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DNA sequences of nearly any desired composition, length, and function can be
synthesized to alter the biology of an organism for purposes ranging from the
bioproduction of therapeutic compounds to invasive pest control. Yet despite
offering many great benefits, engineered DNA poses a risk due to their possible
misuse or abuse by malicious actors, or their unintentional introduction into the
environment. Monitoring the presence of engineered DNA in biological or
environmental systems is therefore crucial for routine and timely detection of
emerging biological threats, and for improving public acceptance of genetic
technologies. To address this, we developed Synsor, a tool for identifying
engineered DNA sequences in high-throughput sequencing data. Synsor
leverages the k-mer signature differences between naturally occurring and
engineered DNA sequences and uses an artificial neural network to classify
whether a DNA sequence is natural or engineered. By querying suspected
sequences against the model, Synsor can identify sequences that are likely to
have been engineered. Using natural plasmid and engineered vector sequences,
we showed that Synsor identifies engineered DNA with >99% accuracy. We
demonstrate how Synsor can be used to detect potential genetically
engineered organisms and locate where engineered DNA is being introduced
into the environment by analysing genomic and metagenomic data from yeast
and wastewater samples, respectively. Synsor is therefore a powerful tool that will
streamline the process of identifying engineered DNA in poorly characterized
biological or environmental systems, thereby allowing for enhanced monitoring
of emerging biological threats.
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1 Introduction

DNA sequences of nearly any desired composition, length, and function can be
engineered (Hughes and Ellington, 2017). In this process, novel sequences are designed
with computational tools and constructed with DNA synthesis and assembly techniques. In
doing so, DNA sequences ranging from short oligonucleotides to whole genomes, can be
engineered for use in different applications including disease treatment, drug production,
bioremediation, and invasive pest control (Wang and Zhang, 2019). Yet despite offering
many great benefits, engineered DNA poses a risk due to their possible misuse or abuse by
malicious actors (i.e., bioterror), or their unintentional introduction into the environment
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(i.e., bioerror). Monitoring the presence of engineered DNA in
biological or environmental systems is therefore crucial for
detecting emerging biological threats (i.e., biothreats) arising
from bioterror and bioerror (Wang and Zhang, 2019).

In many biosecurity contexts, identifying engineered DNA in
biological or environmental systems remains challenging. This is
because the identity of the engineered DNA is unknown, or the
system is not well characterized (Ruttink et al., 2010; Fraiture et al.,
2015). Instead, entire genomes or metagenomes worth of read data
produced by high-throughput sequencing methods must be
analyzed to identify engineered DNA sequences, which may
involve specialized workflows or significant manual processing
(Gargis et al., 2019; Buytaers et al., 2021; Collins et al., 2021).
New methods that enable a more targeted approach to
identifying engineered DNA in biological and environmental
systems are therefore needed to streamline the process.

Alignment-free approaches can be used to distinguish between
sequences originating from different species (Tay et al., 2021). These
approaches typically involve characterizing sequences based on their
oligonucleotide frequencies (referred to as k-mer signature) and
evaluating the similarity between these k-mer signatures (Zielezinski
et al., 2017). Closely related sequences will produce similar k-mer
signatures, while distantly related sequences will have more distinct
k-mer signatures (Karlin et al., 1997). Accordingly, engineered DNA
sequences may contain different k-mers and therefore k-mer
signatures that are sufficiently different to natural DNA
sequences (Allen et al., 2008). At the same time, these k-mer
signatures may serve as a useful representation for classifying
DNA via pattern recognition algorithms such as neural networks.
Querying such models could therefore serve as a strong prefilter,
enabling the rapid identification of engineered DNA sequences in
entire genomes or even a collection of metagenomes.

In this study, we developed Synsor, a tool for identifying
engineered DNA sequences in high-throughput sequencing data.
Synsor leverages k-mer signature differences between naturally
occurring and engineered DNA sequences and uses an artificial
neural network to classify whether a DNA sequence is natural or
engineered. By querying suspected sequences against the model,
Synsor can identify sequences that are likely to have been
engineered. To demonstrate how Synsor can be used to
identify engineered DNA in biological and environmental
systems, we present case studies from yeast and
wastewater samples.

2 Materials and methods

2.1 Dataset preparation

Natural plasmid and engineered vector sequences were obtained via
the FTP server of NCBI. To account for differences in sequence
coverage and provide a clear basis for comparison, training, and
evaluation of predictive models, only sequences that were full-length
were used in this study. Sequences were considered full-length if their
FASTA header line contained either “complete sequence” or “complete
genome.” To account for the unequal distribution of sequences between
classes and within each sequence class (Supplementary Figure S1), full-
length sequences that were longer than 20 kb were removed. Full-length

sequences shorter than 2.5 kb were also removed to ensure that the
k-mer signatures of sequences were stable. Together, this resulted in a
total of 8,739 natural plasmid and 9,735 engineered vector sequences.

2.2 Sequence encoding

DNA sequences were encoded into fixed-length frequency
vectors (referred to as k-mer signatures) using a custom script.
This was done by identifying all possible subsequences of a given
length (i.e., k-mer) and counting the frequency of each k-mer.
k-mers containing ambiguous bases (i.e., N’s) were removed. The
frequency of each k-mer and its reverse complement were then
summed to reduce the size of the frequency vectors. Following this,
we calculated the relative proportion of each k-mer, resulting in a
relative frequency vector for each sequence. An overview of the
workflow used to calculate k-mer signatures is shown in
Supplementary Figure S2. The k-mer signatures of sequences
were then used in subsequent analyses.

2.3 Identification of engineered DNA
sequences using Synsor

Synsor (v1.00) was developed in Python and is used as a
command-line tool. The source code is available under the GPL
v3 license via the GitHub: https://github.com/aidantay/Synsor. A
full description of Synsor is described in the Results section.

To identify engineered DNA sequences, Synsor uses an artificial
neural network to classify whether a DNA sequence is natural or
engineered (i.e., binary classification). An artificial neural network
was used because they can capture complex non-linear relationships.
Preliminary findings also showed that a multi-layered perceptron
(i.e., neural network) performed well (Supplementary Figure S3)
compared to other classifiers (i.e., uniform sampling, Logistic
Regression, Gaussian Naïve Bayes, Random Forest, K-Nearest
Neighbors). To train and evaluate the performance of the model,
natural plasmid and engineered vector sequences from NCBI were
first randomly partitioned into an 80% training set and 20% testing
set following standard machine learning practice. Natural plasmid and
engineered vector sequences were used because they are well-
documented in public databases and known to be naturally occurring
or artificial, respectively. The model was trained on the k-mer signatures
of sequences in the training set, to predict whether a sequence belongs to
the “engineered” class. After training on the full training set, we evaluated
the performance of the model in predicting the “engineered” class using
the k-mer signatures of sequences in the testing set.

The final model configuration and hyperparameters were obtained
using 5-fold cross-validation, whereby 1-fold of the training set was
used to validate the model. The model with the highest accuracy was
used as the final model. It consists of an input layer, two fully connected
hidden layers with 512 and 16 neurons respectively, and an output layer
with 1 neuron. To prevent overfitting, dropout layers with 0.2 and
0.5 probabilities were inserted after the input layer and after each hidden
layer, respectively. The rectified linear unit (ReLU) and sigmoid
activation functions were used for the hidden and output layers,
respectively. Loss was computed by binary cross-entropy and Adam
was used as the optimizer.
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2.4 Experimental genomic data

Genomic data for natural yeast (Giordano et al., 2017) and genetically
engineered yeast (Collins et al., 2021) were obtained from the European
Nucleotide Archive. Giordano et al. sequenced the genome of wild-type
Saccharomyces cerevisiae strain S288C on an Illumina MiSeq sequencing
platform (ENA project accession number PRJEB19900). Meanwhile,
Collins et al. transformed different laboratory and nonconventional
yeast strains with different engineered vector constructs, resulting in
the construction of 15 engineered yeast strains. After growing
transformed yeast cultures, Collins et al. sequenced the genome of
each engineered yeast strain on an Illumina iSeq 100 sequencing
platform (ENA project accession number PRJNA650312).

2.5 Simulated metagenomic data

To simulate the introduction of a genetically engineered organism to
the environment, we constructed a synthetic metagenomic dataset. To do

this, we combinedmetagenomic samples taken fromwastewater treatment
plants (Che et al., 2019) with genomic data for a genetically engineered
bacterium (Ames et al., 2019). Che et al. sequenced the metagenomes of
bacteria in influent samples taken at wastewater treatment plants in three
different geographical locations around Hong Kong, namely, Shatin, Shek
Wu Hui and Stanley (ENA run accession SRR8208343, SRR8208344 and
SRR14455375). Meanwhile, Ames et al. sequenced the genome of
Escherichia coli cells (strain BL21 DE3 pLysS) transformed with a
pRSF expression vector containing the ParE toxin from Mycobacterium
tuberculosis (ENA run accession number SRR9304539).

3 Results

3.1 Investigating differences between
natural and engineered DNA

To investigate the differences between natural and engineered
DNA, we first analysed 8,739 natural plasmid and 9,735 engineered

FIGURE 1
Two-dimensional representations learnt by PCA on the k-mer signatures of natural plasmid and engineered vector sequences for different values of
k. The proportion of variances explained by the first two principal components are shown in brackets. (A) 3-mer, (B) 5-mer, (C) 7-mer and (D) 9-mer
signatures of natural plasmid and engineered vector sequences are highlighted in blue and orange, respectively. Overall, increasing the value of k
increased the separability of natural plasmid and engineered vector sequences.
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vector sequences obtained from NCBI. Sequences were converted
into k-mer signatures using different values of k (ranging from 3 to
9). These values for k were chosen to balance the trade-off between
sequence specificity and computing requirements since longer
k-mers can lead to prohibitively high computational resources.
Finally, for each value of k, we performed Principal Component
Analysis (PCA) on the k-mer signatures of natural plasmid and
engineered vector sequences.

Upon visualisation of the first two principal components for
each value of k, we found that increasing the value of k increased the
separability of natural plasmid and engineered vector sequences
(Figure 1). Notably, with 3-mer and 5-mer signatures, we observed
natural plasmid sequences overlapping with engineered vector
sequences. By contrast, with 7-mer and 9-mer signatures, we
observed less overlap between natural plasmid and engineered
vector sequences. Furthermore, we noted that increasing the
value of k increased the number of principal components
required to represent at least 90% of the total variance
(Supplementary Figure S4). The total number of principal
components required to represent at least 90% of the total
variance ranged between 5 (for 3-mer) and 3,341 (for 9-mer),
whereby the total variance represented by the first two principal
components ranged between 83.6% (for 3-mer) and 9.6% (for 9-
mer). Thus, with sufficiently long k-mers (i.e., ≥ 7-mers), the above
suggests that natural and engineered DNA are distinct sequence
classes that have unique k-mer signatures. However, with shorter
k-mers (i.e., ≤ 5-mers), the lack of distinct k-mer signatures for
natural and engineered DNA may reflect the low number of
principal components visualised and hence, the variance
explained by the first two principal components.

To further assess whether natural and engineered DNA can have
distinct k-mer signatures, natural plasmid and engineered vector
sequences were clustered into two groups using hierarchical
clustering. Overall, increasing the value of k led to more
homogeneous groups (Supplementary Table S1). Specifically, the
clustering purity ranged from 0.62 (for 3-mer) and 0.86 (for 9-mer).
Despite the high homogeneity of the groups with 9-mer signatures,
clustering natural plasmid and engineered vector sequences was
computationally demanding (Supplementary Figure S5). In
comparison, 7-mer signatures offered a good trade-off between
sequence specificity and computational resources. This implies
that 7-mer signatures of natural and engineered DNA were
sufficiently unique, and therefore chosen for further investigation.

Given that natural and engineered DNA can have distinct 7-mer
signatures, we then investigated precisely which 7-mer sequences
were different between natural and engineered DNA. To do this, we
examined the loadings of every 7-mer sequence on the first two
principal components, which measures the importance of each 7-
mer sequence on a particular principal component. In general, we
found relatively high loadings for both AT-rich (i.e., only contains
A’s or T’s) and GC-rich (i.e., only contains C’s or G’s) 7-mer
sequences on the first two principal components (Supplementary
Figure S6). Further investigation revealed that engineered vector
sequences contained significantly fewer AT-rich (two-sided t-test
p-value <0.001) and significantly more GC-rich (two-sided t-test
p-value <0.001) 7-mer sequences compared to natural plasmid
sequences. Consistent with this was the higher GC content of
engineered vector sequences (49.1%) compared to natural

plasmid sequences (45.9%). Interestingly, across the different host
species, we also noted that the average and median GC content of
natural plasmid sequences ranged was 45.9% and 44.8%,
respectively. This suggests that the lower GC content of natural
plasmid sequences was not due to their host species. Instead,
differences in GC content were likely due to the different genetic
elements present within engineered vector and natural plasmid
sequences, thereby resulting in k-mer signatures that are unique
to natural and engineered DNA.

In addition to AT-rich and GC-rich 7-mer sequences, we found
other 7-mer sequences with high loadings on the first two principal
components (Supplementary Figure S6). Upon examining the
25 highest loaded 7-mer sequences that were not AT-rich or GC-
rich, we found that the frequencies for most of these 7-mer
sequences (22/25) were on average higher in engineered vector
sequences compared to natural plasmid sequences. Interestingly,
we noted that these 7-mer sequences were often found in regions
that are crucial to engineered constructs but difficult to identify in
nature due to their lack of sequence motifs, such as the origin of
replication and promoter regions. This was expected since different
engineered constructs are likely to contain the same well-defined
sequence features, resulting in a frequency bias towards certain
oligonucleotides of engineered vector sequences compared to
natural plasmid sequences. Together, the above demonstrates that
different sequence design elements can lead to distinct k-mer
signatures and highlights the potential to distinguish between
natural and engineered DNA based on their unique k-mer
signatures.

3.2 Overview of Synsor

Having established that natural and engineered DNA could have
distinct k-mer signatures and that their 7-mer signatures were
sufficiently unique, we then developed Synsor, a tool for
identifying engineered DNA sequences. To accomplish this,
Synsor uses an artificial neural network to classify whether a
DNA sequence is natural or engineered. By querying suspected
sequences against the model, Synsor can identify sequences that are
likely to have been engineered.

An overview of Synsor is shown in Figure 2. Synsor requires a
list of genomic sequences in FASTA format. Sequences can be
fully sequenced genomes, or contigs from genome assembly.
Analysing the input sequences with Synsor involves the
following steps. 1) Variable length sequences in FASTA file
are encoded into fixed-length 7-mer signatures. 2) 7-mer
signatures of sequences are queried against an artificial neural
network. For a full description of the predictive model, see the
Materials and Methods section. 3) For each sequence, Synsor
outputs a score between 0 and 1, and sequences with a
score >0.5 were considered “engineered”. 4) The results of
step 3 are recorded in the output tab-separated (TSV) file.

To evaluate the performance of Synsor, we analysed natural
plasmid and engineered vector sequences that were never used to
train the model (i.e., testing set) and in effect, were considered
unknown. This was done by calculating the number of engineered
vector sequences that were predicted to be “engineered” (true
positives, TP), and “not engineered” (false negatives, FN), and
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the number of natural plasmid sequences that were predicted to be
“engineered” (false positives, FP) and “not engineered” (true
negatives, TN). The total of each metric was then used to
calculate the accuracy, precision and recall of the model, where
accuracy is defined as (TP+TN)

(TP+FP+TN+FN) , precision is defined as TP
(TP+FP)

and recall is defined as TP
(TP+FN).

Almost all the engineered vector sequences (1,977/1,986) and
almost all the natural plasmid sequences (1,698/1,709) in the testing
set were correctly classified and hence, corresponds to true positives
and true negatives, respectively. We also found 9 engineered vector
sequences and 11 natural plasmid sequences in the testing set that
were incorrectly classified and hence, corresponds to false negatives
and false positives, respectively. From these, we calculated that the
accuracy, precision and recall of Synsor was 0.994, 0.994, and 0.995,
respectively. Overall, these results demonstrate the capacity of
Synsor to accurately identify engineered DNA sequences based
on their k-mer signatures.

We also investigated whether the high accuracy, precision
and recall of Synsor could be explained by the highly similar

sequences during training, or by the host species of the
sequences. To do this, natural plasmid and engineered vector
sequences were separately clustered into groups with MMseqs2,
using different sequence identity thresholds (ranging between
0.2 and 0.8). For each sequence identity threshold,
representative sequences from each group were randomly
partitioned into an 80% training and 20% testing set. 7-mer
signatures of sequences in the training and testing set were then
used to train and evaluate the performance of Synsor, and the
performance of different classifiers for species classification for
each sequence identity threshold. Across the different sequence
identity thresholds (Supplementary Figure S7), we found that
the accuracy, precision, and recall of Synsor were consistently
high (i.e., > 0.97). Meanwhile, every model for species
classification failed to correctly predict the species of any
sequences in the testing set. Together, the above suggests that
the identification of engineered DNA sequences by Synsor was
not due to the memorization of highly similar sequences during
training or host species classification.

FIGURE 2
Overview of Synsor. Full description in Materials and Methods section. 1) Unique k-mer frequencies calculated for each sequence. 2) Sequences
queried against an artificial neural network trained on 7-mer signatures of known natural plasmid and engineered vector sequences from NCBI. 3) and 4)
Engineered DNA sequences are identified and tabularised.
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3.3 Case study 1: detecting potential
genetically engineered organisms

Having established that engineered DNA could be identified by
Synsor, we then investigated whether Synsor could be used to detect
organisms that may have been genetically engineered. To do this, we
analysed experimental genomic data for previously known
genetically engineered yeast strains (Collins et al., 2021).
Engineered vector constructs reported in the original study were
known prior to genetic engineering. However, for this study, we
assumed no prior knowledge about the genome of the host
organism, the engineered vector construct or knowledge of
genetic engineering. For comparison, we also analysed
experimental genomic data for previously known natural yeast
strains (Giordano et al., 2017). For each genomic dataset, paired-
end reads were de novo assembled into contigs with SPAdes using
default parameters. To ensure that predictions by Synsor were
accurate and reliable, contigs shorter than 2.5 kb were removed
from each de novo assembled genome, and the resulting contigs were
analysed with Synsor.

Across four genomic datasets of natural yeast strains, a total of
517 contigs were analysed by Synsor, with the length of these contigs
ranging from 2,531 to 3,39,928 (Figure 3). Of the 517 contigs, Synsor
classified 16 (3.1%) contigs as “engineered”, with the number of
contigs in each of the four datasets ranging from 3 (2.1%) and 5

(3.2%). The average and median number of contigs classified as
“engineered” was 4 and 4, respectively. By contrast, across fifteen
genomic datasets of genetically engineered yeast strains, a total of
2,560 contigs were analysed by Synsor, with the length of contigs
ranging from 2,514 to 1,363,605 bases. Of the 2,560 contigs, Synsor
classified 240 (9.3%) contigs as “engineered”, with the number of
contigs in each of the fifteen datasets ranging from 3 (1.7%) and 154
(61.6%). The average and median number of contigs classified as
“engineered” was 16 and 5, respectively. A list of the number of
contigs classified as “engineered” for each genomic dataset is
included in Supplementary Table S2.

We then verified whether the contigs identified by Synsor were
in fact engineered. To do this, contigs that were classified as
“engineered” were aligned to the non-redundant nucleotide
database using NCBI BLAST. Across the four genomic datasets
of natural yeast strains, we found that all 16 contigs were not
associated with engineered vector constructs and instead were
associated with natural chromosomal DNA from yeast
(Supplementary Table S3). By contrast, across the fifteen genomic
datasets of genetically engineered yeast strains, we found 11 contigs
that were associated with engineered vector constructs. Notably,
NCBI BLAST revealed that these contigs were the same as those
described in the original paper, confirming that Synsor can identify
engineered DNA sequences. More interesting was the observation
that contigs associated with engineered vector constructs were not

FIGURE 3
Stacked bar plot showing the distribution of contigs predicted to be engineered or not with Synsor for genomic datasets of known natural (blue) and
genetically engineered (orange) yeast strains. Each segment in the column represents the number of contigs predicted to be engineered (red) or not
engineered (green). NCBI BLAST results for contigs predicted to be engineered revealed at least one contig associated with an engineered vector
construct in 10 out of 15 genomic datasets (indicated by *).
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exact copies of sequences in the training set, highlighting a capacity
to identify engineered DNA sequences that do not exactly match
known sequences with Synsor. In addition to contigs associated with
engineered vector constructs, we found 229 contigs that were
associated with natural chromosomal DNA from yeast. However,
most of these contigs (184/229) were from samples SRR12391610,
SRR12391613 and SRR12391615, suggesting that the natural DNA
of some genomes will make it difficult to detect engineered DNA.
Nonetheless, our results demonstrate that Synsor can reduce the
search space to a few candidate sequences that may have been
engineered, thereby streamlining the process of identifying
engineered DNA sequences in whole genome sequencing data.

To further evaluate the performance of Synsor, the number of
contigs associated with engineered vector constructs across the
fifteen genomic datasets of genetically engineered yeast strains
were compared against those from INSIDER (Tay et al., 2021), a
tool for detecting foreign DNA sequences. Of the 2,560 contigs
classified as “engineered”, we found 7 contigs with INSIDER that
were associated with engineered vector constructs. The lower
number of contigs identified by INSIDER compared to Synsor
(11) suggests that INSIDER was less effective at identifying
engineered DNA, highlighting the importance of a more
targeted approach.

We finally investigated whether Synsor could help in assessing
the extent of genetic engineering present within a genome. Of the
15 genomic datasets of genetically engineered yeast strains, we found
that 10 (66.6%) datasets contained at least one contig associated with
an engineered vector construct, with the number of contigs in each
of the 10 datasets ranging from 1 to 2 (Figure 3). The low number of
contigs associated with engineered vector constructs found likely
reflects the fact that only a single vector sequence was transformed
into each yeast strain. For the remaining 5 datasets that did not
contain contigs associated with engineered vector constructs, further
investigation revealed several contigs were in fact associated with
engineered vector constructs but were either incorrectly classified by
Synsor or were removed due to their relatively short length. This
highlights that some engineered DNA will be missed due to the
technical limitations of short read sequencing. Nevertheless, these
results demonstrate that Synsor can help to assess the extent of
genetic engineering present within a genome and determine whether
the genome of an organism has been artificially manipulated.
Importantly, Synsor required no prior knowledge about the
genome, the engineered DNA sequence or knowledge of genetic
engineering, thereby allowing for enhanced detection of potential
biothreats.

3.4 Case study 2: locating where engineered
DNA is being introduced into the
environment

Accidental or deliberate introduction of engineered DNA
into the environment poses a risk that could endanger human
health, disrupt agricultural production, or cause lasting
ecosystem harm. Monitoring sewage for engineered DNA in
liquid waste can help in determining whether engineered DNA is
present in the environment and thus, the potential geographical
source of genetic engineering. Here, we investigated whether

Synsor could be used to locate where engineered DNA is being
introduced into the environment.

To demonstrate how Synsor can be used to locate where
engineered DNA is being introduced into the environment, we
simulated the introduction of a genetically engineered organism
to the environment (referred to as ST-V). This was done by
combining a metagenomic sample taken from a wastewater
treatment plant (Che et al., 2019), with a genomic dataset for a
previously known genetically engineered E. coli strain (Ames et al.,
2019). For comparison, we also obtained metagenomic samples
taken from two other wastewater treatment plants (referred to as
SWH and STL). In effect, we analysed metagenomic samples taken
from wastewater treatment plants in three different geographical
locations. For each metagenomic dataset, paired-end reads were de
novo assembled into contigs with metaSPAdes using default
parameters. After removing contigs shorter than 2.5 kb from
each de novo assembled metagenome, the resulting contigs were
analysed with Synsor.

For samples SWH and STL, a total of 49,480 contigs and
33,844 contigs were analysed with Synsor, respectively (Figure 4).
The length of these contigs ranged from 2,501 bases and
5,53,601 bases. For sample SWH, Synsor classified 1,503 (3.0%)
contigs as “engineered”. On the other hand, for sample STL, Synsor
classified 466 (1.6%) contigs as “engineered”. By contrast, for sample
ST-V, a total of 64,705 contigs were analysed with Synsor, with the
length of these contigs ranging from 2,501 bases to 491,013 bases. Of
the 64,705 contigs, Synsor classified 1,250 (1.9%) contigs as
“engineered”. A list of the number of contigs classified as
“engineered” for each metagenomic sample is included in
Supplementary Table S4.

Having prioritized the candidates of interest, we then verified
whether the contigs identified by Synsor were in fact engineered. To
do this, we aligned contigs that were classified as “engineered” to the
non-redundant nucleotide database using NCBI BLAST. For
samples SWH and STL, we found that all 1,503 and 466 contigs
were not associated with engineered vector constructs, respectively.

FIGURE 4
Stacked bar plot showing the distribution of contigs predicted to
be engineered or not with Synsor for eachmetagenomic sample. Each
segment in the column represents the number of contigs predicted to
be engineered (red) or not engineered (green). NCBI BLAST
results for contigs predicted to be engineered revealed 1 contig
associated with an engineered vector construct in sample ST-V, but
no contigs in samples SWH or STL.
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Instead, most of the contigs from sample SWH (1,311/1,503) and
(355/466) STL were associated with natural DNA from bacterial and
viral species typically found in wastewater, with the remainder
returning no hits. By contrast, for sample ST-V, we found
1 contig associated with the same engineered vector construct
described in the original study (Supplementary Table S5),
confirming that Synsor can detect the presence of engineered
DNA in the environment. Note, however, that this likely reflects
the fact that only a single vector sequence was transformed into the
E. coli strain and subsequently introduced into the wastewater
sample. In addition, we found 1,002 contigs that were associated
with natural DNA from bacterial and viral species typically found in
wastewater, and 247 contigs that returned no hits with NCBI
BLAST. Nonetheless, the above results illustrate that Synsor can
serve as a fast prefilter step and help in determining whether
engineered DNA is present in the environment, highlighting the
potential of using Synsor to monitor engineered biothreats in
environmental systems.

We finally investigated whether Synsor could help in locating
where engineered DNA is being introduced into the environment.
Of the 3 metagenomic samples, we found that 1 sample contained an
engineered vector construct, namely, ST-V. The identification of
engineered DNA in sample ST-V but not in samples SWH or STL,
suggests that engineered DNA was introduced nearby one
wastewater treatment plant (i.e., Shatin) but not the others
(i.e., Shek Wu Hui or Stanley). Overall, these results illustrate
that Synsor can help to reduce the search space to a few
candidate locations, and thus highlight the potential of using this
approach to locate where engineered DNA is being introduced into
the environment.

4 Discussion

In this study, we presented Synsor, a tool for identifying
engineered DNA sequences in high-throughput sequencing data.
Synsor leverages k-mer signature differences between naturally
occurring and engineered DNA sequences and uses an artificial
neural network to classify whether a DNA sequence is natural or
engineered. By querying suspected sequences against the model,
Synsor can identify sequences that are likely to have been
engineered. As a proof-of-concept, we demonstrated how
Synsor can be used to detect potential genetically engineered
organisms and locate where engineered DNA is being introduced
into the environment. Critically, in both case studies, Synsor
required no prior knowledge about the genome or metagenomic
sample, the engineered DNA sequence or knowledge of genetic
engineering. For this reason, Synsor could be readily used to
identify engineered DNA in completely novel biological or
environmental systems.

Synsor is one of the first tools specifically designed for
identifying engineered DNA sequences that does not rely on
sequence alignment. In doing so, this approach has the
potential to identify engineered DNA sequences that are not
publicly available, especially those engineered for bioterrorism.
Complementing existing alignment-based methods with
alignment-free approaches will be useful for preventing the
dissemination of synthetic sequences that could do harm but

are missing from databases of known threats (Hoffmann et al.,
2023). However, while Synsor is open-source and details of the tool
are reported here, we note that it is possible to engineer specific
sequences that will evade detection. In the future, a more
comprehensive and closed-source version of Synsor should also
be developed to help ensure that sequences cannot be engineered
to bypass Synsor.

Predicting the engineering status of unknown DNA
sequences with Synsor is dependent on the underlying
sequences used to train the deep learning model. Without
high quality DNA sequences, generalizing the model to predict
the engineering status of novel sequences will be challenging.
While not perfect, natural plasmid and engineered vector
sequences remain useful representatives of natural and
engineered DNA. However, given that not all natural DNA are
plasmids, including natural chromosomal and viral sequences
into the training set should help the model to identify natural
DNA (Allen et al., 2008). The model could also benefit from
engineered vector sequences curated in different online
repositories such as AddGene (Kamens, 2015). Compared to
NCBI, these repositories are likely to contain more engineered
vector sequences and are thus more comprehensive. Despite this,
access to the data must be requested and can be at the discretion
of the curator, making it difficult to obtain engineered vector
sequences and the associated metadata from these repositories.
Nevertheless, including engineered vector sequences curated in
different online repositories into the training set should help the
model to identify engineered DNA (Nielsen and Voigt, 2018;
Alley et al., 2020; Soares et al., 2022). Pruning sequences to only
the most relevant elements to genetic engineering could also be
useful for reducing the amount of noise in the training data,
thereby improving the capacity of the model to detect differences
between natural and engineered DNA that are associated with
genetic engineering (Wang et al., 2021).

We showed that natural and engineered DNA can have distinct
k-mer signatures. Despite this, classifying whether a DNA sequence
is natural or engineered based on their k-mer signatures can be
difficult. Longer k-mers will be of particular use, helping to
distinguish between natural and engineered DNA sequences with
highly similar k-mer signatures (Allen et al., 2008). Analysing longer
k-mers could also be important for detecting the boundaries
separating DNA from completely different species and help
facilitate the identification of engineered chimeric sequences.
However, it must be kept in mind that improvements to the
performance of Synsor must be balanced with associated
computational costs, as increasing the k-mer length will increase
the number of variables and parameters involved. Reducing the large
number of variables into a smaller dimensional space will be useful
for identifying k-mers that can best discriminate between natural
and engineered sequences and hence, better predict the engineering
status of unknown DNA sequences (Meng et al., 2016). In the same
way, combining different methods for identifying engineered DNA
sequences will be useful for classifying sequences that are missed by
any single approach (Crook et al., 2022; Adler et al., 2024; Berezin
et al., 2024).

Although not investigated in this study, we anticipate that
Synsor will be useful for identifying engineered DNA in data
produced by long read sequencing technologies (Fraiture et al.,
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2018). The advantage of long read sequencing is that long
contiguous regions of the genome can be sequenced in a single
read, allowing engineered sequences to be recovered in their entirety
(Amarasinghe et al., 2020). At the same time, compared to short
reads, long reads can produce stable k-mer signatures (Sims et al.,
2009). Querying long reads directly against Synsor should therefore
lead to the identification of engineered reads and thus the detection
of emerging biothreats without the need for genome assembly.
However, compared to short reads, long reads can contain more
errors which could affect the reliability of their k-mer signatures
(Fraiture et al., 2018). Correcting errors with short reads will be
useful for improving the quality of long read sequences, and thus the
identification of engineered DNA with Synsor (Berbers et al., 2020).

As proof of concept, we demonstrated how Synsor can be used to
monitor engineered DNA in wastewater, and how this could help in
locating where these sequences are being introduced. Besides this,
however, we envision that Synsor will also be useful for monitoring
engineered DNA in a variety of environments, including airports
and ports (Buytaers et al., 2021; D’aes et al., 2022). This could involve
real-time sequencing of metagenomic samples on portable
sequencing technologies such as the Nanopore MinION, and
querying these metagenomic reads against Synsor. Performing
separate analyses on reads that originated from known and
unknown genomes could also help in prioritizing sequences for
further analysis. Identifying engineered reads in this way should lead
to the detection of engineered DNA in real-time, and therefore rapid
detection of emerging biothreats. Meanwhile, quantifying the
amount of engineered DNA introduced into these environments
should also help in determining the extent of genetic engineering.
An important application of this could be in measuring the
effectiveness of biocontainment strategies, especially those
implemented by institutional laboratories. However, it must be
kept in mind that obtaining deep sequencing data of
metagenomic samples from these complex environments in real-
time remains an ongoing challenging (Latorre-Pérez et al., 2021).
Adapting sequencing protocols towards specific environments will
be necessary for improving the coverage of microbial communities,
and thus the detection of engineered DNA (Latorre-Pérez
et al., 2021).

In conclusion, we have developed Synsor, a tool for identifying
engineered DNA sequences in high-throughput sequencing data.
Through case studies from yeast and wastewater samples, we
demonstrated how Synsor can be used to detect potential
genetically engineered organisms and locate where engineered
DNA sequences are being introduced into the environment.
Synsor is therefore a powerful tool that will streamline the
process of identifying engineered DNA in poorly characterized
biological or environmental systems, thereby allowing for
enhanced monitoring of emerging biothreats.
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