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Sinorhizobium fredii CCBAU45436 is an excellent rhizobium that plays an
important role in agricultural production. However, there still needs more
comprehensive understanding of the metabolic system of S. fredii
CCBAU45436, which hinders its application in agriculture. Therefore, based on
the first-generationmetabolicmodel iCC541we developed a new genome-scale
metabolic model iAQY970, which contains 970 genes, 1,052 reactions,
942 metabolites and is scored 89% in the MEMOTE test. Cell growth
phenotype predicted by iAQY970 is 81.7% consistent with the experimental
data. The results of mapping the proteome data under free-living and
symbiosis conditions to the model showed that the biomass production rate
in the logarithmic phase was faster than that in the stable phase, and the nitrogen
fixation efficiency of rhizobia parasitized in cultivated soybean was higher than
that in wild-type soybean, which was consistent with the actual situation. In the
symbiotic condition, there are 184 genes that would affect growth, of which
94 are essential; In the free-living condition, there are 143 genes that influence
growth, of which 78 are essential. Among them, 86 of the 94 essential genes in
the symbiotic condition were consistent with the prediction of iCC541, and
44 essential genes were confirmed by literature information; meanwhile,
30 genes were identified by DEG and 33 genes were identified by Geptop. In
addition, we extracted four key nitrogen fixation modules from the model and
predicted that sulfite reductase (EC 1.8.7.1) and nitrogenase (EC 1.18.6.1) as the
target enzymes to enhance nitrogen fixation by MOMA, which provided a
potential focus for strain optimization. Through the comprehensive metabolic
model, we can better understand the metabolic capabilities of S. fredii
CCBAU45436 and make full use of it in the future.
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1 Introduction

Rhizobia are Gram-negative bacteria that can fix nitrogen
from the air by parasitizing in plant nodules and transport it to
host plants meanwhile the host provides carbon and other
nutrients in return. Unlike rhizobia, free-living nitrogen-fixing
bacteria such as Azotobacter chroococcum (Song et al., 2020) can
autonomously fix nitrogen and have no dependency on the plant
body. Among various biological nitrogen fixation systems, the
legume-rhizobium symbiosis holds the highest efficiency and
prominence. Symbiotic nitrogen fixation (SNF) by rhizobia is
an effective way of biological nitrogen fixation, which is of great
help to agricultural production (Yang et al., 2017; Lindstrom and
Mousavi, 2020). To form SNF, rhizobia firstly need to recognize
and produce specific signal molecules, which helps to form
specialized tissue differed from host plants and finally become
bacteroids (Timmers et al., 2000). By the symbiotic form, rhizobia
release ammonium into the host plant in exchange for a supply of
carbon and nutrients, which sustains a mutually beneficial
relationship between plants and rhizobia (Prell and Poole,
2006). So far, a variety of rhizobia have been found like
Bradyrhizobium diazoefficiens USDA110, Sinorhizobium
meliloti 1,021 (Hwang et al., 2010), which have the potential to
help increase production in agriculture, and S. fredii is a typical
rhizobium widely used on alkaline-saline land (Han et al., 2009).
S. fredii CCBAU45436 is the dominant strain among a dozen sub-
lineages that can perform nitrogen fixation with some Chinese
soybean cultivars efficiently (Munoz et al., 2016).

To better understand the metabolic capabilities of bacteria,
genome-scale metabolic network models (GSMMs) are widely
used. GSMMs are mathematical models that have become
crucial systems biology tools guiding metabolic engineering (Ye
et al., 2022). At present, the GSMMs of model organisms such as
Saccharomyces cerevisiae (Heavner and Price, 2015) and
Escherichia coli (Weaver et al., 2014) are relatively
comprehensive, but there are still many blanks for non-model
organisms, which results in significant limitation for their
utilization. There are some GSMMs of none-model organisms
like iZM516 (Wu et al., 2023), iQY1018 (Yuan et al., 2023), and
iZDZ767 (Zhang et al., 2023) which reveal potentially efficient
ways to produce substances with economic benefits by
microorganisms (Huang et al., 2023). In 2020, Contador and
others developed iCC541, the first generation of the metabolic
network model of S. fredii CCBAU45436 (Contador et al., 2020).
However, as it contains inadequate genes and reactions, it is
difficult to well reflect the whole metabolism of the rhizobium.
On the one hand, it scored 70% in the latest version of the
MEMOTE test, indicating its imperfect aspects, which need to
be updated. In addition, it used old locus tag and EC number,
which is inconvenient to understand and apply, so we urgently
need a more complete metabolic network model to
comprehensively reflect the metabolism of the rhizobium.

The reconstructed metabolic network model, iAQY970, is a
powerful tool for studying nitrogen-fixing bacteria, which can well
reflect its metabolic status. The reconstruction was based on
iCC541, on which new genes and reactions were added from
databases like KEGG, ModelSEED and MetaCyc in line with the
newest annotation information. The gap-filling process helped to

enhance the global connectivity of the model by reducing the gaps
caused by imperfect annotation information. Biolog phenotype
microarray can directly measure an organism’s physical
performance in a specific environment (Shea et al., 2012). With
the experiments, we can test the capacity of utilizing different
carbon, nitrogen, sulfur sources and other nutrients of the bacteria,
by which we can validate the simulation accuracy under the free-
living condition of the model. It has been reported that the
correlation between transcriptome and proteome data of
nitrogen-fix bacteria was not strong (Rehman et al., 2019), so
we used proteome data as the second data. Integrating proteome
data into the model, we established models under different
conditions, which was a good method to predict the metabolic
status of the rhizobium in specific circumstances. We further
validated the simulation of the metabolic model by comparing
the predicted results with experiment information published in
previous literature. Finally, we predicted four possible modules
and two target genes in iAQY970 with a great impact on the
rhizobium during nitrogen-fixing period, which provided
guidance to improve the efficiency of nitrogen fixation through
strain modification in the future.

2 Materials and methods

2.1 Draft model for S. fredii CCBAU45436

The new model was constructed by manual method following the
protocol including draft reconstruction, refinement of reconstruction,
conversion of reconstruction into computable format, network
evaluation, and data assembly and dissemination (Thiele and
Palsson, 2010) (Figure 1). The iCC541 model was used as a
template, and the metabolic network was reconstructed by adding
reactions from KEGG (https://www.kegg.jp/kegg/) (Kanehisa and
Goto, 2000), ModelSEED (https://modelseed.org/) (Seaver et al.,
2021), and MetaCyc (https://metacyc.org/) (Caspi et al., 2020)
databases. The genome information used in the reconstruction
process was downloaded from NCBI (https://www.ncbi.nlm.nih.
gov/datasets/genome/GCF_003100575.1), and iCC541 model was
obtained from the GitHub website (https://github.com/cacontad/
SfrediiScripts). The annotation information of genes, metabolites
and reactions corresponding to other databases in the model was
based on the KEGG and ModelSEED numbers. SBO annotation was
added according to MEMOTE test (Lieven et al., 2020).

2.2 Determination of the objective equation

The objective equation often determines the optimization
direction of the entire metabolic model. In this study, the model
was applied to the simulation of the rhizobium both in the free-
living and symbiotic state, in which the biomass equation in the free-
living state referred to the iGD1575 model (DiCenzo et al., 2016),
and the symbiosis equation in the symbiotic state referred to the
iCC541 model (Contador et al., 2020). They were modified
according to the model construction. In the free-living state, the
biomass equation includes DNA, RNA, proteins,
phosphatidylethanolamine, poly-3-hydroxybutyrate (PHB),
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glycogen, and putrescine. The chemical formula of biomass can be
found in Supplementary Table S1. To decrease the potential bias
from flux balance analysis (FBA) (Chan et al., 2017), the molecular
weight (MW) of biomass was set to be 1 g/mmol. In silico media
compositions were 1.44 mmol g−1 h−1 malate, 1.38 mmol g−1 h−1

succinate, 1.26 mmol g−1 h−1 oxygen, 2 mmol g−1 h−1 glutamate
and 0.01 mmol g−1 h−1 inositol, which were confirmed by previous
literature (Contador et al., 2020).

2.3 Gap filling

Due to the inaccurate gene annotation information and reaction
libraries, the draft metabolic network model often has gaps that
damage the flux balance of the model. Based on the information of

the KEGG pathway, we manually filled the gaps in the draft
metabolic network model. There are four methods we used to
reduce the gaps. Many metabolites have aliases that could cause
them to be represented by different symbols in the model; we
checked the metabolites of the model to ensure there were no
duplicated metabolites in the model. By unifying duplicated
metabolites, we lessened dead metabolites and improved
connectivity. Also, the wrong direction of the reactions resulted
in obstruction of the circulation of metabolites. So, we adjusted the
direction of the reaction properly when it was wrong. However, if the
methods above did not work, new reactions had to be added to
connect metabolites. Some reactions became blocked for lack of sink
reactions and demand reactions. The blocked reactions were
checked by the function “findBlockedReaction” in COBRA
Toolbox (Heirendt et al., 2019).

FIGURE 1
Workflow of metabolic network reconstruction iAQY970.
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2.4 Biolog phenotype microarray
experiment and analysis

Biolog phenotype microarray was a universal method to
detect the absorption of different substances for various
bacteria. The experiment was performed in Omnilog PM
automatic system using GEN III MicroPlate™ to test the
utilization of 71 carbon sources. To check whether the model
can get the result consistent with the experiment, the biomass
reaction in the model was set as the objective equation to
calculate the FBA value, and the tested substance was used as
the only exogenous intake.

2.5 Modeling with proteome data

The proteome data was integrated into the metabolic network by
E-Flux method (Colijn et al., 2009) to construct models of rhizobium in
the logarithmic and stable phases in the free-living condition and
parasitized in cultivated soybean and wild-type soybean under
symbiotic condition. The proteome data was obtained from
Rehmen’s work (Rehman et al., 2019), and the average of the peptide
values in three replicate experiments was adopted as the protein
expression data. Protein expression data was mapped to the model
by parsing the gene-protein-reaction (GPR) rules associated with each
reaction. Flux variability analysis (FVA) was used to determine the
boundary of each metabolic reaction. The lower bound of the reactions
that were more than 0 and the upper bound of the reactions that were
less than 0were set to 0. The ultimate boundary was calculated by E-Flux
method and the results are in Supplementary Table S2. Since Rehmen’s

work only had S. fredii CCBAU25509 proteome data about wild-type
soybean accession W05, we employed the protein homology mapping
method (Kellis et al., 2004) to match the S. fredii CCBAU25509 genes
with the S. frediiCCBAU45436 genes, using “Compare Two Proteomes”
tool of KBase (Arkin et al., 2018) with a minimum suboptimal best
bidirectional hit (BBH) ratio of 90%. After obtaining the original results,
we chose the best matching outcome in the bidirectional comparison
results. The original results from KBase and the processed data can be
found on GitHub and in Supplementary Table S3.

2.6 Analysis of essential genes and reactions

By identifying the essential genes and reactions, we can have deep
insights into the life process of living organisms, which will be the key
tool to control it freely. The “singleGeneDeletion” function in the
COBRA Toolbox was used for the prediction of essential genes, and
the “singleRxnDeletion” function was used for the prediction of essential
reactions. Among them, genes and reactions of which the ratio of the
growth rate of mutants to normals is less than or equal to 0.05 were
considered as essential genes and essential reactions. Detailed
information on the essential genes and essential reactions can be
found in Supplementary Table S4. To ensure the reliability of the
essential genes, we used the data from the literature and performed
the function of BLASTP with genes in the Database of Essential Genes
(DEG) (http://origin.tubic.org/deg/public/index.php/index) (Luo et al.,
2021). Moreover, Geptop (http://guolab.whu.edu.cn/geptop/) was used
to further predict the essentiality of genes, which was a powerful tool for
prediction of essential genes of prokaryotic organisms (Wen et al., 2019).
The genes were validated as essential genes if they were reported in
literature or had identity score over 50% in BLASTP with genes in DEG
or had an essentiality score over 0.24 predicted by Geptop. Detailed
information of validated results can be found in Supplementary Table S5.

2.7 Analysis tools

Flux balance analysis (FBA) simulates optimalmetabolism at steady-
state, which is a useful tool for predicting flux distributions in genome-
scale metabolic models and models integrated with various omics data
(Orth et al., 2010). Flux variability analysis (FVA) can help calculate the
range of flux values that can be achieved for each reaction in the model.
COBRA Toolbox v3.0 was mainly used for model construction, FBA,
FVA analysis, and essentiality analysis of genes and reactions. COBRApy
wasmainly used to convert sbml format into json format (Ebrahim et al.,
2013). Escher (https://escher.github.io/#/) was used for the mapping of
metabolic network (King et al., 2015). All simulations were performed in
MATLAB (R2023a) and the solver was GLPK.

3 Results and discussion

3.1 Reconstructed genome-scale metabolic
network model iAQY970 and comparison
with iCC541

In this research, based on the previous iCC541 model, a new
genome-scale metabolic model iAQY970 for S. fredii

TABLE 1 General features of iAQY970 and compared with iCC541.

Model features iAQY970 iCC541

Total genes 6,577 6,577

Genes associated in model 970 541

Gene coverage 14.7% 8.2%

Total reactions 1,052 538

Enzymatic reactions 885 481

Transport reactions 89 24

Exchange reactions 54 23

Demand reactions 28 1

Gene-associated reactions 850 489

Not gene-associated reactions 202 49

Spontaneous reactions 8 8

Metabolites 942 508

Blocked reactionsa 269 167

Blocked reactions ratio 25.6% 30.8%

MEMOTE score 89 70

Simulation state Free-living, symbiosis Symbiosis

aBlocked reactions exclude exchange reactions and transport reactions.
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CCBAU45436 was reconstructed according to the latest gene
annotation information from NCBI, which contained 970 genes,
1,052 reactions and 942 metabolites including two cellular phases.
The new model replaced old locus tag and updated the previous
enzyme annotation information from BRENDA (Chang et al., 2021)
database. In addition, the defects of wrong reaction direction and
metabolite duplication in the previous model were further corrected,
and the gaps were lessened by filling. Consequently, a more complete
metabolic network map was drawn and can be found on GitHub.
The detailed information of iAQY970 model can be found on the
website (https://github.com/AnqiangYe/iAQY970/tree/main).

The general features of iAQY970 and that compared with
iCC541 are in Table 1. In total, iAQY970 contains 970 genes,
accounting for 14.7% of the whole genes, while iCC541 contains
541 genes, accounting for only 8.2%. Themodel iAQY970 has higher
gene coverage conducive to the more comprehensive simulation of
the metabolic process. Moreover, iAQY970 can simulate the
metabolic process both in free-living and symbiotic states but
iCC541 considered only a symbiotic state. The two models were
evaluated using a standardized genome-scale metabolic model test
suite named MEMOTE which can assess model consistency
including stoichiometric consistency, mass balance, charge

balance and metabolite connectivity and annotation of
metabolite, reaction, gene and SBO. Comparisons of MEMOTE
scores of the two models are shown in Figure 2A. The MEMOTE
version was 0.16.1 and the full reports of MEMOTE score can be
found on GitHub. The scores indicate that iAQY970 has more
complete annotation than iCC541. The number of reactions and the
number of blocked reactions contained in each subsystem of either
model are shown in Figure 2B. The results show that iCC541 has
167 blocked reactions, accounting for 31% of the total, but the new
model has 269 blocked reactions, accounting for 25.6% of the total.
The total number of reactions increased, but the ratio of blocked
reactions decreased. Meanwhile, some blocking reactions in the old
model were repaired by the construction of the new model.

According to the blocked reactions, we repaired the gaps in
iCC541. The 167 blocked reactions in iCC541 were lessened to 39. In
the pathway of Pyrimidine Metabolism, the pathway from 5-
methylcytosine to 3-amino-isobutyrate was blocked for lack of
sink reactions and demand reactions, which were filled by
transport reactions. No reaction can connect thymidine and
thymine, so we added reaction of phosphate deoxy-alpha-D-
ribosyltransferase to connect the two metabolites. Since the
rhizobium had nucleotide diphosphatase (EC 3.6.1.9), we added

FIGURE 2
(A) The result of MEMOTE test. (B) The number of reactions and the number of blocked reactions contained in each subsystem of either model. (C)
Gap-filling in the pathway of Pyrimidine Metabolism, the red lines represent the blocked pathways in iCC541model, the green lines represent the correct
pathways in iCC541 model, and the blue lines represent the added pathways in iAQY970 model.
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reaction of dTTP diphosphohydrolase to make the flux of dTTP
circulate. The process is shown in Figure 2C.

In symbiosis condition, the rhizobium used the malate and
succinate from host plant as carbon source to keep flux work and
produce symbiotic products in return. The content of the symbiotic
product was obtained from iCC541, and the uptake of malate and
succinate were set to 1.44 mmol g−1 h−1 and 1.38 mmol g−1 h−1,
respectively according to literature (Contador et al., 2020). FBA
analysis was performed in the symbiotic case, and the flux of
symbiotic product showed that iCC541 was 0.0487 mmol/gDW/h
and iAQY970 reached 0.9528 mmol/gDW/h (Table 2). Also, the flux
of energy and reducing factors were faster in iAQY970. We found
that iCC541 cannot completely reach the maximum uptake

limitation of malate and succinate which may be one important
reason for the low flux of symbiotic products. Moreover, due to the
addition of sink reaction the flux of symbiotic products improved.

3.2 Phenotyping data analysis

Biolog phenotype microarray was performed to validate the
capacity of the model reflecting the utilization of different carbon
sources. There were 43 carbon sources that can be used by S. fredii
CCBAU45436 among 71 carbon sources. To compare the model and
experiment result, we made each substance as the only intake carbon
source and calculated the flux by FBA analysis using a minimal

TABLE 2 Comparison of symbiosis yield and production of energy and reducing factors.

Model NADH/NADPH
production rate
(mmol/gDW/h)

ATP production
rate (mmol/gDW/h)

Symbiotic
production rate
(mmol/gDW/h)

Succinate uptake
rate (mmol/
gDW/h)

Malate uptake
rate (mmol/
gDW/h)

iCC541 5.32 1.05 0.0487 0 0.362

iAQY970 29.63 29.37 0.9528 1.38 1.44

FIGURE 3
Comparison of the results between iAQY970 prediction and Biolog phenotype microarray.
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medium. The results of simulation in differing from the experiment
were used to modify the model reconstruction. Since we firstly only
took succinate and malate into account, we added more exchange
and transport reactions to ensure the model can intake the other
carbon sources and gap-filling reactions were added to connect the
carbon sources with the metabolites in the model. Finally, among
43 carbon sources can be used by S. fredii CCBAU45436 in the
experiment, 30 of them can be utilized for simulation. Among the
13 carbon sources inconsistent with the experiment, 8 of them
(Gentiobiose, D-Turanose, β-Methyl-D-Glucoside, D-Fucose,
D-Glucuronic Acid, Glucuronamide, Methyl Pyruvate, β-
Hydroxy-D, L Butyric Acid) were lack of information in
databases like KEGG or ModelSEED indicating existing
limitation in model reconstruction. Due to little knowledge of
these carbon sources, it was hard to contain them into the
genome-scale metabolic network model. After model

modification, among 71 carbon sources, 58 carbon sources were
consistent with the experiments (Figure 3) which showed high
accuracy of iAQY970 model (81.7%). Detailed results of the
experiment can be found in Supplementary Table S6.

3.3 Analysis of proteome data combined
with metabolic network models

In order to further analyze the accuracy of the model simulation
in free-living and symbiotic states, proteome data analysis was used
to verify the accuracy of the model. With the increasing data of
multi-omics, it was popular to build a constraint-based metabolic
model based on GSMM using transcriptome, proteome and
thermodynamic data which can reflect specific conditions. Using
proteome data instead of transcriptome data was a good method to

TABLE 3 Flux of objective reactions using proteome data.

State Condition Biomass production rate (mmol/gDW/h) Symbiotic production rate (mmol/gDW/h)

Free-living logarithmic phase 0.4009 -

Free-living stable phase 0.3340 -

Symbiosis W05 - 0.5720

Symbiosis C08 - 0.9528

FIGURE 4
(A) The Venn graph of predicted essential genes in iAQY970 and iCC541 model. (B) Essential genes predicted by DEG and Geptop in symbiotic
condition. (C) Essential reactions predicted in iAQY970model under symbiotic condition. (D) Essential reactions predicted in iAQY970model under free-
living condition.
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avoid the deviation between actual protein expression and
transcriptional level expression.

The proteome data were from Rehmen’s work (Rehman et al.,
2019), and the number of peptides was adopted as the protein
expression profile. The specific models were built from iAQY970 by
E-Flux method. The number of proteins expressed by each gene was
used to determine the lower bound and upper bound of every
reaction. The distribution of agent flux in the logarithmic and stable
phases and their maps can be found on GitHub (/Map), and the
metabolic flux and its upper and lower bounds are shown in the
Supplementary Table S7. The final biomass synthesis flux in the
logarithmic phase was 0.4009 mmol/gDW/h and in the stable phase
was 0.3340 mmol/gDW/h (Table 3), indicating that in the
logarithmic phase the biomass synthesis was faster than in the
stable phase, which was consistent with the fact that bacteria
grew faster in logarithmic phase and accumulated more biomass
during this period.

Since there was currently only S. fredii
CCBAU25509 proteome data on wild soybean accession
W05 in symbiotic case, we used the protein homology
matching method to map the gene expression of the S. fredii
CCBAU45436 to the expression data of the S. fredii
CCBAU25509. We selected the overlap with the highest hit
rate in the genomes of the two species, and the mapping and hit
rates of the two species were shown on GitHub. Similarly, we
used the proteome data to build models under two conditions.
The fluxes of each metabolic reaction in cultivated soybean and
wild soybean can be found in Supplementary Table S7. In the
case of symbiosis, the symbiotic reaction flux was 0.9528 mmol/
gDW/h in cultivated soybean and 0.5720 mmol/gDW/h in wild
soybean (Table 3), indicating that the nitrogen-fixing activity of
nitrogen-fixing bacteria was better in cultivated soybean, which

was consistent with the actual situation. When parasitized in
wild soybean, the rhizobia had more flux in fatty acid
metabolism but the uptake of succinate reduced to zero
indicating poor capacity of utilizing of carbon sources from
host plant which might be the reason for less flux of
symbiotic reaction.

3.4 Analysis of essential genes and
essential reactions

According to the gene-protein-reaction (GPR) association,
genes were classified as essential genes and non-essential genes
determined by whether the reactions should carry nonzero flux
to satisfy the objective equation. The prediction of essential genes in
a free-living state showed that a total of 143 genes would affect
growth, of which 78 were essential genes. The prediction of essential
genes in the symbiotic state showed that a total of 184 genes would
affect growth, of which 94 were essential genes.

The Venn graph of predicted essential genes in iAQY970 and
iCC541 model was shown in Figure 4A. There were 86 genes
predicted both by iAQY970 and iCC541 in symbiotic condition,
indicating great consistency in two models. As many researches
involved data of symbiotic genes, they were used to verify our
prediction. Among the essential genes, 44 genes were confirmed
by literature information (Supplementary Table S5), and 30 genes
were confirmed by BLASTP against Database of Essential Genes
(DEG) (Supplementary Table S5), which determined essential
genes when identity score was more than 50%. In addition,
33 genes were predicted as essential genes by Geptop, and the
comparison of essential genes predicted by DEG and Geptop was
shown in Figure 4B. In total, 27 genes were predicted as essential

TABLE 5 Comparison of nitrogen fixation in four modules.

Module NADH/NADPH production
rate (mmol/gDW/h)

ATP production rate
(mmol/gDW/h)

Symbiotic production
rate (mmol/gDW/h)

Symbiotic nitrogen
fixation rate (mmol/

gDW/h)

Module 1 28.34 29.89 0.9528 0.3891

Module 2 29.80 29.67 0.9528 0.3891

Module 3 14.86 15.78 0.2745 0.1121

Module 4 29.91 29.89 0.9528 0.3891

Note: Module 1: Nicotinate and Nicotinamide; Module 2: Terpenoid Backbone Biosynthesis; Module 3: Carbon Metabolism; Module 4: Sulfur Metabolism.

TABLE 4 Reactions which can produce reductive ferredoxin.

Reaction Enzyme EC number Equation

Ferredoxin NADP reductase Ferredoxin-NADP + reductase 1.18.1.2 h + nadp +2 fdxrd <=> nadph +2 fdxox

Isopentenyl-diphosphate Xanthine dehydrogenase 1.17.1.4 2 h + 2 fdxrd + h2mb4p <=> h2o + 2 fdxox + ipdp

Carbon monoxide dehydrogenase - - h2o + co + 2 fdxox <=> co2 + 2 h + 2 fdxrd

Hydrogen-sulfide Sulfite reductase 1.8.7.1 h2s + 6 fdxox +3 h2o <=> so3 + 6 fdxrd +7 h

Note: h: H+; fdxrd: Reductive ferredoxin; fdxox: Oxidized ferredoxin; h2mb4p: 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate; ipdp: Isopentenyl diphosphate; co: CO; co2: CO2; h2s: Sulfide;

so3: Sulfite.
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genes both by DEG and Geptop which showed good consistency
of their outputs. Among all essential genes predicted by
iAQY970, 74 genes were confirmed to be right based on the
third part proof, retaining 18 genes without proof and 2 were
contradictory with the literature. Nif genes played crucial role
during SNF by encoding the nitrogenase complex and regulatory
proteins involved in nitrogen fixation (Lindstrom and Mousavi,
2020). In iAQY970, three nif genes, AB395_RS31805, AB395_
RS31800 and AB395_RS31060 were added firstly and it was
supposed to cause higher efficiency in nitrogen fixation after such
supplement. In this model, genes in the TCA cycle, AB395_
RS29400 and AB395_RS18105 (acetyl-CoA carboxylase, EC 6.4.1.2),
were classified as essential genes indicating that the TCA cycle had a
great impact on energy which was important during nitrogen fixation.
In previous report, the lack of ilv genes might result in no nodule
formation which destroyed nitrogen fixation (Prell et al., 2009) so that
not only ilvD (AB395_RS15445) but also ilvN (AB395_RS10030) was
added in our model.

As Figure 4A showed, there were 42 essential genes both in
free-living and symbiotic condition, which indicated their great
importance during whole life of the rhizobium. For example,
although it was reported that PHB was necessary during the
symbiotic period (Udvardi and Poole, 2013), it was still vital in
free-living condition to keep the organism alive. In addition, pur
family genes also had great importance in the life of the
rhizobium, as purL (AB395_RS08020), purQ (AB395_
RS08000), purM (AB395_RS04210), purD (AB395_RS02495),
purS (AB395_RS07990), purH (AB395_RS17830) appeared in
result and were checked to be right. Genes of pur family

mainly affected the synthesis of phosphoribosylformylglycinamidine
which was the middle compound to connect Purine Metabolism with
Thiamine Metabolism and Alanine, Aspartate and Glutamate
metabolism.

Essential reactions were predicted to appear particularly in
different conditions. The essential reactions in different
subsystems were shown in Figures 4C, D. Fatty Acid
Biosynthesis showed quite difference in two conditions, which
was important in symbiotic condition but weighed little in free-
living condition. Acyl carrier protein was prominent in forming
symbiotic product but seemed not necessary in free-living
condition. In contrast, Phenylalanine Tyrosine Tryptophan
Biosynthesis occupied an important position in free-living
condition, indicating adequate demand for aromatic amino
acids. Moreover, Purine Metabolism and Glycolysis/
Gluconeogenesis were crucial in the life of the rhizobium, and
during symbiotic period it showed more active phenomenon in
exchange reaction.

3.5 Modules of nitrogen fixation

Rhizobia have the capacity of biological nitrogen fixation in the
symbiotic state. However, since there were too many genes and
reactions during nitrogen fixation, it was difficult to find core
modules for nitrogen fixation. In order to mine the nitrogen
fixation module, we analyzed four possible nitrogen fixation
modules based on the new model according to the production of
reductive ferredoxin because nitrogenase (EC 1.18.6.1) was the top

TABLE 6 Target genes overexpressed by MOMA analysis and the predicted metabolism situation.

Reactiona Enzyme EC
number

Fixed
NH3 exchange
rate (mmol/
gDW/h)

Symbiotic
production
rate (mmol/
gDW/h)

Wild type Fixed
NH3 exchange
rate (mmol/
gDW/h)

Wild type
symbiotic
production
rate (mmol/
gDW/h)

Moduleb

rxn05937 Ferredoxin-
NADP +
reductase

1.18.1.2 3.7941 0.0012 0.001 0.0012 Module 1

rxn04113 Xanthine
dehydrogenase

1.17.1.4 3.7941 0.0012 0.001 0.0012 Module 2

rxn08352 4-hydroxy-3-
methylbut-2-en-
1-yl diphosphate

reductase

1.17.7.4 2.5881 0.0012 0.001 0.0012 Module 2

rxn00830 Isopentenyl-
diphosphate
delta3-delta2-
isomerase

5.3.3.2 3.7940 0.0012 0.001 0.0012 Module 2

rxn05902 Sulfite reductase 1.8.7.1 13.7941 0.0012 0.001 0.0012 Module 4

rxn06874 Nitrogenase 1.18.6.1 20 0.0012 0.001 0.0012 Module 1

Module 2

Module 4

aModelSEED ID., Rxn05937: ferredoxin NADP, reductase; rxn04113: isopentenyl-diphosphate; rxn08352: 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase; rxn00830: isopentenyl-

diphosphate delta3-delta2-isomerase; rxn05902: hydrogen-sulfide; rxn06874: nitrogenase.
bModule 1: Nicotinate and Nicotinamide; Module 2: Terpenoid Backbone Biosynthesis; Module 4: Sulfur Metabolism.
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priority enzyme in nitrogen fixation and it needs reductive
ferredoxin as the substrate. The reactions (Ferredoxin NADP
reductase, Isopentenyl-diphosphate, Carbon monoxide
dehydrogenase and Hydrogen-sulfide) can produce reductive
ferredoxin (Table 4), and we set the lower bound and upper
bound of one reaction to 0 successively and calculate the NADH/
NADPH production, ATP production, Symbiotic production and
Symbiotic nitrogen fixation which can be found in Table 5.

There were four modules that mainly affected the
production of reductive ferredoxin and subsequently
influenced the function of nitrogenase: Module 1 (Nicotinate
and Nicotinamide), Module 2 (Terpenoid Backbone
Biosynthesis), Module 3 (Carbon Metabolism), Module 4
(Sulfur Metabolism). The fluxes of the four nitrogen fixation
pathways can be found on GitHub (https://github.com/
AnqiangYe/iAQY970/tree/main/Map/Flux). The symbiotic
production flux of Module 1, Module 2 and Module 4 were
0.9528, and the symbiotic production flux of Module 3 was 0.
2745. According to the results, Module 3 had defect in nitrogen
fixation and the reason had to do with the energy.

To further find the key genes which can enhance the production
of Fixed NH3, we adopted the minimization of metabolic
adjustment (MOMA) algorithm (Segre et al., 2002) to identify
potential genes (Table 6). The upper bound of Fixed
NH3 exchange reaction was set to 0.001 mmol/gDW/h and
reactions were increased by FBA simulation in each module. By
overexpressing genes, ferredoxin NADP reductase (EC 1.18.1.2),
xanthine dehydrogenase (EC 1.17.1.4) and sulfite reductase (EC
1.8.7.1) directly improve the production of reductive ferredoxin, of
which sulfite reductase (EC 1.8.7.1) had the most significant impact
on the production of Fixed NH3. In module 2, the overexpression of
4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (EC
1.17.7.4) and isopentenyl-diphosphate DELTA-isomerase (EC
5.3.3.2) can increase the production of Isopentenyl diphosphate
and Dimethylallyl diphosphate in Terpenoid Backbone
Biosynthesis, which indirectly improves the production of
reductive ferredoxin by the reaction of Isopentenyl-diphosphate.
However, in simulation overexpression of Carbon monoxide
dehydrogenase did not work and the entire metabolic network
collapsed due to the inability to reach the overexpression value,
resulting in a calculated result of 0. The enzymes sulfite reductase
(EC 1.8.7.1) and nitrogenase (EC 1.18.6.1) were excellent target
genes for enhancing nitrogen fixation since their overexpression led
to huge improvement in simulation. According to the simulation, we
should not only overexpress the nitrogenase (EC 1.18.6.1) directly
but also improve the Sulfur Metabolism and Terpenoid Backbone
Biosynthesis as well as silencing the genes that can consume
reductive ferredoxin.

4 Conclusion

In general, we updated the metabolic network based on the
first-generation iCC541 network model through a manual
scheme, and designed the new model iAQY970. Compared
with the previous model, iAQY970 had higher gene coverage

and reflected a more complete metabolic process of S. fredii
CCBAU45436. By integrating the proteome data, the metabolic
network models under two specific conditions were
constructed, and the results showed that the logarithmic
phase of the metamorphosis was higher than the stable phase
in the free-living case. And the nitrogen fixation reaction flux of
parasitism in cultivated soybean was higher than that in wild
soybean in the symbiotic case. These simulation results were
consistent with the actual situation, which further verified the
reliability of the metabolic network. Moreover, 94 essential
genes were predicted by iAQY970, which were evaluated also
by DEG and Geptop. Finally, four key nitrogen fixation modules
were analyzed and some target genes were predicted by MOMA
according to the iAQY970 model, which provided helpful
guidance for the subsequent optimization of the nitrogen
fixation process of the rhizobium. This more comprehensive
metabolic model can help researchers better understand the
metabolic process of the rhizobium and provide a powerful tool
for its development and utilization.
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