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Efficient engineering of T cells to express exogenous tumor-targeting receptors
such as chimeric antigen receptors (CARs) or T-cell receptors (TCRs) is a key
requirement of effective adoptive cell therapy for cancer. Genome editing
technologies, such as CRISPR/Cas9, can further alter the functional
characteristics of therapeutic T cells through the knockout of genes of
interest while knocking in synthetic receptors that can recognize cancer cells.
Performingmultiple rounds of gene transfer with precise genome editing, termed
multiplexing, remains a key challenge, especially for non-viral delivery platforms.
Here, we demonstrate the efficient production of primary human T cells
incorporating the knockout of three clinically relevant genes (B2M, TRAC, and
PD1) along with the non-viral transfection of a CAR targeting disialoganglioside
GD2. Multiplexed knockout results in high on-target deletion for all three genes,
with low off-target editing and chromosome alterations. Incorporating non-viral
delivery to knock in a GD2-CAR resulted in a TRAC-B2M-PD1-deficient GD2 CAR
T-cell product with a central memory cell phenotype and high cytotoxicity
against GD2-expressing neuroblastoma target cells. Multiplexed gene-editing
with non-viral delivery by CRISPR/Cas9 is feasible and safe, with a high potential
for rapid and efficient manufacturing of highly potent allogeneic CAR
T-cell products.
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Introduction

Chimeric antigen receptor (CAR) T cells utilize an engineered receptor consisting of a
single-chain variable fragment (scFV) specific for an extracellular tumor antigen attached to
intracellular signaling domains that can elicit a T-cell response against tumors in an
antigen-specific manner independent of human leukocyte antigen (HLA) (June et al., 2018;
Hucks and Rheingold, 2019). To date, there are six FDA-approved CAR T-cell therapies for
hematologic malignancies such as B-cell acute lymphoblastic leukemia, multiple myeloma,
and non-Hodgkin B-cell lymphomas (Chen et al., 2023). However, CAR T-cell therapies
have been limited to autologous products and continue to have limited activity against solid
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tumors, in part due to a lack of homing to the tumor, limited
persistence, and engagement of inhibitory signals from the tumor
microenvironment that, combined with chronic antigen
stimulation, can induce exhaustion (McLane et al., 2019; Kankeu
Fonkoua et al., 2022). For example, in a phase-I trial using a third-
generation anti-GD2 CAR-T therapy targeting pediatric and young
adult osteosarcoma and neuroblastoma, in vivo T-cell expansion and
persistence were hampered by a lack of memory phenotypes and
rampant exhaustion (Kaczanowska et al., 2023). Engineering
solutions to resist exhaustion and promote memory formation in
pre-infusion CAR T-cell products are urgently needed to more
effectively treat solid tumors.

Strategies that prevent exhaustion are one way to improve CAR
T-cell function. Cancers often express inhibitory ligands that engage
with surface receptors on T cells (PD-1, LAG3, CTLA-4, etc.) that
contribute to exhausted phenotypes (Park et al., 2016; He and Xu,
2020). Blocking these receptors with therapeutic antibodies has led
to the development of immune checkpoint inhibitor (ICI) therapy
(Sharma and Allison, 2015; Sharma et al., 2021). Combining ICI
with adoptive T-cell therapies to treat cancer has been shown to
increase persistence and effector function, especially with anti-PD-1
(Burga et al., 2015; Gargett et al., 2016; Najafi and Mortezaee, 2023).
Alternatively, the CRISPR/Cas9-mediated knockout of inhibitory

checkpoint genes to prevent their expression (Jinek et al., 2012) has
been used to target PD-1 expression in CAR T cells, and this
approach can increase resistance to exhaustion in vitro (Rupp
et al., 2017; Guo et al., 2018; Hu B. et al., 2019; Hu W. et al.,
2019; Choi et al., 2019; Dai et al., 2019; McGowan et al., 2020), with
similar results in vivo (Lin et al., 2019; Wang et al., 2021; Khan and
Sarkar, 2022).

Another approach to minimizing exhaustion is using
allogeneic donors to generate an off-the-shelf CAR T-cell
product and avoid the lengthy vein-to-vein time characteristic
of autologous CAR T-cell therapy. Random integration from viral
vectors presents a safety concern for regulatory agencies, which
non-viral gene integration in CAR T cells can rectify (Foy et al.,
2022; Kath et al., 2022; Madison et al., 2022; Ye et al., 2022;
Webber et al., 2023). Virus-free strategies utilizing homology-
directed repair of double-strand DNA breaks from CRISPR/
Cas9 cleavage can incorporate linearized dsDNA templates
into a precise locus. This approach can place CAR transgenes
under the control of endogenous promoters, such as the TRAC
locus (Eyquem et al., 2017; Stadtmauer et al., 2020; Mueller et al.,
2022), and yield more controlled transgene expression, copy
numbers in the genome (1 or 2), limited off-target effects, and
higher fractions of stem-cell memory phenotypes, which

FIGURE 1
Multiplex gene editing to manufacture triple-knockout (CD3−/β2M−/PD-1−) anti-GD2 CAR T cells. (A) Schematic of a CAR construct consisting of
500 bp left and right homology arms, third-generation anti-GD2 CAR, and a tNGFR tag inserted into the TRAC locus with simultaneous knockout of the
B2M and PDCD1 genes. (B) Schematic of GD2 CAR T-cell manufacturing. (C) Representative flow plots depicting the expression of CAR versus CD3 for
triple-knockout CAR T cells and non-transduced (NT) T cells. (D) Bar graphs comparing the CAR knock-in rate and viability on days 1, 5, and 8 post-
nucleofection of NT and TRAC-B2M-PD1 triple-knockout GD2-CAR T cells across three donors. (E) Bar graphs depicting the percentage of T cells
negative for CD3, β2M, and PD-1 across three donors. CAR, chimeric antigen receptor; tNGFR, truncated nerve growth factor receptor; RNP,
ribonucleoprotein.
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correlates with increased T-cell retention in vivo (Ren et al., 2017;
Nakazawa et al., 2020). An anti-GD2 CD28-OX40 TRAC-CAR
T-cell product electroporated with a linear dsDNA construct
generated by PCR has shown promise in a GD2+ human
neuroblastoma xenograft model (Sasu et al., 2023). CRISPR/
Cas9 has also been used to disrupt the TRAC and B2M genes
to generate ‘universal’ allogeneic CAR T cells that knock out the
endogenous TCR and HLA class-1 molecules, respectively
(Kebriaei et al., 2016; Magnani et al., 2020), thereby limiting
graft-versus-host-disease (GVHD) and immune rejection by
T cells in patients. However, the use of CRISPR/Cas9,
especially when targeting the TRAC locus, can cause
chromosomal translocations and off-target effects that must be
mitigated to ensure patient safety (Bishop et al., 2021).

In this study, we generated CAR T cells using CRISPR/Cas9-
mediated insertion of GD2-CAR transgene at the TRAC locus along
with simultaneous disruption of the TRAC, β2M, and PDCD1 loci
with the goal of minimizing GVHD, T-cell rejection, and CAR
exhaustion. Triple-knockout GD2-CAR T cells contained a high
proportion of naïve and central memory cells in the pre-infusion
product, were potent against GD2+ human neuroblastoma cells
in vitro, and highly expressed the CAR receptor while
maintaining low levels of translocations and off-target edits.
These results demonstrate the feasibility of generating
multiplexed edited T cells, which are particularly attractive for
generating allogeneic CAR T-cell products.

Methods

T-cell isolation

Human primary CD4+ and CD8+ T cells were isolated from
commercially available leukopaks (BioIVT, Westbury, NY) via
positive selection on a CliniMACS (Miltenyi Biotec, Auburn, CA)
following the manufacturer’s instructions. After obtaining isolated

CD4+ and CD8+ T cells, cell identity was confirmed via
flow cytometry.

T-cell culture

Primary T cells were cultured in RPMI, supplemented with 10%
fetal bovine serum (FBS), and activated with anti-CD3/
28 Dynabeads (Thermo Fisher Scientific, Waltham, MA), which
were used to stimulate T-cell activation for 48–72 h. The media were
supplemented with IL-2 (PeproTech, Cranbury, NJ) at 200 U/mL
(during activation) or 500 U/mL (during expansion), IL-15
(PeproTech) at 5 ng/mL, or IL-7 (PeproTech) at 5 ng/mL. Cells
were counted and passaged every 2 days to a density of one million
cells/mL.

Plasmid constructs

GD2-tNGFR-CAR: the GD2-OX40-CD28-CD3ζ CAR (~1.6 kb)
sequence was a gift from Malcolm Brenner (Baylor College of
Medicine) and modified for insertion by CRISPR/Cas9, as
published previously (Sasu et al., 2023), but with an additional
truncated nerve growth factor receptor (tNGFR) (~0.8 kb) tag. All
plasmids were expanded and purified via Midiprep (Azenta,
Chelmsford, MA). The plasmid sequences can be found in
Supplementary Table S1.

Double-stranded DNA HDR template
production

Primers were designed for PCR donor templates from plasmids.
Amplicons were generated using NEBNext High-Fidelity PCR
Master Mix (NEB, Ipswich, MA). To improve knock-in
efficiency, truncated Cas9 target sequences (tCTS) were added at

FIGURE 2
Translocation formation and off-target editing in multiplex-edited T-cell products. (A) Chromosome abnormalities were investigated with ddPCR
for the time-course quantification of unbalanced and balanced translocations. Line plots depict the percentage of translocation-positive molecules in
non-transduced and TRAC-B2M-PD1 triple-knockout T-cells on days 3, 5, 7, 10, 18, and 21 post-nucleofection for two separate healthy donors (HD-A
and HD-B). (B)Off-target analysis for each guide RNAwas assessed using GUIDE-seq. Greater than 99% of reads for double-strand break formation
for all three guides mapped to the intended on-target site.
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each end of the HDR GD2-donor template. Primers used to amplify
GD2-CAR donors can be found in Supplementary Table S2. The
thermocycler program consisted of 1) 98°C for 30 s; 2) 98°C for 10 s;
3) 67°C for 30 s; 4) 72°C for 2 min; and 5) 72°C for 5 min, with the
repetition of steps 2 to 4 for 40 cycles. PCR products were pooled to
conduct solid-phase reversible immobilization (SPRI) cleanup

(0.5X) using AMPure XP beads according to the manufacturer’s
instructions (Beckman Coulter, Brea, CA). Every 1,000 µL PCR
amplicon was mixed with 500 µL AMPure beads. After 5 min of
incubation at room temperature, separation and ethanol wash were
subsequently followed. DNA elution was conducted at 37°C for
15 min to increase the yield. Amplicons from the first round of

FIGURE 3
TRAC-B2M-PD1 triple-knockout GD2 CAR T-cell products are enriched for central memory phenotypes. (A) Schematic of the definition of T-cell
phenotypes: TN (naïve, CD45RA+/CCR7+), TCM (central memory, CD45RA−/CCR7+), TEM (effector memory, CD45RA−/CCR7-), and TEMRA (terminal effector
memory, CD45RA+/CCR7-), as defined by their inherent properties. (B) Representative contour plots of CCR7 vs. CD45RA expression depicting the
relative percent of TN, TCM, TEM, and TEMRA in the thawed pre-infusion product of TRAC-B2M-PD1 triple-knockout (KO) GD2 CAR T cells (CAR+,
TCR−, β2M−, PD-1-), TRAC-B2M double-KO CAR T cells (CAR+, TCR−, β2M−, PD-1+), TRAC-B2M-PD1 triple-KO T cells (CAR−, TCR−, β2M−, PD-1-), TRAC-
B2M double-KO T cells (CAR−, TCR−, β2M−, PD-1+), and non-transfected T cells (CAR−, TCR+, β2M+, PD-1+). (C) Bar graph of the relative percentage of TN,
TCM, TEM, or TEMRA in each population. Three donors. Error bars represent the standard deviation. Statistical significance was determined with
Brown–Forsythe and Welch ANOVA tests using Dunnett’s T3 test for multiple comparisons; *p < 0.05.

FIGURE 4
Triple-knockout GD2-CAR T cells are potent against GD2+ neuroblastoma targets. (A)GD2+ neuroblastoma (CHLA-20) cells were seeded onto 96-
well plates for 24 h before the addition of cryopreserved T cells. Thawed TRAC-B2M-PD1 triple-knockout (KO) + GD2 GD2 CAR T cells (CAR+, TCR−,
β2M−, and PD-1-), TRAC-B2M double-KOGD2CAR T cells (CAR+, TCR−, β2M−, and PD-1+), TRAC-B2M-PD1 triple-KO T cells (CAR−, TCR−, β2M−, and PD-1-

), TRAC-B2M double-KO T cells (CAR−, TCR−, β2M−, and PD-1+), or non-transfected T cells (CAR−, TCR+, β2M+, and PD-1+) were added at a 1:
1 effector:target (E:T) ratio and followed by live cell imaging. GFP fluorescence (CHLA-20 viability) was measured continuously over 96 h and graphed
over time. (B) Change in GFP count (cell number) and (C) percent CHLA-20 cancer cells lysed after co-culture with TRAC-B2M-PD1 triple-KO GD2 CAR
T cells, TRAC-B2M double-KO GD2 CAR T cells, TRAC-B2M-PD1 triple-KO T cells, TRAC-B2M double-KO T cells, and NT T cells at a 1:1 E:T ratio. (C)
Percent cytotoxicity of GFP, green fluorescent protein. Three donors. Error bars represent the standard deviation. Statistical significance was determined
with Brown–Forsythe and Welch ANOVA tests using Dunnett’s T3 test for multiple comparisons; *p < 0.05; **p < 0.01.
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clean-up were pooled and subjected to a second round of SPRI
cleanup (0.5X), as described above. The dsDNA template
concentration was quantified by qubit fluorometric quantification
(Thermo Fisher Scientific, Waltham, MA). NanoDrop 2000 was also
employed to verify the template purity. All dsDNA subjected to non-
viral knock-in experiments was diluted to 2 μg/μL.

Multiplex editing and non-viral knock-in
using primary T cells

Human primary CD4+ and CD8+ T cells were activated for
48–72 h prior to nucleofection. T cells were debeaded according to
the manufacturer’s protocol and counted by Trypan blue exclusion
on a NucleoCounter NC-200 (ChemoMetec, Denmark). Prior to
nucleofection, ribonucleoprotein (RNP) mixtures with spCas9
(Aldevron, Fargo, ND), single-guide (sg) RNAs (Synthego,
Redwood City, CA), and poly-L-glutamic acid (PGA, Sigma-
Aldrich, St. Louis, MI) (100 mg/mL) at volumetric ratios of
gRNA (1): PGA (0.8): Cas9 (1) were used. To prepare RNP,
10 mg/mL Cas9 (stock concentration: 62 μM) was diluted in
Cas9 storage buffer (Aldevron) to 40 μM and then mixed with
40 pmol of spCas9 (1 μL/1e6 cells), 250 pmol of TRAC sgRNA
(0.375 μL/1e6 cells), B2M sgRNA (1 μL/1e6 cells) and PDCD1
sgRNA (1.13 μL/1e6 cells), and PGA (2 μL/1e6 cells). RNP was
then incubated at 37°C for 15–30 min. For CAR T-cell
production, 1–2 µg of the dsDNA HDR template was added to
the RNP for 5 min at room temperature. T cells were centrifuged at
400 g for 5 min, re-suspended in 18 uL of the Lonza P3 buffer, and
added to the RNP/DNA mixture. T cells were nucleofected using a
Lonza 4D-Nucleofector (Lonza, Walkersville, MD), with programs
EO-115 for multiplex knockout and EH-115 for non-viral CAR
knock-in. Edited T cells were recovered at 37°C and 5% CO2 for
5–10 min in cuvettes with 80 uL of RPMI media supplemented with
IL-7 and IL-15 or IL-2. Cells were then added to a 48-well plate and
expanded in RPMI media supplemented with IL-7 and IL-15 or IL-2
for 7 days. Guide RNA sequences can be found in
Supplementary Table S3.

T-cell cryopreservation and thawing

T cells were harvested on day 7 post-nucleofection by
centrifugation at 400 g × 5 min and counted via Trypan blue
exclusion. Cells were then re-suspended in CryoStor (STEMCELL
Technologies, Cambridge, MA) at 10 million cells/mL and aliquoted
into cryovials. For thawing, cells were re-suspended at 2.5 million/
mL in the ImmunoCult XF Medium (STEMCELL Technologies)
supplemented with 50 U/mL IL-2 (PeproTech) for 24 h.

Flow cytometry analysis

CAR expression was verified using the 1A7 anti-14G2a antibody
(National Cancer Institute, Biological Resources Branch) conjugated
to APC using a Lightning Link APC Antibody Labeling Kit (Novus
Biologicals, Centennial, CO). TCR expression was detected using an
anti-human TCR α/β antibody conjugate to BV421 (BioLegend, San

Diego, CA). Beta 2 Microglobulin was detected using an anti-human
β2M antibody conjugated to PE (BD, Franklin Lakes, NJ). PD-1 was
detected using an anti-human PD-1 (CD279) antibody conjugated
to either BV421 or BV510 (BioLegend). CD45 was detected using an
anti-human CD45 antibody bound to Spark Blue 574 (BioLegend),
CD45RA was detected with an anti-human CD45RA antibody
bound to PE-Fire 700 (BioLegend), and CCR7 was detected with
an anti-human CCR7 antibody bound to Spark NIR
685 (BioLegend).

Flow cytometry was performed to assess CAR and TCR
positivity on day 8 of manufacturing on an Attune NxT flow
cytometer (Thermo Fisher Scientific). Immunophenotyping of
cells was performed on day 10 of manufacturing using a spectral
immunophenotyping panel on an Aurora spectral cytometer (Cytek,
Fremont, CA), and fluorescence-activated cell sorting (FACS) was
performed on a FACSAria (BD). In brief, cells were plated in a 96-
round bottom well plate (1e5 for CAR/TCR and 2.5e5 for spectral
immunophenotyping), washed with 200 μL of phosphate-buffered
saline (PBS, Gibco), and spun at 1,200 g × 1 min, twice. Cells were
then stained for viability with either GhostRed 780 (Cytek) or Live-
Dead Blue (Thermo Fisher Scientific). For CAR/TCR staining, 1 μL
of GhostRed 780 was added to 10 mL of PBS to make a stock
solution, and 100 μL of stock solution was added to each sample and
incubated for 30 min in the dark. For spectral flow staining, Live-
Dead Blue stain was re-suspended in 50 μL of DMSO, with 1 μL
added per 1 mL PBS to make a stock solution, and 200 μL of the
stock solution was added to each sample and incubated for 30 min in
the dark. After viability dyes were added, samples were washed twice
and blocked for 30 min with 50 μL of the FACS buffer (0.5% bovine
serum albumin in PBS) with TruStain FcX solution (0.5 μL/sample,
Biolegend, San Diego, CA). Antibodies were then added to 100 μL of
the BD Brilliant Stain Buffer (Cat # 659611, BD Biosciences,
Franklin Lakes, NJ) at the optimized amounts (Supplementary
Table S4) and incubated for 1 h. Cells were then washed, re-
suspended in 200 or 75 μL of the FACS buffer, and analyzed on
the Attune or Aurora, respectively. For spectral
immunophenotyping, cells were gated by relative size, shape,
singlets, viability, TCR negativity, and CAR transgene positivity
to find an analyzable population of viable CAR T cells. All antibodies
are listed in Supplementary Table S4.

Analysis of spectral flow cytometry data was performed using
Cytek’s SpectroFlo program. Single-positive controls for each color
were collected and analyzed in SpectroFlo for positive and negative
populations. SpectroFlo’s unmixing algorithm was then used to
compensate for spillover and the autofluorescence of cells. Data
were then exported to FlowJo, where samples were gated for non-
debris, singlets, and live cells. CD45, TCR, and CAR positivity were
used to gate cell populations for in vitro samples. Representative
plots and population percentages were generated in FlowJo using
fluorescence minus one control to set positive gates.

Cell lines

GD2+ human neuroblastoma CHLA-20 cells were gifted by Dr.
Mario Otto (University of Wisconsin-Madison). These cells were
cultured in DMEM supplemented with 10% FBS (Gibco) and 1%
penicillin–streptomycin (P/S) (Gibco). AkaLucGFP CHLA-20 cells

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Cappabianca et al. 10.3389/fbioe.2024.1379900

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1379900


were created through viral transduction by Dr. James Thomson
(Morgridge Institute for Research). Cell authentication was
performed using short tandem repeat analysis (IDEXX
BioAnalytics, Westbrook, Maine, United States) and per ATCC
guidelines using cell morphology, growth curves, and
mycoplasma testing within 6 months using the MycoStrip
Mycoplasma Detection Kit (Invitrogen, Waltham, MA). CHLA-20
was maintained in culture at 37°C in 5% CO2.

In vitro cytotoxicity assay

To assess CAR T-cell potency, AkaLUC-GFP CHLA-20 cells (a
gift from Jue Zhang, University of Wisconsin-Madison) were seeded
in triplicate on 96-well plates and incubated for 24 h at 37°C. Then,
cryopreserved CAR T cells from day 10 of manufacturing were
thawed and added to each well at various effector:target ratios. The
plate was centrifuged for 5 min at 100 g and then placed in an
IncuCyte S3 Live-Cell Analysis System (Sartorius, Gottingen,
Germany) and stored at 37°C with 5% CO2. Images were taken
every 3 h for 48 h. A green fluorescence object count was used to
calculate the number of cancer cells in each well, and fluorescent
images were analyzed using IncuCyte Base Analysis software.

ddPCR

Digital droplet (dd)PCR assays were designed for quantifying
balanced translocations between TRAC, B2M, or PDCD1, as
previously described (Glaser et al., 2023). Readout was performed
with QX 100 Droplet Reade (Bio-Rad, Hercules, CA) and ddPCR
Droplet Reader Oil (Bio-Rad). Data analysis was conducted using
QuantaSoft 1.7.4 (Bio-Rad). Primers and probes were from IDT
(Coralville, IA).

GUIDE-seq

GUIDE-seq experiments were performed as described
previously for U2OS (Tsai et al., 2015). In brief, the blunt-ended
dsODN used in our GUIDE-seq experiments was prepared by
annealing two modified oligonucleotides of the following
compositions: 1) ssODN_Sense_str:/5Phos/G*C*TCGCGTTTAAT
TGAGTTGTCATATGTTAATAACGGTATACGC*G*A and 2)
ssODN_Antis_str:/5Phos/T*C*GCGTATACCGTTATTAACATA
TGACAACTCAATTAAACGCGA*G*C, where Phos represents a 5′
phosphorylation and * indicates a phosphorothioate linkage. 1E6-
activated T cells were electroporated (program ER100) with Cas9:
sgRNA (40 pmol:100 mol) and 50 pmoles of dsODN. Seven days
post transfection, genomic DNA was isolated from the different
samples using the Quick-DNA™ Miniprep Plus Kit (Zymo Research
Cat#D4069). Genomic DNA samples were quantified via Qubit and
normalized to 50 ng/ul. Genomic DNA was fragmented via enzymatic
digestion using fragmentase (NEB); 500 ng of gDNA was digested with
2 ul of the enzyme in a total volume of 20 μL at 37 C for 18 min in a
thermocycler. The fragmented DNA was then purified with AMPure
XP beads at a ratio of 1:1. A total of 500 ng of fragmented DNA was
treated with the NEBNext® Ultra™ II End Repair/dA-Tailing Module

following user manual instructions, followed by ligation with the
Illumina sequencing adapters using the NEBNext® Ultra™ II
Ligation Master Mix. The next step was to perform two rounds of
nested anchored PCR with primers complementary to the oligo tag for
target enrichment. Libraries were analyzed using a fragment analyzer,
quantified via Qubit, and sequenced using MiSeq. Data processing and
analysis were carried out using the GUIDE-seq analysis pipeline
(Guideseq, 2024). The GUIDE-seq dataset was uploaded and
published in Zenodo (Creators Morell, 2024).

Statistical analysis and software

All data analyses were performed with Prism 10.0.2 (GraphPad,
Boston, MA) and Excel 16.8.2 (Microsoft, Redmond, WA). Data were
compared by ANOVA with the recommended post-test. Plasmid
sequences were designed in Benchling (San Francisco, CA). FlowJo
10.9.0 (Treestar, OR) was used to analyze the fcs files exported from
SpectroFlo and Attune NxT software. Representative flow plots were
exported from FlowJo. Figures were created and organized using
Illustrator 28.0 (Adobe, San Jose, CA). A p-value of less than
0.05 was defined as statistically significant.

Results

Manufacturing of non-viral, TRAC-B2M-
PD1 triple-knockout GD2 CAR T cells

We designedmultiplex-edited CART cells by targeting single-guide
RNAs (sgRNA) to a) the TCR alpha chain (TRAC), limiting GVHD by
allogeneic CAR T cells; b) beta microglobulin (B2M), inducing loss of
HLA class 1 to avoid T cell-mediated rejection of allogeneic CART cells;
and c) programmed cell death protein 1 (PD1), to prevent exhaustion
and improve T-cell fitness. We integrated a homology-directed repair
(HDR) donor template containing a third-generation anti-GD2 CAR
transgene (Mueller et al., 2022) and a tNGFR tag flanked by homology
arms into the TRAC locus (Figure 1A). Human primary T cells were
isolated fromhealthy donors and activated for 2–3 days, after which they
were nucleofected with RNP’s knocking out TRAC, β2M, and PD1 and
knocking-in the dsDNA CAR donor template. TRAC-B2M-PD1 triple-
knockout GD2 CAR T cells were then expanded for 7 more days in IL-7
and IL-15 and then cryopreserved for future analysis (Figure 1B). We
assessed CAR knock-in efficiency on day 5 post-nucleofection of
manufacturing and saw that 20%–40% of T-cells successfully
integrated the CAR construct across three donors. Immediately post-
nucleofection, T-cell viability did not exceed 60%, but it improved as
cells expanded in IL-7/IL-15, with notably lower survival in gene-edited
cells compared to non-transfected controls (Figures 1C and D). Over
80% of T cells remained triple-negative (CD3-/β2M−/PD-1-) when
stimulated with PMA/ionomycin (Figure 1E).

Low translocation rate and off-target editing
in TRAC-B2M-PD1 triple-knockout T cells

Simultaneous multiplex editing of T-cells can introduce
chromosomal abnormalities, such as translocations and off-target
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editing (Poirot et al., 2015; Qasim et al., 2017; Benjamin et al., 2020;
Stadtmauer et al., 2020; Sasu et al., 2023). To assess the frequency of
these events after multiplex gene deletions, we manufactured triple-
knockout T cells without knock-in of the GD2-CAR, and we
employed ddPCR to analyze the translocation events and
GUIDE-seq to investigate off-target editing. T cells from two
independent donors (HD-A and HD-B) were analyzed by ddPCR
3 days post-nucleofection (dpNF) up to 21 days from
manufacturing. Both balanced and unbalanced translocations
were observed in less than 1% of all cells (Figure 2A). The
percentage of unbalanced TRAC:B2M and all balanced
translocations peaked at day 3 dpNF and decreased at later time
points, reaching a significantly lower threshold at 21 dpNF
(Figure 2A). The percentage of unbalanced TRAC:PD1 and PD1:
B2M translocations remained constant up to day 21, indicating an
increased unequal exchange of genetic material at these loci
(Figure 2A). Using GUIDE-seq, sgRNA specific for TRAC and
PD1 demonstrated only three off-target sites, with no off-target
sites detected for B2M sgRNA (Figure 2B). These data support that
the idea that multiplexed T-cell editing with sgRNAs demonstrates
high efficacy and fidelity in more than 99% of T cells.

Favorable memory phenotypes in TRAC-
B2M-PD1 triple-knockout GD2 CAR T cells

Higher amounts of naive and central memory T-cells in pre-
infusion CAR T products have been correlated with increased
persistence and potency post-infusion in vivo (Gattinoni et al.,
2011; Biasco et al., 2021). This phenotype can be characterized
by the expression of surface markers like CD45RA and CCR7, where
naïve T-cells (TN) are CD45RA

+/CCR7+, central memory T-cells are
CD45RA−/CCR7+, effector memory T-cells (TEM) are CD45RA−/
CCR7-, and terminal effector memory T-cells (TEMRA) are
CD45RA+/CCR7- (Figure 3A) (Geginat et al., 2003; Shen et al.,
2022). The expression levels of these memory markers were found
using flow cytometry, distinguishing populations based on CD45,
CAR, and TCR expression in thawed T-cell products sorted by FACS
(Supplementary Figure S1). The CD45+/CAR+/TCR− populations of
TRAC-B2M-PD1 triple- and TRAC-B2M double-knockout
GD2 CAR T cells, CD45+/CAR−/TCR− populations of TRAC-
B2M-PD1 triple- and TRAC-B2M double-knockout T cells, and
CD45+/CAR−/TCR+ populations of non-transfected T cells were
profiled. Over 50% of TRAC-B2M-PD1 triple-knockout
GD2 CAR T cells had a naïve or central memory phenotype
(Figure 3B). TRAC-B2M-PD1 triple-knockout T cells, TRAC-
B2M double-knockout T cells, and non-transfected T cells had a
higher magnitude of naïve T-cells than those with a GD2 CAR
knock-in, and TRAC-B2M-PD1 triple- and TRAC-B2M
double-knockout T cells had significantly lower central
memory populations than TRAC-B2M-PD1 triple-knockout
GD2 CAR T cells (Figure 3C). These data suggest that the
knock-in of a CAR transgene coupled with a TRAC-B2M-
PD1 triple-knockout could enrich central memory
phenotypes. No significant differences were observed in
CD8 and CD4 expression among T cells, with over 60% of
TRAC-B2M-PD1 triple-knockout CAR T cells being CD8+

(Supplementary Figure S2).

High in vitro potency of TRAC-B2M-
PD1 triple-knockout GD2 CAR T cells

To investigate the potency of triple-knockout GD2-CAR T cells,
we measured the cytotoxicity after co-culture with the GD2+

neuroblastoma cell line, CHLA-20. CHLA-20 target cells were
seeded in 96-well plates and grown for 24 h, during which
thawed GD2 CAR T cells sorted by FACS with triple-knockout
(CD3-/β2M−/PD-1-) were compared as effectors to double-knockout
(CD3-/β2M−) primary T cells or non-transfected T cells
manufactured from three healthy donors. Thawed T-cell products
were added at a 1:1 effector:target (E:T) ratio after 24 h (Figure 4A).
TRAC-B2M-PD1 triple- and TRAC-B2M double-knockout
GD2 CAR T cells lysed tumor targets at a similar efficacy, while
non-CAR transduced, TRAC-B2M-PD1 triple-, and TRAC-B2M
double-knockout T cells showed no cytotoxicity, indicating the need
for antigen specificity by the CAR and the inability for allogeneic
cytotoxicity due to a lack of a TCR (Figure 4B). The TRAC-B2M-
PD1 triple-knockout GD2 CAR T cells were the only group that
showed over 70% and 85% cytotoxicity at 60 and 72 h, respectively
(Figure 4C), suggesting that the knockout of PD-1 may increase the
potency for GD2 CAR T cells against neuroblastoma.

Discussion

This study used multiplex editing with CRISPR/Cas9 to
manufacture, for the first time, GD2 CAR T cells that lacked the
expression of the endogenous TCR, β2M, and PD-1 as a potential
allogeneic “off-the-shelf” therapy. This approach led to minimal
chromosomal abnormalities and off-target editing, showing
feasibility and safety. To assess the potency, high cytotoxicity
against GD2+ human neuroblastoma cells was observed in vitro,
and high proportions of central memory T-cells were also observed.

To prevent inhibitory effects and ameliorate the exhausted
phenotypes (Araki et al., 2013; Park et al., 2016), PD-1 has been
disrupted in CAR T cells to improve anti-tumor efficacy and
persistence (Rupp et al., 2017; Guo et al., 2018; Hu B. et al.,
2019; Choi et al., 2019; Dai et al., 2019; Magnani et al., 2020;
McGowan et al., 2020; Wang et al., 2021; Khan and Sarkar,
2022). Additional edits targeting the TRAC or β2M loci to
generate universal, allogeneic CAR T cells have succeeded in
generating highly-edited T cells resistant to host rejection with
demonstrated potency against tumors (Ren et al., 2017; Dai et al.,
2019; Magnani et al., 2020). Multiplexed editing has typically used
CRISPR/Cas9 to knock out genes of interest, but it also frequently
uses lentiviral vectors for transgene knock-in (Kebriaei et al., 2016;
Ren et al., 2017;Magnani et al., 2020). Viral vector production can be
a barrier to scaling up from laboratory production, given the cost
and long lead time needed (Ran et al., 2020). Non-viral gene delivery
vectors can potentially shorten lead times and complexity in
manufacturing to overcome those barriers, although at lower
knock-in efficiency than viral vectors (Foy et al., 2022; Kath
et al., 2022; Madison et al., 2022; Ye et al., 2022; Webber et al.,
2023). Recent approaches have electroporated CRISPR/Cas9 and
HDR templates into T cells to non-virally deliver the CAR transgene
into the TRAC locus under the control of the endogenous promoter,
and they have demonstrated on-target editing and increased
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fractions of naïve or stem-cell memory T cells (Eyquem et al., 2017;
Schober et al., 2019; Mueller et al., 2022). This study builds upon the
production of TRAC-GD2 CAR T cells manufactured in this way
(Sasu et al., 2023), but it introduces additional edits at β2M and
PDCD1 loci to produce a non-viral, allogeneic, and potentially
exhaustion-resistant CAR T-cell product.

Whenever multiple DNA double-strand breaks are generated
within cells, the formation of chromosomal translocations is possible
(Bishop et al., 2021). Furthermore, off-target editing for each Cas9 RNP
used can be additive. Simultaneous TRAC and CD52 disruption by
TALENs in CD19 CAR T cells and CRISPR/Cas9-manufactured T cells
expressing a TCR caused karyotypic anomalies in approximately 5% of
cells, suggesting a moderate rate of translocation (Poirot et al., 2015;
Qasim et al., 2017; Benjamin et al., 2020; Stadtmauer et al., 2020). Using
a ddPCR assay at multiple points during the manufacturing of TRAC-
B2M-PD1 triple-knockout GD2 CAR T cells, RNPs with the chosen
guide RNAs universally produced translocations in less than 1% of all
cells. There were more unbalanced than balanced translocations,
indicating an unequal exchange of genetic information in those cells.
This observation was most prominent between the TRAC:PD-1 and
PD-1:B2M loci, respectively. Investigating the edits at these sites for
translocations would, therefore, be imperative to ensure the safety of a
clinical product. Each of the guide RNAs had <0.5% off-target effects by
GUIDE-seq, demonstrating high-fidelity and on-target editing of this
multiplex editing manufacturing process. However, future studies
should require additional sequencing of disrupted gene loci to be
certain of minimal off-target insertion of the donor template and to
characterize the extent of biallelic ormonoallelic editing for both knock-
in and knockout. Our screening with ddPCR and GUIDE-seq can be
used for other CAR T products with CRISPR-Cas9-mediated gene
disruptions to further improve the fidelity of guide RNAs and prevent
translocation formation.

The non-viral, multiplex editing process in this study can be
adapted to target other loci and editing strategies to improve
adoptive T-cell therapies. For example, there have been efforts to
use base editing instead of CRISPR to ablate the endogenous TCR
and CD7 to limit fratricide between T cells, which showed reduced
levels of translocations (Georgiadis et al., 2021). Applying this
strategy to our triple-knockout GD2 CAR T cells could
potentially further reduce the translocation rate below 0.9%.
Additionally, TRAC-CAR T cells have been shown to have
improved stem cell memory profiles (Nakazawa et al., 2020; Sasu
et al., 2023), and the TRAC-B2M-PD1 triple-knockout CAR T cells
have memory phenotypes consistent with single TRAC knockout
CAR cells. Efforts to optimize cytokines supplemented in expansion
media (Xu et al., 2014; Cappabianca et al., 2024; Pham et al., 2024),
ex vivometabolic engineering (Amini and Veraitch, 2019; Shen et al.,
2022; Ye et al., 2022), and rapid manufacturing of T cells (Ghassemi
et al., 2022) have all been shown to increase the stem cell memory
populations of CAR T cells. These complementary strategies may be
able to further increase the potency of TRAC-B2M-PD1 triple KO
CAR T cells against tumors and improve persistence post-infusion
(Gattinoni et al., 2011; Biasco et al., 2021). Our study can serve as a
platform for future studies to test for improved in vivo potency in
multiple GD2-expressing indications, like neuroblastoma, Ewing’s
sarcoma, and non-small-cell lung cancers. Finally, the simultaneous
disruption of the TRAC and B2M loci has been demonstrated to
reduce GVHD and rejection by the host as a means of producing

universal allogeneic CAR T cells (MacLeod et al., 2017; Martínez
Bedoya et al., 2021). The manufacturing of allogeneic cell therapies
will require that large batches be cryopreserved pre-infusion to be
thawed as an off-the-shelf product, but there is the risk that
cryopreservation changes the phenotype of the fresh cells and/or
impairs potency. Cryopreserved TRAC-B2M-PD1 triple-knockout
GD2 CAR T cells maintain a memory phenotype and potency post-
thaw, which is a particularly important step toward translation to
allogeneic manufacturing.
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