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Introduction: The biomechanics associated with human running are affected by
gender and speed. Knowledge regarding ground reaction force (GRF) at various
running speeds is pivotal for the prevention of injuries related to running. This
study aimed to investigate the gait pattern differences between males and
females while running at different speeds, and to verify the relationship
between GRFs and running speed among both males and females.

Methods: GRF data were collected from forty-eight participants (thirty male
runners and eighteen female runners) while running on an overground runway at
seven discrete speeds: 10, 11, 12, 13, 14, 15 and 16 km/h.

Results: The ANOVA results showed that running speed had a significant effect
(p < 0.05) on GRFs, propulsive and vertical forces increased with increasing
speed. An independent t-test also showed significant differences (p < 0.05) in
vertical and anterior-posterior GRFs at all running speeds, specifically, female
runners demonstrated higher propulsive and vertical forces than males during
the late stance phase of running. Pearson correlation and stepwise multiple
linear regression showed significant correlations between running speed and
the GRF variables.

Discussion: These findings suggest that female runners require more effort to
keep the same speed as male runners. This study may provide valuable insights
into the underlying biomechanical factors of the movement patterns at GRFs
during running.
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1 Introduction

Since the 1970s, running has surged in popularity both as a recreational pursuit and a
competitive sport (Van Mechelen, 1992; Van Der Worp et al., 2015; Quan et al., 2021). In
recent years, the number of females competing in running events has increased significantly
(Hollander et al., 2021). In comparative studies of aerobic exercises, running demonstrates a
heightened predisposition to overuse injuries in contrast to activities like walking,
swimming, and cycling (Francis et al., 2019). The etiology of running-related injuries
(RRIs) is multifaceted, with predominant attributions to anatomical, biomechanical factors
and training load (Buist et al., 2010; Vannatta et al., 2020; Xu et al., 2022; Zhou and Ugbolue,
2024). Gender has been posited as a potential risk factor, influencing the overall risk of
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injury (Buist et al., 2010; Van DerWorp et al., 2015; Hollander et al.,
2021). Female runners might exhibit a heightened susceptibility to
certain RRIs, including patellofemoral pain and tibial stress
fractures, compared to male runners (Wright et al., 2015;
Almonroeder and Benson, 2017). However, understanding
remains limited concerning sex-specific disparities in the etiology
of RRIs.

Gender-related differences in kinematics and kinetics during
running have previously been reported. Besson et al. (2022) found
that female runners showed larger hip and knee joint motion in the
non-sagittal plane than male runners. Almonroeder and Benson
(2017) also noticed that hip adduction and internal rotation are
greater in females than in males. A study conducted by Sinclair and
Selfe (2015) showed that among recreational runners, females
demonstrated significantly larger extension and abduction
moments in the knee joint, as well as greater patellofemoral
contact forces and pressures than males, which may relate to the
greater risk of patellofemoral pain in female runners. Most studies of
gender differences in running biomechanics have focused on lower
limb joint biomechanics. Studies examining differences in ground
reaction forces (GRFs) between runners of different genders are
limited and inconsistent. Bazuelo-Ruiz et al. (2018) conducted a
prospective study and found that females have a significantly
greater loading rate and peak propulsive force, and a smaller
active peak force than males. Isherwood et al. (2021) also
observed that females exhibited a greater loading rate than
males. However, the findings of a study conducted by
Greenhalgh. (2012) indicate that no significant differences in
GRF were observed between males and females. During
running, runners experience vertical GRF between 1.5 and
3 times their body weight, which is believed to be a significant
risk factor for lower limb injuries (Grabowski and Kram, 2008;
Logan et al., 2010). Several studies have investigated the correlation
between RRIs and GRF parameters. Loading rate, vertical impact
force, peak braking force and impulses have all been demonstrated
to be associated with RRIs in previous investigations (Zadpoor and
Nikooyan, 2011; Napier et al., 2018; Gao et al., 2023). The
connection between GRFs and RRIs has inspired researchers to
examine the potential of gait retraining as a preventive measure
against injuries (Napier et al., 2018; Dempster et al., 2021).

During running training sessions, speed is commonly adjusted
and serves as an indicator of the task’s physical intensity (Floría
et al., 2019). As running speed increasing, there is often a rise in
stride length, frequency, joint range of motion, joint moment, joint
load, and vertical impact force (Grabowski and Kram, 2008; Schache
et al., 2011; Orendurff et al., 2018). Runners are believed to
experience greater forces on their bodies as they run faster.
Specifically, within a speed range of 2–7 m/s, runners achieve a
longer stride length by producing increased GRFs (Mercer et al.,
2005; Hamner and Delp, 2013; Schache et al., 2014). However, not
all biomechanical parameters change with increased running speed.
Floría et al. (2019) observed no impact of speed on coordination
variability when compared to three different running speeds. Girard
et al. (2019) accomplished a study on the impact of varying running
speeds, from 10 to 25 km/h, on the extent and variation of
asymmetry in essential biomechanical aspects. They concluded
that the speed of running does not affect the mechanical
asymmetry of the lower limb. A prospective study conducted by

Muñoz-Jimenez et al. (2015) revealed no significant differences in
foot strike patterns, frequencies or percentages between low-speed
and high-speed running. While numerous studies have examined
running biomechanics at varying speeds, most have focused on a
single gender. It remains to be studied how different speeds affect the
running mechanics of male and female runners and the gender
differences between them.

In summary, current research lacks sufficient evidence regarding
the impact of potential confounding factors such as running speed
and gender. There are certain questions to answer, including
whether females and males adapt differently to varying speed
gradients, the effect of speed on GRFs during overground
running, and the possibility of predicting speed changes from
GRF parameters. Therefore, our study aimed to investigate the
differences in GRFs between male and female runners across a
range of speeds (10–16 km/h) and to analyze the correlation between
GRF parameters and running speed in both genders. We
hypothesize that GRF parameters are related to the running
speed, and we also hypothesize that GRF parameters are
associated with the gender of runners. Comprehensively
clarifying the mechanical factors that influence running
performance through GRFs is crucial for understanding human
locomotor functions. Insights into the key variables critical for faster
running will be beneficial for improving performance.

2 Materials and methods

2.1 Participants

Thirty male (age: 25.80 ± 3.44 years, height: 1.76 ± 0.05 m,
body mass: 75.70 ± 6.14 kg) and eighteen female recreational
runners (age: 24.89 ± 2.77 years, height: 1.63 ± 0.04 m, body mass:
54.83 ± 5.15 kg) participated in this study. All runners self-
identified as rearfoot strike pattern runners. The exclusion
criteria for the study were: 1) any lower limb injury within the
past 6 months; 2) any low back or lower limb pain during
running; 3) less than 3 years of running experience. The study
protocol received approval from the institutional review board of
Ningbo University, and all runners provided informed written
consent before the testing.

2.2 Experimental procedures

After 10 min of laboratory familiarization and a warm-up, all
runners performed running tests on a 20 m runway at seven speeds:
10, 11, 12, 13, 14, 15, and 16 km/h. Each participant completed three
successful trials at each speed (± 2%) on the runway. The trial was
considered successful only if runners struck the force plate with their
right foot fully on without targeting, and the speed was within 2% of
the prescribed running speed. Runners were required to maintain a
steady-state speed until they exited the runway. Running speed was
measured by two infrared timing gates placed 3 m apart alongside
the runway just before and after the force plate. The order of running
speeds was non-random for practical reasons (Schache et al., 2011;
Orendurff et al., 2018; Aljohani and Kipp, 2020). Adequate rest was
provided between speed increases to prevent fatigue. Additionally,
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our experimenters had monitored the participants’ fatigue levels
throughout the process. If a participant had reported experiencing
fatigue during the experiment, they would have been allowed to rest
before continuing. All runners wore the same natural running shoes
to avoid shoe effects. Ground reaction forces (GRFs) were recorded
by an in-ground force plate (AMTI, Watertown, MA, United States)
located in the middle of the runway. Data was collected by the force
plate using a sampling frequency of 1,000 Hz.

2.3 Data analysis

GRFs for each runner were underwent processing using a
Butterworth fourth-order low-pass filter with a cut-off frequency set
at 20 Hz via MATLAB software (Vision 2019b; The MathWorks, Inc.,
Natick, MA). Foot strikes were determined by identifying moments
when the vertical GRF exceeded a threshold of 20 N, which indicated
the beginning of the initial contact phase and the toe-off phase (Jiang
et al., 2021). Then, vertical and anterior-posterior GRFs were
normalized relative to each runner’s body weight (BW). Due to high
variability within and between subjects, medial-lateral GRFs were
excluded from this study (Munro et al., 1987). The GRF variables of
interest were extracted and computed from the vertical and anterior-
posterior directions, including braking impulse, propulsive impulse,
peak braking force, peak propulsive force, vertical impulse, vertical
average loading rate (VALR), peak vertical impact force and peak
vertical impact force. Based on prior investigations focusing on running
GRFs, the selection of these variables as the most related components
for analysis (Logan et al., 2010; Zadpoor and Nikooyan, 2011; Jiang
et al., 2021).

VALRwas calculated by determining the average slope between 20%
and 80% of the vertical GRF at the first peak (Yu et al., 2021). The first
and second vertical GRFs were defined as the peak vertical impact force
and active force, respectively. The anterior-posterior GRF represented
the braking phase with negative values and the propulsion phase with
positive values (Bazuelo-Ruiz et al., 2018; Jiang et al., 2021). For each
direction of interest, impulses were computed from the area between the
zero line and the GRF curve, which were calculated using the trapezoidal
integration approach as follows:

Impulse � ∑
n−1

i�1

1
2

Fi+1 + Fi( ) × ti+1 − ti( )

In this equation, n is the number of frames, i is the i-th frame, F
is the ground reaction force and t is the time value.

2.4 Statistical analysis

Average data for each participant were included in the analysis. The
normality of the GRF variables was checked via Shapiro-Wilk tests.
Pearson’s correlation coefficients were computed to evaluate the
relationship between GRF variables and running speed. Correlations
were defined as: no relationship or little (r≤ 0.25), low to fair (0.25 < r <
0.50), moderate to good (0.50< r < 0.75), and strong (r ≥ 0.75) (Portney
and Watkins, 2009). The significance level for determining whether a
correlation is statistically significant was set at 0.05. To further
determine the level of variance in running speed that was explained

by the specific GRF variables, two stepwise linear regressions were
performed (one for males and one for females). The discrete GRF
variables that were significantly correlated with the running speed were
input into one model as the independent variables, while the running
speed was considered the dependent variable. The criteria for entering
or removing variables from the model were set at alpha levels of
0.05 and 0.10, respectively. The data were analyzed via SPSS
software (version 25.0, IBM Corporation, Armonk, NY, United States).

Meanwhile, both vertical and anterior-posterior GRFs were
normalized into 101 data points by using the cubic spline
interpolation approach to represent stance phase (from 0% to
100%). Given the one-dimensional time-varying characters of
GRF curves, a two-tailed independent t-test with statistical
parametric mapping (SPM) analyses was used to determine
gender differences in each running speed, and a one-way
repeated measures ANOVA with SPM was used to determine the
main effect of running speed in both males and females.

3 Results

The relationship between discrete GRF variables and running
speed is detailed in Figure 1. In female runners, seven variables
showed significant correlations with running speed. Specifically,
braking impulse (r = 0.617, p < 0.001), propulsive impulse (r =
0.568, p < 0.001), peak propulsive force (r = 0.822, p < 0.001), VALR
(r = 0.687, p < 0.001) and peak vertical impact force (r = 0.702, p <
0.001) increased linearly with running speed, whereas vertical
impulse (r = −0.814, p < 0.001) and peak vertical active force
(r = −0.205, p = 0.021) decreased linearly. In male runners, six
variables were significantly correlated with running speed. Peak
propulsive force (r = 0.627, p < 0.001), VALR (r = 0.639, p < 0.001)
and peak vertical impact force (r = 0.691, p < 0.001) increased
linearly with speed, whereas the braking impulse (r = −0.177, p =
0.010), peak braking force (r = −0.597, p < 0.001) and vertical
impulse (r = −0.707, p < 0.001) decreased linearly.

The results of stepwise linear regression analysis for females and
males were shown in Tables 1, 2, respectively. For females, the
analysis identified peak propulsive force, peak vertical impact force,
propulsive impulse, VALR and vertical impulse as the best
predictors of the running speed (R2 = 0.901, p < 0.001),
explaining 90% of the variation. For males, the best predictors
were vertical impulse, peak vertical impact force, peak propulsive
force, braking impulse, VALR and peak braking force (R2 = 0.855,
p < 0.001), accounting for 85.5% of the variance in running speed.

SPM analyses revealed significant main effects of speed on the
anterior-posterior and vertical GRF waveforms for female runners,
as shown in Figure 2. Both propulsive force (45%–98%, p < 0.001)
and vertical force (1%–18%, p < 0.001; 60%–88%, p < 0.001)
increased with running speed. Notably, peak propulsive force,
propulsive impulse, braking impulse, vertical impulse, VALR, and
peak vertical impact force all demonstrated significant speed main
effects. Similarly, for male runners, Figure 3 indicated significant
main effects of speed on their anterior-posterior and vertical GRF
waveforms. Increased running speed resulted in greater braking
force (12%–47%, p < 0.001), propulsive force (67%–98%, p < 0.001),
and vertical force (7%–23%, p < 0.001; 47%–95%, p < 0.001).
Significant main effects of speed were also found in male
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runners’ peak propulsive force, peak braking force, vertical impulse,
VALR, and peak vertical impact force.

Figure 4 presented the results of gender differences in anterior-
posterior GRFs at each running speed, as determined by
independent t-tests and SPM analyses. Females exhibited a larger
braking force at speeds of 10 km/h (13%–57%, p < 0.001) and 11 km/
h (12%–58%, p < 0.001). During the later stance phase, females
demonstrated more propulsive force than males at all tested speeds.
Specifically, this increase was observed during 93%–100% of the

stance phase at 10 km/h (p = 0.003), 94%–100% at 11 km/h (p =
0.012), 92%–100% at 12 km/h (p = 0.004), 94%–100% at 13 km/h
(p = 0.015), 93%–100% at 14 km/h (p = 0.008), 89%–100% at 15 km/
h (p < 0.001), and 84%–100% at 16 km/h (p < 0.001). Figure 5
illustrated gender differences in vertical GRFs at each running speed.
During the later stance phase, females exhibited higher forces than
males at all selected speeds. Specifically, this increase was observed
during 70%–100% of the stance phase at 10 km/h (p < 0.001), 84%–
100% at 11 km/h (p < 0.001), 83%–100% at 12 km/h (p < 0.001),

FIGURE 1
Correlation between running speed and ground reaction force (GRF) variables: braking impulse, propulsive impulse, peak braking force, peak
propulsive force, vertical impulse, vertical average loading rate (VALR), peak vertical impact force and active force for (A) female runners, and (B)
male runners.

TABLE 1 Results of stepwise linear regression for running speed in female runners.

Variables R R2 Adjusted R2 F p

Peak propulsive force 0.820 0.673 0.670 255.245 <0.001

Peak propulsive force + peak vertical impact force 0.917 0.842 0.839 326.931 <0.001

Peak propulsive force + peak vertical impact force + propulsive impulse 0.934 0.872 0.869 276.457 <0.001

Peak propulsive force + peak vertical impact force + propulsive impulse + VALR 0.942 0.888 0.884 240.288 <0.001

Peak propulsive force + peak vertical impact force + propulsive impulse + VALR + vertical impulse 0.949 0.901 0.897 217.968 <0.001
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86%–100% at 13 km/h (p < 0.001), 86%–100% at 14 km/h (p < 0.001),
79%–100% at 15 km/h (p < 0.001), and 86%–100% at 16 km/h
(p < 0.001). However, males showed larger force during 34%–56% of
the stance phase at 13 km/h (p < 0.001), 31%–51% at 15 km/h (p <
0.001), and 31%–53% at 16 km/h (p < 0.001), which included peak
vertical active force.

4 Discussion

The primary purpose of our study was to explore gait pattern
differences in ground reaction forces (GRFs) between male and
female runners across seven running speeds. We hypothesized that
specific GRF characteristics would vary between genders across
different speeds and that GRFs would correlate with running
speed. The primary finding of our study was that female runners
exhibit higher propulsive and vertical forces than male runners at all
tested speeds. Our findings indicated that distinct running patterns
for male and female runners are identifiable through GRFs at each
speed, particularly during the later stance phase. We also observed
that running speed significantly influences GRFs for all runners,
with both genders exhibiting increased trends in early and mid-late
stance as speed increased. The stepwise regression analysis revealed
that certain discrete GRF variables could predict running speed,
thereby providing partial support for our hypothesis.

Distinction in the incidence rates of specific injuries among male
and female runners has indicated the necessity to distinguish
running mechanics (Van Gent et al., 2007; Boyer et al., 2017;
Hollander et al., 2021). The differences in propulsive force
between males and females at each running speed suggest that
female runners may require more effort to accelerate the body to
maintain forward momentum, in order to keep the same speed as
male runners. Previous studies also found that propulsive force in
females was higher when compared with males at the same speed
during running (Bazuelo-Ruiz et al., 2018; Stickley et al., 2018).
Females have a larger braking force during the first half of stance at
running speeds of 10 km/h and 11 km/h, which indicated that the
mass center of females accelerated more backward than males at
slower speeds. Faster running speeds require a higher amount of
propulsive force, but not necessarily a lower amount of braking force
(Morin et al., 2015). Previous studies have analyzed gender
differences on parameters extracted from vertical GRF

(Greenhalgh, 2012; Bazuelo-Ruiz et al., 2018), but none have
prospectively conducted time series curve analysis on GRF
throughout the stance phase. A novel finding in this study was
that females have higher vertical GRF during the later stance phase
at each running speed compared with males. Higher vertical GRF
may be considered an inevitable result of needing a higher
percentage of available strength to propel the body towards toe-
off (Cavanagh and Kram, 1989). Female runners exhibited a greater
peak vertical impact force at faster running speeds, which may
induce potential shock increases in the musculoskeletal system and
thus lead to running-related injuries (Davis et al., 2016; Vannatta
et al., 2020). This may provide a potential explanation for the higher
patellofemoral pain and tibial stress fracture rates among female
runners (Wright et al., 2015; Almonroeder and Benson, 2017).

In 2016, Yokoyama et al. (2016) identified three running speed
categories: slow (2.7–2.9 m/s), moderate (3.5–3.7 m/s), and fast
(4.4–4.5 m/s) for experienced runners. In this study, we opted for a
speed range of 10–16 km/h, corresponding to 2.78–4.44 m/s. This
selection spans the spectrum from slow to fast running, facilitating a
more comprehensive examination of the effect of running speed on gait
mechanisms. Furthermore, the incremental difference of 1 km/h
(0.28 m/s) between each chosen running speed allows for a more
detailed investigation of the impact of speed onGRFs. As running speed
increases,male and female runners exhibit different GRF characteristics.
The results of our study demonstrated that running speed had a
significant effect on propulsive force during the second half of
stance in both females and males. Runners typically exhibit a
forward inclination of the trunk, with foot contact striking the
ground behind the body’s center of mass. Consequently, from a
biomechanical perspective, the aim is to maximize the propulsive
component of GRF to maintain faster running speeds (Schache
et al., 2014). Additionally, male runners exhibited increased braking
force at higher speeds, suggesting greater impact during the braking
phase of high-speed running, aligning with previous findings (Hollis
et al., 2019). The runner-ground interaction during the braking phase is
crucial, playing a significant role in lower extremity injury risk (Davis
et al., 2016; Williams et al., 2020; Jiang et al., 2021). At initial ground
contact, the lower extremity experiences rapid loading with forces
exceeding 1.5 times the runner’s body weight (Grabowski and
Kram, 2008; Logan et al., 2010). With increased speed, runners
displayed an increased peak vertical impact force, producing greater
external loads on their bodies. The forefoot underwent considerable

TABLE 2 Results of stepwise linear regression for running speed in male runners.

Variables R R2 Adjusted R2 F p

Vertical impulse 0.707 0.499 0.497 207.322 <0.001

Vertical impulse + peak vertical impact force 0.830 0.689 0.686 229.037 <0.001

Vertical impulse + peak vertical impact
force + peak propulsive force

0.868 0.754 0.750 210.155 <0.001

Vertical impulse + peak vertical impact force + peak propulsive
force + braking impulse

0.914 0.835 0.832 258.860 <0.001

Vertical impulse + peak vertical impact force + peak
propulsive force + braking impulse + VALR

0.920 0.847 0.843 225.883 <0.001

Vertical impulse + peak vertical impact force + peak propulsive force + braking
impulse + VALR + peak braking force

0.925 0.855 0.851 200.043 <0.001
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loading. Previous studies investigated running speed as it related to
GRFs and found similar correlations (Breine et al., 2019;
Hollis et al., 2019). Interestingly, we observed no significant
differences in peak vertical active force across speeds. The
relationship between peak vertical impact force and lower limb
injuries, however, remains a topic of controversy (Napier et al.,
2018; Matijevich et al., 2019).

The current results also showed significant correlations
(i.e., Pearson correlation and stepwise multiple linear regression)
between running speed and the GRF variables, which are compatible
with the findings by Breine et al. (2019) and Fukuchi et al. (2017).
The GRF variables chosen in this study together explained

approximately 90% of the variance associated with increases in
running speed. Key contributors and predictors of higher running
speeds for both genders included peak propulsive force, vertical
impulse, peak vertical impact force and VALR. Schache et al. (2014)
suggested that, to achieve higher running speeds, runners tend to
exert greater force against the ground rather than increasing the
frequency of their strides. This conclusion is also consistent with the
higher values we recorded for the propulsive force. Consistent with
our hypothesis, variations in vertical GRF were responsive to
changes in running speed, indicating the necessity for the legs to
generate more vertical force to attain faster speeds. Notably, braking
impulse and peak braking force emerged as significant factors only

FIGURE 2
Mean anterior-posterior and vertical GRF waveforms across seven running speeds: 10, 11, 12, 13, 14, 15, 16 km/h for female runners during stance
phase. Standard deviations are not presented for further clarity. The grey shaded areas represent significant main effects of running speed from SPM
analyses (p < 0.05). Point graphs in the figure illustrate mean values of specific GRF parameters at each of the seven speeds. Asterisks indicate significant
differences across running speeds (p < 0.05).

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Jiang et al. 10.3389/fbioe.2024.1378284

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1378284


in male runners. This could be explained by the fact that male
runners, having relatively larger body weights, experience greater
gravity and inertia effects during the braking phase, which
emphasizes the importance of the braking phase in their running
mechanics (Chang et al., 2000).

This study verified whether running speeds influence the GRF on
overground running and whether these likely influences depended on
gender differences. However, several limitations must be
acknowledged. The selected running speeds are based on absolute
values, not relative to each runner’s physiological capabilities. We
chose absolute speeds to quantify the impact of speed more accurately
on a runner’s GRF and minimize potential biomechanical differences

that could arise from differences in relative speeds (Petersen et al.,
2014; Jiang et al., 2023). Furthermore, the intervals between the
selected running speeds are relatively small. Utilizing speeds based
on each runner’s physiological capabilities could have introduced
confounding variables into our experimental results. Nevertheless, it is
important to acknowledge that this constitutes a limitation of the
present study. Notably, even at identical speeds, runners may
experience differing physiological intensities (Mo et al., 2020).
Another limitation is that the order of running speeds was not
randomized. This decision was primarily made to prevent fatigue
effects by minimizing the total duration of time spent in the
laboratory, which was kept under 2 h (Orendurff et al., 2018).

FIGURE 3
Mean anterior-posterior and vertical GRF waveforms across seven running speeds: 10, 11, 12, 13, 14, 15, 16 km/h for male runners during stance
phase. Standard deviations are not presented for further clarity. The grey shaded areas represent significant main effects of running speed from SPM
analyses (p < 0.05). Point graphs in the figure illustrate mean values of specific GRF parameters at each of the seven speeds. Asterisks indicate significant
differences across running speeds (p < 0.05).
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Randomizing the running speeds could be challenging and potentially
unsafe, especially when attempting to achieve high running speeds
without first gradually progressing through lower speeds (Chang and

Cen, 2024; Dorris et al., 2024). It is also important to consider that the
observed changes at higher speeds might result from both the external
force exerted during ground contact and muscle force production in

FIGURE 4
Mean (standard deviation) anterior-posterior GRF waveforms for both female and male runners at each running speed, accompanied by the SPM
results. Grey shaded areas represent significant differences between female and male runners during the running stance phase (p < 0.05).

FIGURE 5
Mean (standard deviation) vertical GRF waveforms for both female and male runners at each running speed, accompanied by the SPM results. Grey
shaded areas represent significant differences between female and male runners during the running stance phase (p < 0.05).
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anticipation of or in response to surface interaction (Logan et al., 2010;
Hamner andDelp, 2013; Schache et al., 2014). The knee joint is themost
susceptible to injury during running (Vannatta et al., 2020; Zhou and
Ugbolue, 2024). While the current study only focuses on GRF, future
research will integrate the biomechanics of the knee joint with GRF to
investigate the impact of running speed on runners (Adouni et al., 2023;
Adouni et al., 2019; AI Khatib et al., 2022). Moreover, our findings are
based on data from healthy runners and may not reflect GRF pattern
changes in runners with running-related injuries (RRIs). Future
research should include runners with RRIs to investigate gender and
speed influences on RRI risk factors within this population.

5 Conclusion

In conclusion, this study found that increased running speeds
(10–16 km/h) on an overground runway led to adaptations in
ground reaction forces (GRFs), which were observed in both
male and female runners. Despite gender differences, a similar
trend in these adaptations was evident. The most significant
effects of increased running speed were apparent in the early and
late stance phases, with both vertical and anterior-posterior GRFs
increasing proportionally. Moreover, female runners exhibited
higher propulsive and vertical forces than males in the late stance
phase at all speeds, suggesting that females might exert more effort
to maintain the same speed as male runners. These findings provide
valuable insights into the underlying biomechanical factors of the
movement patterns at GRFs during running. Future analyses should
focus on enhancing our understanding of the correlation between
running-related injuries and gender differences.
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