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Introduction: This paper investigates the operational stability of lactate
biosensors, crucial devices in various biomedical and biotechnological
applications. We detail the construction of an amperometric transducer
tailored for lactate measurement and outline the experimental setup used for
empirical validation.

Methods: The modeling framework incorporates Brown and Michaelis–Menten
kinetics, integrating both distributed and discrete delays to capture the intricate
dynamics of lactate sensing. To ascertain model parameters, we propose a
nonlinear optimization method, leveraging initial approximations from the
Brown model’s delay values for the subsequent model with discrete delays.

Results: Stability analysis forms a cornerstone of our investigation, centering on
linearization around equilibrium states and scrutinizing the real parts of quasi-
polynomials. Notably, our findings reveal that the discrete delay model manifests
marginal stability, occupying a delicate balance between asymptotic stability and
instability. We introduce criteria for verifying marginal stability based on
characteristic quasi-polynomial roots, offering practical insights into
system behavior.

Discussion:Qalitative examination of the model elucidates the influence of delay
on dynamic behavior. We observe a transition from stable focus to limit cycle and
period-doubling phenomena with increasing delay values, as evidenced by phase
plots and bifurcation diagrams employing Poincaré sections. Additionally, we
identify limitations in model applicability, notably the loss of solution positivity
with growing delays, underscoring the necessity for cautious interpretation when
employing delayed exponential function formulations. This comprehensive study
provides valuable insights into the design and operational characteristics of
lactate biosensors, offering a robust framework for understanding and
optimizing their performance in diverse settings.
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1 Introduction

1.1 Operational stability of biosensor vs.
Lyapunov stability of the dynamic model

Operational stability of biosensors means “retention of activity
of a protein or enzyme when in use” (Gibson, 1999).

It corresponds mainly with the same notion for dynamic
systems from stability theory. Traditionally, enzyme–substrate
interaction is simulated with the help of the Michaelis–Menten
model, which is a nonlinear dynamic system. On the other hand,
previous studies have paid little attention to the qualitative
behavior of the model from the viewpoint of its stability.
Partially, operational stability deals with the asymptotic nature
of the stability notion, whereas biochemists conduct experiments
during “finite time.”

In turn, the stability theory of dynamic systems, so-called
Lyapunov stability, offers powerful tools for enhancing
biochemical reactions modeling and saving the qualitative
behavior of the systems. Moreover, each model is based on a
series of assumptions about biochemical interactions, which
allows us to check the validity of phenomena that cannot be
verified experimentally, for example, mass action law with the
distributed or discrete delays, which will be presented later.

1.2 Background for lactate measurement

Lactate characteristics: Lactate is an anion of lactic acid and is
the final metabolite of the anaerobic breakdown of glucose. It is
formed from pyruvate during the processes of glycolysis in the
absence of oxygen (Figure 1) (Rabinowitz and Enerbäck, 2020) and
is an important substance used in medicine as a marker of hypoxia
and a number of other disorders, including diabetes and liver and
kidney disorders (Pundir et al., 2016).

Lactate is also actively used in the food industry as an emulsifier,
thickener, and acidity regulator. Various salts of lactic acid in the
international classification of food additives are numbered E325,
E326, E327, E328, and E329. Magnesium lactate is sometimes
classified as an antioxidant (Standards, 2021). In addition, lactate
can act as an indicator of the activity of bacteria during the
fermentation process (Rawoof et al., 2020). It can indicate the
freshness and quality of some products—wine (Gamella et al.,
2010), juices (Trifirò et al., 1997), etc.

The concentration of lactate in products increases as they spoil
due to changes in organoleptic properties. Due to the wide use of
lactate as a marker of many processes in medicine and industry,
accurate and effective methods of its diagnosis are necessary.

Lactate measurement methods: Traditionally, lactate is
measured by colorimetry (Suman et al., 2005; Pundir et al.,
2016), spectrophotometry (Pundir et al., 2016), fluorometry
(Xue and Yeung, 1994), liquid chromatography (Biagi et al.,
2012), and nuclear magnetic resonance (Hu et al., 2012; Park
et al., 2015). These methods are certainly effective but have
several disadvantages, such as high cost, length, and
complexity of the analysis. Some of these methods also require
complex preliminary sample preparation.

1.3 State-of-the-art lactate measurement
with the help of biosensors

Biosensors offer effective and sensitive detection methods that
can be used in medical institutions to measure the level of lactate in
blood, sweat, and other biological fluids. In addition, new methods
of lactate detection can be useful for enterprises that must control
the processes of manufacturing food products and pharmaceuticals
(Rattu et al., 2020).

Classification of lactate biosensors from the viewpoint of a
bioselective element: A number of biosensor developments aimed
at determining the concentration of lactate are known to be in
development. Known biosensors can be divided according to the
type of bioselective element: sensors based on lactate oxidase (LOx)
and sensors based on lactate dehydrogenase (LHD) (Rassaei et al.,
2013). In both cases, the substrate and product of the enzymatic
reaction are lactate and pyruvate, respectively.

Basic reactions for lactate biosensors: There is a significant
difference in these two reactions. For the LHD reaction, NAD+ is
needed as a proton carrier in the reaction of dehydrogenation of
lactate to pyruvate (Chatterjee et al., 2023). The lactate oxidase
reaction can be much easier because, in it, the role of the proton
acceptor is played by oxygen; that is, the use of this enzyme in
biosensors does not require additional reagents (Lockridge
et al., 1972).

Other variants of biosensors are based on a mixture of LHD and
LOx. This configuration of the bioselective element, according to the
results obtained by Chaubey et al. (2000), allows measuring lactate at
lower concentrations than mono-enzyme biosensors, but this makes
the analysis more expensive and is characterized by the complexity
of manufacturing.

Classification of lactate biosensors from the viewpoint of the
transducer: The main biosensor measurement methods used for
lactate analysis are optical—electrochemiluminescence or
fluorescence (Pundir and Narwal, 2017) and
electrochemical—amperometric, potentiometric, or, less often,
conductometric or impedimetric (Rathee et al., 2016). Moreover,
various methods of improving the main characteristics of sensors
have been applied to known biosensor systems—nanoparticles
(Nesakumar et al., 2013; Azzouzi et al., 2015), other
nanomaterials (Cui et al., 2007), complex, multi-stage methods of
enzyme immobilization (Parra et al., 2006), and multi-
enzyme membranes.

Although amperometric (Romero et al., 2010) and
potentiometric (Mengarda et al., 2019) biosensors are usually
monoenzymatic, that is, based on LHD or Lx, conductometric
(Nguyen-Boisse et al., 2013) and impedimetric (Chan et al.,
2017) biosensors usually use two-enzyme bioselective elements,
for example, based on a mixture of lactate oxidase and
peroxidase (Nguyen-Boisse et al., 2013) or a mixture of lactate
dehydrogenase and pyruvate oxidase (Chan et al., 2017).

Motivation for lactate biosensor design: Therefore, in
connection with the variety of works on the development of
biosensor systems for measuring lactate and the prospect of its
wide use in various areas of human life, we have concluded that the
development of new biosensor methods for determining lactate is an
urgent need.
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Most existing biosensors are currently not ready for wide
implementation and commercialization due to various
limitations, such as insufficient sensitivity, selectivity, stability
with respect to possible inferents, or too narrow a range of
biosensor operation.

1.4 Michaelis–Menten model for
enzyme kinetics

According to the model, an enzyme E combines with a substrate
S to form an enzyme–substrate complex ES, characterized by a rate
constant k1. The resulting complex can dissociate into E and S (with
a rate constant of k−1) or transform into a product P with a rate
constant of k2 (Berg et al., 2002).

The speed of the enzyme process is dependent on the ease of
formation of the complex of the enzyme with the substrate. For low
substrate concentrations, the reaction rate is proportional to the
substrate concentration, while at higher concentrations, it tends
toward a maximum value and becomes independent of substrate
concentration. The general dependence of the rate of an enzyme
reaction on substrate concentration is described by an equation
called the Michaelis–Menten equation (Eq. 1):

v � VmaxnS
KM + nS

. (1)

Here, v is the rate of reaction (mol/s), Vmax is the maximum reaction
rate (mol/s), nS is substrate concentration (mol/dm3), and KM is the
Michaelis–Menten constant (mol/dm3).

The Michaelis–Menten constant from Eq. 1 is an enzyme-
specific quantity, dependent on substrate, temperature, and
pH and independent of enzyme concentration. This constant is a
measure of the affinity of the enzyme for the substrate. The lower the
value of the constant, the higher the affinity of the enzyme for the
substrate (Berg et al., 2002; Radomska, 2016).

1.5 Stability research on enzyme kinetics

Models of enzyme kinetics are based on compartmental systems,
which are dynamic systems characterized by a network of
interconnected nodes, each representing a reservoir or
compartment where resources are stored (Blanchini et al., 2023).
The system’s behavior is governed by the movement of resources,
depicted as flows traveling along the edges connecting these
compartments. Compartment-based dynamic systems serve as

invaluable models across various disciplines, including
physiologically based pharmacokinetics (Martsenyuk et al., 2012;
Thompson and Beard, 2012), mathematical epidemiology (Reyné
et al., 2022; Martsenyuk et al., 2021a; b), enzyme kinetics (Keener
and Sneyd, 2009; Craciun et al., 2020; Martsenyuk et al., 2022),
demography (Navarro Valencia et al., 2023), and ecology (Krishna
et al., 2024). Stability analysis plays a pivotal role in understanding
the behavior of these systems under different conditions (Blanchini
et al., 2023). In recent years, researchers have made significant
strides in advancing stability research methodologies, particularly
in the context of compartmental systems with delay (Martsenyuk
et al., 2013; Martsenyuk and Gandzyuk, 2013).

One common approach to stability analysis is linearization,
which involves approximating nonlinear systems around
equilibrium points. This technique has been extensively utilized
in physiologically based pharmacokinetic models to assess the
stability of drug distribution processes within the body
(Martsenyuk et al., 2012). Lyapunov functions represent another
powerful tool for stability analysis, offering a rigorous mathematical
framework to prove the stability properties of compartment-based
systems. In mathematical epidemiology, Lyapunov functions have
been employed to establish global stability of disease-free and
endemic equilibria in compartmental models of infectious
diseases (Martsenyuk et al., 2021a).

1.6 Brief description of the work

Section 2 describes the materials, including the experiment and
models used. The methods presented are related to parameter
identification and stability research. Section 3 shows the results
concerning the parameter identification for models using gamma-
distributed delay and with two discrete delays. The qualitative
analysis includes the existence and positiveness of the solutions,
equilibrium states, marginal stability, and numerical research with
the help of Poincaré sections. In Section 4, we discuss the results
obtained and open problems.

The objective of the work is to offer the flowchart of the lactate
biosensor design, including modeling, parameter identification, and
stability analysis.

2 Materials and methods

2.1 Chemical compounds

The enzyme lactate oxidase obtained from Aerococcus
viridans with an activity of 100 units (Sigma, United States)
was used to create the biosensor. Bovine serum albumin (fraction
V) (BSA) and a 25% aqueous solution of glutaraldehyde (GA),
glycerol, and KCl were obtained from Sigma-Aldrich
(United States). Stock 500 mM sodium L-lactate solution
(Sigma-Aldrich, Switzerland) was used as a substrate. HEPES
obtained from Sigma-Aldrich (United States) was used to prepare
the buffer solution. Other inorganic compounds used in the work
were of domestic production and had a purity level of “h.p.”
and “p.d.a.”

FIGURE 1
Scheme of reactions that underlie the functioning of a biosensor.
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2.2 Lactate biosensor design

The general scheme of amperometric transducers is shown in
Figure 2. Platinum disc electrodes were used as amperometric
transducers, manufactured in the laboratory of the Department of
Biomolecular Electronics of the Institute of Biomolecular Biology and
Geosciences using the following technology: a piece of platinum
electrode with a diameter of 0.5 mm and a length of 3 mm was
placed in a capillary tube with an outer diameter of 3.5 mm, and then
the narrowed end of the capillary tube was sealed in a torch flame. The
electrical connection between the platinum and the silver wire
conductor was made by low-temperature soldering using Wood’s
alloy. The open end of the capillary was filled with epoxy resin, with
part of the conductor inside the capillary and part outside. A copper
contact was soldered to the conductor to connect the transducer to the
measuring unit.

Amperometric measurements setup is shown in Figure 3. The
PalmSens potentiostat (Palm Instruments BV, the Netherlands) was
connected to an auxiliary platinum electrode, a silver chloride (Ag/
AgCl) reference electrode, and working electrodes based on
platinum disc electrodes. The potentiostat was connected to an
8-channel device (CH-8 multiplexer, Palm Instruments BV, the
Netherlands), which allowed it to receive signals simultaneously
from several working electrodes or biosensors (up to eight
simultaneously). The distance between the auxiliary platinum
electrode and all working biosensors during the measurement
was the same (approximately 5 mm).

Preparation of bioselective membranes: Bioselective membranes
were prepared by immobilizing proteins on the surface of a platinum
disc electrode by covalent cross-linking of the enzyme in a bovine
serum albumin matrix using glutaraldehyde as a cross-linking agent.
The enzyme gel containing 5% lactotoxidase, 5% BSA, and 10%

FIGURE 3
Scheme of the amperometric measurement setup. 1–auxiliary electrode, 2–measurement cell, 3–reference electrode, 4–working electrodes,
5–multiplexer, 6–potentiostat, and 7–PSTrace, measurement software for the potentiostat.

FIGURE 2
General scheme of amperometric transducers. (A) Schematic view of the amperometric transducer. (B) Photograph of an amperometric transducer.
(C) Scheme of the sensitive area of the transducer. (D) Photograph of the sensitive area of a transducer. 1–sensitive area, 2 –enzyme membrane,
3–platinum wire, 4–inner conductor (silver wire), electrical connection using 5–low-melting Wood’s alloy, 6–epoxy resin, and 7–contact area.
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glycerol was mixed with a 1% glutaraldehyde solution in a 1:1 ratio,
after which the mixture was applied to the sensitive area of the
platinum disc electrode, and the membrane was air-dried for 20min.
After immobilization, the residual glutaraldehyde and unbound
membrane components were washed off the membranes in a
buffer solution for 5 min with constant stirring, changing the
buffer several times.

2.3 Description of amperometric
measurements

The measurement was carried out in an open measuring cell
with a volume of 2 mL under constant stirring at room temperature.
A fixed potential of +0.6 V was applied to the electrodes relative to
the chloride silver reference electrode. The working buffer was
25 mM HEPES with pH 7.4. The required concentration of the
substrate in the cell was set by adding aliquots of the standard
solution, 500 mM sodium L-lactate, to the buffer.

The duration of one response (from the addition of the substrate
to the signal output to the baseline) was approximately 4–5 min;
between responses, the substrate was washed off the biosensor for
5 min, changing the buffer in the measuring cell several times. All
measurements were performed in at least three replicates.

2.4 Models used

2.4.1 Model with continuously distributed delays
An application of delayed mass action law to enzyme kinetics

was inspired by Brown’s model, formulated by Brown (1902), where
complex C has a lifetime τ before being decayed. We called the
reaction scheme

E t( ) + S t( )���������→kd E t + τ( ) + P t + τ( )
an irreversible one-complex Brown’s (IR1CB) mechanism. In
Martsenyuk et al. (2022), we offered the following model based
on continuously distributed delays:

dnS t( )
dt

� −kdnE t( )nS t( ),
dnE t( )
dt

� −kdnE t( )nS t( ) + kd∫0

−τMf s( )nE t + s( )nS t + s( )ds,
dnP t( )
dt

� kd∫0

−τMf s( )nE t + s( )nS t + s( )ds,
(2)

where for confidence level c ∈ (0, 1), we set τM ≔
τmin + m+1

a +
�����
(m+1)
a2(1−c)

√
, f(s) is the density function of the delay

distribution, which was designed in the form of a gamma
distribution:

f a,m, τmin, s( ) ≔
0 s≤ τmin,

am+1

Γ m + 1( ) s − τmin( )me−a s−τmin( ) s> τmin,

⎧⎪⎪⎨⎪⎪⎩ (3)

where a, m, τmin ≥ 0 are the parameters that determine the
corresponding probability density function. Their roles and the
ways of estimating were well-studied in Martsenyuk et al. (2022).
The basic idea of Brown’s model shown in Model (2) does not
include complex C directly but involves the model time τ required

for complex forming–destroying. The model parameters were well-
studied by Martsenyuk et al. (2022) and can be used as an initial
approximation for the complex-based model in the next subsection.

2.4.2 Models with two discrete delays
The model extends the well-known irreversible one-complex

Michaelis–Menten (IR1CMM) mechanism (Keener and Sneyd,
2009) (Section 1.4)

E + S⇋k1

k−1
C ���������→k2 E + P

by adding the time durations τ1 and τ2 required for the entire
fulfillment of the forward reactions. Mathematically, it corresponds
to the time delays within dynamic systems. Hence, we consider the
following set of elementary reactions:

S + E ���������→k1 ,τ1 C
C ���������→k−1 S + E
C ���������→k2 ,τ2 E + P,

which we call the irreversible one-complex with two delays
Michaelis–Menthen (IR1C2DMM) mechanism. Based on the
general approach described by Craciun et al. (2020), it yields the
delayed model

dnS
dt

� k−1nC − k1nS t − τ1( )nE t − τ1( )
dnE
dt

� k−1nC + k2nC t − τ2( ) − k1nS t − τ1( )nE t − τ1( )
dnC
dt

� k1nS t − τ1( )nE t − τ1( ) − k2nC t − τ2( ) − k−1nC
dnP
dt

� k2nC t − τ2( ).

(4)

For the solutions of Eq. 4, elements of which are the vector
functions nS, nE, nC, nP ∈ C1 ([−τmax], 0], R

4), we consider the
following initial conditions:

nS t( ) � n̂S t( )≥ 0, nE t( ) � n̂E t( )≥ 0, nC t( ) � n̂C t( )≥ 0,

nP t( ) � n̂P t( )≥ 0, t ∈ −τmax, 0[ ), nS 0( ) � n̂0S > 0,

nE t( ) � n̂0E > 0, nC t( ) � n̂0C > 0, nP t( ) � n̂0P > 0. (5)

The value of nP(t) can be found by direct integration, namely,

nP t( ) � nP 0( ) + k2∫t

0
nC s − τ2( )ds, t> 0. (6)

2.5 Methods

2.5.1 Parameter identification
As a result of the amperometric measurements described in

Section 2, we obtain responses in the form of current I(t). We
propose to use the relation of the current I(t) with nP(t) as

I t( ) ≔ Λ0
mnP t( ) −K nP t( )( )3/2, t> 0. (7)

In Martsenyuk et al. (2022), this relationship was evidenced for
the specific conductance κ(t) of conductometric biosensors.
Mathematical modeling of conductometric biosensors in terms of
conductivity is presented in detail by Zouaoui et al. (2022). Provided
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fixed potential, we assume the linear dependence of the specific
conductance and the current. So, we follow Eq. 7. Numerical
modeling regarding amperometric biosensors is displayed by
Simelevicius et al. (2012) and Hashem Zadeh et al. (2020).

In the following, we will denote product concentrations obtained
as the solutions of the models as nP,pred(t). In turn, the corresponding
values of the current due to Eq. 7 will be Ipred(t). On the other hand,
let Iexp(t) be the values of responses received as a result of the
experiments.

The proposed parameter identification uses the currents Iexp,j (ti)
and Ipred,j (ti), j � 1, m, experimentally and numerically obtained at
the time instances ti, i � 1, N1 for given initial substrate
concentrations nS (0) = nS,j.

Our goal is to estimate the parameters ΠIR1CB � kd, a,{
m, τmin,Λ0

m,K} ∈ R6
+, ΠIR1C2DMM � k1, k2, k−1, τ1, τ2,Λ0

m,K{ } ∈ R7
+

when applying Model (2) or (4), respectively.
We will estimate the parameters Π of the models solving the

problems of optimization:

minimize J Π( )
subjectto gi Π( )≥Θ, i � 1, 2.

} (8)

Here,

J Π( ) ≔ ∑m
j�1

∑N
i�1

Iexp,j ti( ) − Ipred,j ti( )( )2( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠1/2

(9)

is the target function, and

g1 Π( ) � Π − Πlower ≥Θ,
g2 Π( ) � Πupper − Π≥Θ, (10)

are inequality constraints, where Θ is a null vector, and Πlower and
Πupper are lower and upper bounds for the parameter values of
corresponding dimensions.

An algorithm for the estimation of ΠIR1CB was described in detail
by Martsenyuk et al. (2022). Here, we also apply it for the estimation
of ΠIR1C2DMM. Moreover, the values of a, m, and τmin, obtained as a
result of the parameter identification in Eq, 2, will be used in order to
set the initial estimate for τ1 and τ2 when estimating Eq. 4. Note that
the mean value of time delay for Model (2) can be calculated as

E τ( ) ≔ τmin + m + 1
a

.

So, we set the initial values of delays from Eq. 4 such that τ1 +
τ2 ≈ E(τ).

2.5.2 Stability research using
linearization technique

We will conduct research on local stability using the linearization
technique. In this case, stability conditions are constructed based on a
characteristic quasi-polynomial. The signs of the real parts of its roots
are decisive for making conclusions about stability.

Namely, if all roots lie on the open left-half plane, then the
equilibrium is locally asymptotically stable. If some of the roots have

positive real parts, then the equilibrium is unstable. We focus our
attention on the case when the roots lie on a closed left-half plane;
that is, we have some simple roots lying on an imaginary axis. Such a
situation is known as marginal stability. We distinguish this
situation from the case of the pair of purely imaginary roots
corresponding to periodic solutions.

When investigating the characteristic quasi-polynomial, a Padé
approximant will be used in the form

e−λτ ≈
1 − λτ

2

1 + λτ
2

, (11)

allowing us to approximate the characteristic quasi-polynomial with
the help of rational functions (Baker and Graves-Morris, 1996).

2.5.3 Bifurcation plots using Poincaré section
We use the Poincaré section technique to study the qualitative

behavior of the models developed, which was primarily applied to
the compartmental model by Martsenyuk et al. (2021a).

To begin, we gain a thorough understanding of Model (4),
including its equations and parameters. We select parameters τ1 and
τ2 to vary and the variables nS, nE, and nC to focus on. Then, we
simulate the system across different parameter values, generating
time series data for the chosen variables.

Poincaré sections are constructed by intersecting the trajectory of
the system with a defined plane nE = d in the phase space, where d =
(mintnE(t) + maxtnE(t))/2. This section is determined by specific
criteria; namely, we choose such points (n+S , d, n+C ) such that
crossing a plane nE = d will happen at sequential time instances t+

+ T, t+ + 2T, t+ + 3T, . . . , where T is a period value; that is,
n+S � nS(t+) � nS(t+ + T) � nS(t+ + 2T) � . . . . We plot the
sampled points in an (nS, nE)-space to visualize the Poincaré sections.

Repeating this process for various parameter values (τ1, τ2), we
observe how the Poincaré sections change. Analyzing the patterns in
the sections, we understand the system’s behavior, including the
emergence of periodic orbits, chaotic dynamics, or transitions
between different states.

Finally, we summarize the results by constructing a bifurcation
plot combined with the corresponding nS, nE and (nS, nP) phase plots,
showing how features of the Poincaré sections vary with parameter
values. This comprehensive approach allows us to systematically
explore the system’s behavior and gain insights into its dynamics.

3 Results

3.1 Parameter identification for a model
using a gamma-distributed delay

The parameter identification technique mentioned in Section
2.5.1 was used for Model (2). The training data correspond to a set of
time series of currents corresponding to given initial substrate
concentrations nS(0) equal to 0.1 mM, 0.5 mM, 1.0 mM, and
2.5 mM sequentially.

The goal is to estimate the parameters ΠIR1CB �
kd, a, m, τmin,Λ0

m,K{ } ∈ R6
+. The initial values for the estimation

were chosen as Πinit (see Table 1). The lower and upper bounds for
ΠIR1CB are shown in Table 1 as Πlower and Πupper, respectively.

1 Without loss of generality, we assume that all time series have the

same time span.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Martsenyuk et al. 10.3389/fbioe.2024.1385459

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1385459


The most valuable information obtained from Model (2) is the
density of the distributed delay distribution (see Figure 4), which will
be used in further estimations.

The comparison of predicted and expected values of the currents
for the optimal set of the parameters Πopt is shown in Figure 5. We
see that the parameter values, being optimal concerning the cost
criterion (8), enable us to find the solution of Model (2) closest to the
expected currents for the initial substrate concentration of 1.0 mM.
For the smaller initial values of the substrate, we have predicted
values smaller than the expected ones, whereas for those bigger than
1.0 mM, the predicted values are larger than the experimental ones.
The explanation of such an effect lies in the special kind of stability
of the model known as marginal stability, which will be
evidenced further.

3.2 Parameter identification for amodel with
two discrete delays

Model (4) requires the estimating the parameters
ΠIR1C2DMM � k1, k2, k−1, τ1, τ2,Λ0

m,K{ } ∈ R7
+. They were obtained

as a result of the solution of the optimization problem shown in
Eqs 8–10. The training data described in Section 3.1 were used.

The initial values for the estimation were chosen as Πinit (see
Table 2). The lower and upper bounds for ΠIR1C2DMM are shown in
Table 2 as Πlower and Πupper, respectively.

The comparison of predicted and expected values of the
currents for the optimal set of the parameters Πopt for Model
(4) is shown in Figure 6. We see similar tendencies of expected
and predicted values as we did for Model (2), with gamma-
distributed delays.

3.3 Qualitative analysis

3.3.1 Existence and positiveness of the solutions
Given n̂S(t), n̂E(t), n̂C(t), n̂P(t) ∈ C+[−τmax, 0], because the

right-hand sides of Eq. 4 imply the Lipschitz condition, there
exists a unique trajectory of Eq. 4 starting from Eq. 5 (Hale and
Lunel, 2013).

Henceforth, we will focus our attention on the positiveness of the
solution of the system shown in Eq. 4.

The positiveness of nP(t) follows directly from the positiveness of
nC(t). So, we prove the positiveness of nS(t), nE(t), and nC(t) by
contradiction.

3.3.1.1 Case without delays
First, we demonstrate the positiveness for Model (4) without

delays, that is, if τ1 = τ2 = 0

dnS
dt

� k−1nC − k1nSnE

dnE
dt

� k−1nC + k2nC − k1nSnE

dnC
dt

� k1nSnE − k2nC − k−1nC
dnP
dt

� k2nC.

(12)

Let us assume, for the sake of contradiction, that there is the
smallest value among tc, te, and ts delivering non-positive solutions.
Consider them sequentially.

Let tc > 0 be the smallest instance of time such that nC(tc) = 0.
From the first and second lines of Eq. 12, we get

dnS
dt

> − k1nS t( )nE t( ),
dnE
dt

> − k1nS t( )nE t( ).
It implies that

nS t( )> nS 0( )exp −k1∫t

0
nE ξ( )dξ( )> 0,

nE t( )> nE 0( )exp −k1∫t

0
nE ξ( )dξ( )> 0,

t ∈ 0, tc[ ).

TABLE 1 Parameter identification for Model (2).

kd a m τmin K Λ0
m

Πlower 1.e−10 1.e−10 1.e−10 1.e−10 1.e−10 1.e−10

Πupper 1 1,000 1,000 1,000 1.e6 1.e6

Πinit 0.1 1 20 5 1.e−10 0.5

Πopt 0.09647381 0.9180534 16.2354 4.607475 1e−10 0.06818154

FIGURE 4
Density function given in 3 for the distributed delay τ value from
Model Eq. (2).
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From the third line of Eq. 12, we have

dnC
dt

> − k2nC t( ) − k−1nC, t ∈ 0, tc[ ).
Hence,

nC t( )> nC 0( )exp −k2 − k−1( )t, t ∈ 0, tc[ ). (13)
By continuing Eq. 13, we have nC(tc) > 0, which contradicts the
initial assumption.

Let te be the smallest instant that nE(te) = 0. From the third part
of Eq. 12, it follows that

dnC
dt

> − k2nC t( ) − k−1nC,

and nC(t) > 0 for t ∈ [0, te).

In turn, from the second part of Eq. 12, we have

dnE
dt

> − k1nS t( )nE t( ),
and

nE t( )> nE 0( )exp −k1∫t

0
nS ξ( )dξ( )> 0

for t ∈ [0, te],
Let ts be the smallest instant that nS (ts) = 0. From the second line

of Eq. 12, we get that nC(t) > 0, t ∈ [0, ts). Furthermore, from the first
equation, we have

dnS
dt

> − k1nS t( )nE t( ),
and

FIGURE 5
Comparison of the predicted and expected currents for Model (2) at the optimal values of the parameters Πopt corresponding to given initial
substrate concentrations nS (0): (A) 0.1 mM, (B) 0.5 mM, (C) 1.0 mM, and (D) 2.5 mM.

TABLE 2 Parameter identification for Model (4).

k1 k−1 k2 τ1 K Λ0
m τ2

Πlower 1.e−10 1.e−10 1.e−10 1.e−10 1.e−10 1.e−10 0

Πupper 1 1,000 1,000 1,000 1.e6 1.e6 1,000

Πinit 0.1 0.1 0.1 15 0.5 0.0 7

Πopt 0.08717502 0.1048326 0.1220813 15.69849 1.171464e-05 0.2323843 5.357829
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nS t( )> nS 0( )exp −k1∫t

0
nE ξ( )dξ( )> 0

for t ∈ [0, ts], which contradicts the assumption.
For the reasons given, we see that the solution of Eq. 12 exists

and is positive for any positive initial values (nS(0), nE(0),
nC(0), nP(0)) > 0.

3.3.1.2 Two discrete delays
It is natural to assume that the solutions of Eq. 4 are still positive

for some sufficiently small τ1 and τ2. We aim to offer the conditions
of positiveness.

The conditions will be based on the notion of the delayed
exponential function. Given the value x ∈ R and delay τ > 0, the
delayed exponential function is called (Angstmann et al., 2023)

exτ ≔ ∑+∞
n�0

x − nτ( )n
Γ n + 1( ) Θ

x

τ
− n( ),

where Θ(·) is the Heaviside function. This function has the property
that d

dxe
λx
τ � λeλ(x−τ)τ . Note that contrary to the “undelayed”

exponential function, exτ can also accept negative values.
To apply the approach of contradictions shown above, let tc, te,

and ts be instances delivering non-positive solutions.

If tc > 0 be the smallest instance that nC (tc) = 0, then from the
first and second lines of Eq. 4

dnS
dt

> − k1nS t − τ1( )nE t − τ1( ),
dnE
dt

> − k1nS t − τ1( )nE t − τ1( ).

Hence,

nS t( )> nS 0( )e−k1nE0tτ1 ,

nE t( )> nE0e
−k1nmax

S t
τ1 ,

where nmax
S ≔ maxunS(u).

From the third line of Eq. 4, we have

dnC
dt

> − k2nC t − τ2( ) − k−1nC, t ∈ 0, tc[ ).

Consider t = tc. Hence,

dnC tc( )
dt

> − k2nC tc − τ2( ),
and we see that

nC t( )> nC 0( )e−k2nE0tτ2 , t ∈ 0, tc[ ].

FIGURE 6
Comparison of the predicted and expected currents for Model (4) at the optimal values of the parameters Πopt corresponding to the given initial
substrate concentrations nS (0): (A) 0.1 mM, (B) 0.5 mM, (C) 1.0 mM, and (D) 2.5 mM.
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Following the proof in the previous case, we conclude
that the solutions of Eq. 4 are positive if rate parameters, initial
conditions, and delays τ1, τ2 are such that for any t > 0

e
−k1nE0t
τ1 > 0, e

−k1nmax
S t

τ1 > 0, e−k2nE0tτ2 > 0.

3.3.2 Stability research
3.3.2.1 Equilibrium of the system

Let (�nS, �nE, �nC, �nP) be the equilibrium of Model (4). It
should satisfy

k−1�nC − k1�nS�nE � 0,
k−1�nC + k2�nC − k1�nS�nE � 0,
k1�nS�nE − k2�nC − k−1�nC � 0,
k2�nC � 0.

It follows that

�nC � 0,
k1�nS�nE � 0.

When analyzing Eq. 4, we see that there is a conserved
quantity of enzyme because d(nE+nC)

dt ≡ 0. Hence,
nE(t) + nC(t) ≡ nE0, where nE0 is the total amount of available
enzyme. Thus, from the last equality of Section 3.3.2.1, we
conclude that �nE � nE0 and �nS � 0.

So, we have the unique equilibrium of Model
(4), which is the substrate and complex free
equilibrium (SCFE).

�nS � 0, �nE � nE0, �nC � 0, �nP � const.

The value of �nP is bounded and can be determined
by Eq. 6. Note that it is related to the initial values of
both nS and nE. nP is not included in the right-hand sides
of Eq. 4.

3.3.2.2 Marginal stability
The Jacobian matrix at SCFE for Model (4) is given by

FIGURE 7
Constructing Poincaré sections based on trajectories (nS(t), nE(t), nC(t)) of Model (4) with the parameters Πopt in dependence of (A) τ1 =15.69849, (B)
τ1 = 25, (C) τ1 = 32, and (D) τ1 = 35. Poincaré sections (in red) are obtained as a result of crossing with the plane nE = d, where d =(mintnE(t) + maxtnE(t))/2.
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J �
−k1�nEe−λτ1 −k1�nSe−λτ1 k−1 0
−k1�nEe−λτ1 −k1�nSe−λτ1 k−1 + k2e−λτ2 0
k1�nEe−λτ1 k1�nSe−λτ1 −k2e−λτ2 − k1 0

0 0 k2e−λτ2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
SCFE

�
−k1nE0e

−λτ1 0 k−1 0
−k1nE0e

−λτ1 0 k−1 + k2e
−λτ2 0

k1nE0e
−λτ1 0 −k2e−λτ2 − k1 0

0 0 k2e
−λτ2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

The characteristic quasi-polynomial for (�nS, �nE, �nC, �nP) is
given by

χ λ( ) � λ4 + k−1λ
3 + k1 �nS + �nE( )λ3e−λτ1 + k2λ

3e−λτ2

+ k1k2�nEλ
2e−λ τ1+τ2( ) � λ2χ1 λ( ),

where

χ1 λ( ) � λ2 + k−1λ + k1 �nS + �nE( )λe−λτ1 + k2λe
−λτ2 + k1k2�nEe

−λ τ1+τ2( ).

Hence, stability analysis can be reduced to obtaining conditions
of non-positive values of real parts of the quasi-polynomial
of χ1(λ).

For SCFE, we have the following quasi-polynomial:

χ1 λ( ) � λ2 + k−1λ + k1nE0λe
−λτ1 + k2λe

−λτ2 + k1k2�nEe
−λ τ1+τ2( ).

When applying the Padé approximation shown in Eq. 11 to the
characteristic quasi-polynomial, we get

χ1 λ( ) ≈ k1�nEλ
3τ21k2τ2 − 2k1�nEλ

3τ12 − k1�nEλ
4τ21τ2+(

− 2k1�nEλ2τ12k2 + 4k1�nEλ
2τ2 − 4k1�nEλk2τ2 + 8k1�nEλ

+ 8k1�nEk2 + λ5τ21τ2 + λ4τ12k−1τ2 + 2λ4τ21 − λ4τ21k2τ2

+ 4λ4τ1τ2 + 2λ3τ21k−1 + 2λ3τ21k2 + 4λ3τ1k−1τ2
− 4λ3τ1k2τ2+8λ3τ1 + 4λ3τ2 + 8λ2τ1k−1 + 8λ2τ1k2

+ 4λ2k−1τ2 − 4λ2k2τ2 + 8λ2 + 8λk−1 + 8λk2)/ λ3τ21τ2 + 2λ2τ21 + 4λ2τ1τ2 + 8λτ1 + 4λτ2 + 8( ).

FIGURE 8
Poincaré sections (in blue) in the (nS, nE)-plane of the model (4) with the parameters Πopt in dependence of (A) τ1 = 15.69849, (B) τ1 = 25, (C) τ1 = 32,
and (D) τ1 = 35.

FIGURE 9
Bifurcation diagram of nS with respect to the parameter τ1.
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Setting the values for �nE � 1.139071mM, k1, k2, k−1 from Πopt

(Table 2), we obtain

χ1 λ( ) � 0.0992985372e−λτ1λ + 0.0121224945e−λτ1e−λτ2 + λ2

+ 0.1220813λe−λτ2 + 0.1048326λ.

In turn, applying the Padé approximation yields

χ1 λ( ) ≈ 8 λ5τ21τ2( )/8 + −0.9323778976λ4τ21τ2( )/64 + λ4τ21( )/4((
+ λ4τ1τ2( )/2 + 0.1939599121λ3τ21τ2( )/128 + 0.2552307255λ3τ21( )/8
+ −4.4156672λ3τ1τ2( )/512 + λ3τ1 + λ3τ2( )/2 + −0.048489978λ2τ21( )/16
+ 1.8153112λ2τ1( )/8 + 0.3281993488λ2τ2( )/8+λ2
+ −0.048489978λτ2( )/8 + 0.3262124372λ + 0.0121224945))/ λ3τ21τ2(
+2λ2τ21+4λ2τ1τ2 + 8λτ1 + 4λτ2 + 8).

Consider two special cases of Eq. 4:
Case 1 without delays, that is, τ1 = τ2 = 0. Then,

χ1 λ( ) � λ2 + 0.3262124372λ + 0.0121224945,

and we have the roots of χ1(λ):

λ1 � −0.28344384, λ2 � −0.04276859,

which means marginal stability in this case.
Case 2with optimal values of the delays fromΠopt (Table 2), that

is, τ1 = 15.69849 and τ2 = 5.357829. It holds

χ1 λ( ) � 0.0992985372e−15.69849λλ + 0.0121224945e−15.69849λe−5.357829λ

+λ2 + 0.1220813λe−5.357829λ + 0.1048326λ.

3.3.3 Effect of delays on qualitative behavior
We investigated the qualitative behavior of the model by

selecting specific parameter values, denoted as Πopt, and
examining the influence of the delay τ1 on Model 4’s dynamics,
provided that τ2 = 5.357829 is fixed. To explore this influence, we
varied the parameter τ1 over the interval [0, 35].

Figure 7 illustrates the construction of Poincaré sections in 3D
plots for various values of τ1. These sections provide insights into the
system’s behavior at specific points in its phase space. As it can be
seen for the values of τ1 and τ2 greater than in Πopt, we lose the
positivity of the solutions. This phenomenon was evidenced in
Section 3.3.1.2, where it was shown that in contrast to the model
without delay, positivity requires restricting the parameters
in Eq. (4).

Furthermore, Figure 8 presents the corresponding Poincaré
sections plotted in the (nS, nE)-plane, offering a clearer
visualization of the system’s trajectory crossings. A thorough
inspection of the sections says that for the initial trajectory (nS(t),
nE(t), nC(t)) behaves at the equilibrium state as a stable node. Then,
at less than τ ≈ 25, Hopf bifurcation appears, and the limit cycle
starts from a small radius of approximately 10–4 and is extended
sequentially to 10–2. Simultaneously, period doubling occurs.

FIGURE 10
(nS, nE)-phase plots of Model (4) with the parameters Πopt in dependence of (A) τ1=15.69849, (B) τ1=25, (C) τ1=32, and (D) τ1=35. Trajectories are
constructed at different initial values of nS (0):–0.1 mM, –0.5 mM, –1.0 mM, and –2.5 mM. Starting points are indicated in blue.
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In Figure 9, we depict the bifurcation diagram for the variable nS
resulting from the parameter variation of τ1. It reveals that the
equilibrium state behaves as a stable node within the range of τ1
values from 0 to 25. Subsequently, a bifurcation occurs, leading to a
transition to a limit cycle. This period-doubling phenomenon is
further supported by Figure 10, which displays the (nS, nE)-phase
plane for different initial states.

For τ1 values exceeding 32, the system’s behavior appears likely
to become chaotic. This transition is occurring through period
doubling, although further investigation is warranted. It is
noteworthy that the system exhibits marginal stability, as evident
from Figure 11. This figure illustrates how different initial values of
nS (0) lead the solution nP to converge toward either a stable node or
a limited cycle.

Special attention should be paid to the positivity of the solutions,
as we observed from the numerical modeling.

4 Discussion

The use of gamma-distributed delays and discretely distributed
delay models is simultaneously important because the parameter
values from the IR1CB model can be used for the IR1C2DMM
model. The gamma-distributed delays model allows us to estimate
the mean value of the delay easily.

Moreover, based on the results of numerical experiments, we can
conclude that for the optimal values of the parameters Πopt (Tables
1, 2), we have that τ1 + τ2 ≈ E(τ), where τ1, τ2 are the discrete delays
from Eq. 4, and τ is the distributed delay from Eq. 2 (see also Figure 4
for delay density distribution).

The use of the Levenberg–Marquardt algorithm is essentially
determined by choosing the initial approximation of the parameter
values. It can be improved by applying AI techniques and
constructing and tuning neural networks of the appropriate
architecture for future consideration.

Artificial intelligence (AI) models like recurrent NNs can also be
used to model enzyme–substrate interaction (we will try this in the
future). The advantage of an AI model is that it makes more accurate
predictions. The disadvantages of using AI are (1) the black box
problem, meaning that the models are not based on any biochemical
assumptions but only neural network architecture and (2) the
overfitting problem, meaning that when we try to fit the outputs
as accurately as we can, we may not see the general tendencies
in reactions.

The system is characterized by marginal stability, which is
between Lyapunov stability and instability. It corresponds to the
objective of an electrochemical biosensor as a measuring device.
Each initial state, including substrate concentration changes, has its
“own” concentration of the product at an infinite time. We can
reformulate it as the definition of operating stability.

FIGURE 11
(nS, nP)-phase plots of Model (4) with the parameters Πopt in dependence of (A) τ1=15.69849, (B) τ1=25, (C) τ1=32, and (D) τ1=35. Trajectories are
constructed at different initial values of nS (0):–0.1 mM, –0.5 mM, –1.0 mM, and –2.5 mM. Starting points are indicated in blue.
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The question arises of how to apply and interpret the
marginal stability condition. As was shown, the marginal
stability condition can be reduced by checking the real parts
of the polynomial roots. We see that the roots depend on the
reaction rate parameters (k1, k2, k−1), time delays τ1, τ2, and the
initial concentration of nE0.

5 Conclusion

The equilibrium of the system was demonstrated in this
article. From the viewpoint of enzymatic reactions and based
on the proposed model, we saw that the system would be in
equilibrium in the case of the absence of substrate and complex,
that is, �nS ≡ 0, nC ≡ 0, as well as the concentration of the enzyme
equal to the total amount of available enzyme. The concentration
of the product should be a constant value calculated in
accordance with Eq. 6 as the area under curve nC(t), that is,
�nP ≡ const. In addition, �nP is determined by the initial
value nS (0).

In the work, we also considered a model with two discrete delays
where τ1 and τ2 are time durations required for the entire fulfillment
of forwarded reactions. To be precise, τ1 is the time needed for the
substrate to bind with the enzyme (time needed for complex
formation), and τ2 is the time needed for the complex to break
down into enzyme and product. It was numerically shown that
increasing those two parameters could result in a loss of stability.
Suppose we have optimal values τ01 and τ02 and they correspond to a
stable solution. If τ1 > τ01, more time is required for forming the
complex at S + E ���������→k1 ,τ1 C. In other words, less complex will be
produced compared with the optimal value. In turn, if τ2 > τ02, this
means that more time will be needed for the C ���������→k1 ,τ2 E + P
reaction, leading to less enzyme and product than in the steady
state. We remember that in the steady state, it has been proven that
we have no complex, and the enzyme content is maximal. On the
other hand, an increase in τ2 results in having more complex but less
product. This will affect the final content of the product, that is, the
biosensor index.

It can also be noted that no unique parameters are set for
fitting the model to the expected data at different values (Figures
5, 6), as the rates are not constant but can be functions of the
substance concentrations. In particular, the times required for
the reactions S + E ���������→k1 ,τ1 C and C ���������→k1 ,τ2 E + P are not
constant. They likely depend on the concentrations of S, E
(for τ1), and C (for τ2). These data should be determined
experimentally. Moreover, the models can be extended by
involving other complexes created by reactions with other
biosensor auxiliary components. For example, BSA is known
to create a complex with an enzyme known as CLEA (Shah et al.,
2006). In other words, incorporating additional variables
and increasing the system dimension can improve the
model fitting.

These findings provide valuable insights into the system’s
dynamics and highlight the importance of parameter exploration
in understanding the qualitative behavior of enzyme
kinetics models.
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