the
coordination of the robot’s anthropomorphic motion.

5 Future challenges

With the in-depth study of human movement function,
wearable exoskeleton robots (Liu et al., 2018) and medical robots
(Zhang et al., 2020) with anthropomorphic motion planning ability
have gradually come into view. In the future, it is expected that more
products will be introduced to meet human needs. However, in
order to provide high-quality services and realize large-scale
applications, the following challenges need to be addressed based
on existing researches.

(1) Intelligence and autonomy enhancement. In unstructured
scenarios such as homes and restaurants, to provide better
service, robots should be more intelligent, make fast and
accurate decisions, and take appropriate actions based on
task requirements and real-time situations to improve work
efficiency. At the same time, the full autonomy of humanoid

robots allows them to take on heavy, dangerous or boring
tasks, which enables humans to focus more on creative and
advanced thinking. Unfortunately, existing humanoid robots
are not yet able to be fully autonomous from humans. With
continuous advances in artificial intelligence, sensor
technology, control algorithms, and other fields, we can
expect future robots to achieve a higher level of autonomy.

(2) Multimodal interaction and human-robot fusion. To enhance
the personalized interaction experience, the robot should
integrate multiple sensors such as visual, auditory, and
haptic (Li G. et al., 2019) to comprehensively understand
the user’s behavioral patterns, accurately respond to the user’s
needs, and monitor the user’s feedback. Through various
forms of input and corresponding outputs, the multimodal
interaction capability can realize a richer and more
convenient human-computer interaction experience.
However, current technologies cannot fully resolve the
conflict between interaction efficiency and safety.

(3) Emotional interaction and emotional intelligence. Emotional
interaction and emotional intelligence in humanoid robots
enable them to better understand and respond to human
emotional needs. Through emotional interaction, robots can
communicate and interact emotionally with humans.
Through emotional intelligence, robots can process and
analyze emotional information and make corresponding
intelligent decisions based on emotional information. The
development of this technology will bring people more user-
friendly and personalized robot services and support.

(4) Humanitarian and ethical considerations. The future
development of humanoid robots should also focus on
humanitarian and ethical considerations. Ethical guidelines

TABLE 4 Approaches to solve motion coordination.

Study Task Anthropomorphic
criterion

Approach Contribution

Rajruangrabin and
Popa (2010)

Robot head human tracking Eye-neck coordination Visual feedback and
optimization, reinforcement

learning

Propose an optimization approach, combined
with real-time visual feedback, to generate

human-like motion

Milighetti et al.
(2011)

Visual tracking of a moving
target with unknown and

arbitrary trajectory

Head-eye coordination Adaptive Kalman Filter,
trajectory tracking control

Proposed a gaze control scheme to achieve
human-like joint motions

Coscia et al. (2014) Reaching movements Muscle synergies Non-negative matrix
factorization

Understand the effect of muscle coordination
when performing upper extremity exercises

Zhang et al. (2015) Tracking external targets and
body parts

Head-arm coordination A quadratic program-based
method

Propose a novel head-arm-based human-like
behavior generation scheme

Togo et al. (2016) One-dimensional target-
tracking task

Joint coordination UCM UCM reference feedback control can reproduce
human-like joint coordination

Chao et al. (2018) Saccade movements, hand
spontaneous movements

Hand-eye coordination Constructive neural
networks

Build a reverse transformation from the robot
actuators space to the robot visual space

Tang et al. (2019) Reaching task Kinematic synergies PCA Confirm that kinematic synergies can be used for
exoskeleton motion planning

Qu et al. (2019) Carrying and pouring Intra-arm and inter-arm
coordination

A learning model consisting
of PCA, GMM and GMR

Propose a method based on human-arm
coordination characteristics to enhance human-

robot interaction ability

Zhao et al. (2022) Point-to-point reaching
movements

Muscle synergies Non-negative matrix
factorization

Promote applications of muscle synergies in
clinical scenarios
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must be followed in the design and application process to
ensure that robots behave in accordance withmoral and social
values and are able to contribute positively to human
wellbeing and social development.

6 Conclusion

In this article, we reviewed representative anthropomorphic
motion planning researches for multi-degree-of-freedom robotic
arms. By in-depth analysis of human natural motion, we proposed a
novel classification method that incorporated human movement
laws into robot motion control based on physiology, and
constructed a more complete anthropomorphic planning system
to better address the problem of anthropomorphic motion planning.
This classification encompasses the majority of current
anthropomorphic motor planning research results. It not only
summarizes and integrates existing research results but also
provides an in-depth exploration and understanding of the
deeper causes of human movement ability. This categorization
method comprehensively and systematically examines the reasons
for the formation of unique human movement abilities in three
major aspects: motion patterns, individual variation, and functional
control. Firstly, from a physiological perspective, the formation of
natural human movement ability is inextricably linked to body
composition. The flexibility provided by the redundancy of the
upper limbs ensures that humans can accomplish various types of
complex tasks. Therefore, motion redundancy is the primary issue
addressed in anthropomorphic motion planning. Secondly,
individual variation is also a significant factor affecting human
movement abilities. Each individual possesses unique physical
characteristics, exercise habits, and psychological states, which
can influence movement performance. Therefore, it is crucial to
consider individual variation when designing anthropomorphic
movement plans. Motion variation is a significant challenge in
this domain. Finally, functional control is essential for human
movement ability. The nervous system plays a pivotal role in
regulating daily life movement. In addition, in order to maintain
balance during movement and to improve the accuracy and stability
of movement execution, the motion coordination of the limbs is an
important symbol that distinguishes human beings from non-living
beings (robots) or human beings with impaired motor function
(patients with limb disabilities). Therefore, motion coordination is
an important criterion for robot motion to be anthropomorphic.
During the development, researchers have moved from single
anthropomorphic criterion to consider multiple criteria to ensure
that motion is sufficiently anthropomorphic. In addition, each
section of the article discusses in detail the various research

approaches to understanding the anthropomorphism of
movement and expresses appreciations for the value that these
findings provide in the anthropomorphic planning system. The
article also points out the current challenges faced by
anthropomorphic motion planning and suggests possible trends
for the future. Once these difficulties are overcome, humanoid
robots with more advanced anthropomorphic motion planning
abilities will be realized in real life, contributing to the
improvement of human living standards for the benefits of
the society.
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