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A biotechnological platform consisting of two-color 3D super-resolution readout
and a microfluidic system was developed to investigate platelet interaction with a
layer of perfused endothelial cells under flow conditions. Platelet activation has
been confirmed via CD62P clustering on the membrane and mitochondrial
morphology of ECs at the single cell level were examined using 3D two-color
single-molecule localization microscopy and classified applying machine
learning. To compare binding of activated platelets to intact or stressed ECs, a
femtosecond laser was used to induced damage to single ECswithin the perfused
endothelial layer. We observed that activated platelets bound to the perfused ECs
layer preferentially in the proximity to single stressed ECs. Platelets activated
under flow were ~6 times larger compared to activated ones under static
conditions. The CD62P expression indicated more CD62P proteins on
membrane of dynamically activated platelets, with a tendency to higher
densities at the platelet/EC interface. Platelets activated under static
conditions showed a less pronounced CD62P top/bottom asymmetry. The
clustering of CD62P in the platelet membrane differs depending on the
activation conditions. Our results confirm that nanoscopic analysis using two-
color 3D super-resolution technology can be used to assess platelet interaction
with a stressed endothelium under dynamic conditions.
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1 Introduction

Two-color 3D single molecule localization microscopy (SMLM)
found its way to be a key technology in the analysis of single cells via
3D nanoscopy. Correlation of data from simultaneously acquired 2-
colour SMLM images is often required, with one color encoding
relevant nanoscopic information and the second providing a super-
resolution image of larger, diffraction-limited objects. Here,
nanoimaging adds value to the consensus of data analysis by
providing a larger parameter space for machine learning-based
image processing to determine spatial orientation of cell
organelles (e.g., Mitochondria). One of the current topic where
SMLM analysis has proven relevant over the last few years is
quantification of platelet activation and thrombus formation
(Knight et al., 2017; Bergstrand et al., 2019; Mayr et al., 2020;
Chung et al., 2021; Go et al., 2021). For platelets (with a
physiological size of 1–3 μm in the circulation and a diameter
5–8 μm when spread following activation (Zarka et al., 2019)),
access to information at the nanoscopic level is key to a better
understanding of cellular processes related to blood vessel
remodeling, for e.g., aggregation due to clot formation (Fogelson
et al., 2012; Brouns et al., 2020; Scavone et al., 2020). In order to
create a physiologically relevant parameter space, flow conditions in
the blood vessels need to be imitated. In vitro modelling of blood
vessels under flow conditions has been performed for quantifying
platelet adhesion (Tsai et al., 2012; Jain et al., 2016; Brass et al., 2019;
Oshinowo et al., 2020; Buchegger et al., 2021; Dupuy et al., 2021).
Platelet adhesion to intact endothelium is inhibited by the glycocalyx
(Vink et al., 2000) and mediators released by endothelial cells (e.g.,
fibronectin or vonWillebrand Factor) (Neubauer and Zieger, 2021).
Stressed endothelium, however, can expose pro-thrombotic surfaces
to initiate platelet adhesion, where the glycoprotein (GP)Ib-IX-V
receptor binds to von Willebrand Factor protein. When individual
platelets are activated, additional platelets from the bloodstream can
adhere and promote aggregation. Platelet aggregation is mediated by
the interaction of the CD41/CD61 complex (GPIIb/IIIa) with
fibrinogen (Sebastian and Dittrich, 2018) or the binding of
extracellular matrix components such as collagen, laminin and
fibronectin to GPVI. Signals via these GPs can depend on shear
stress which affects platelet morphology and function. At low shear
stress values (<4 Pa), platelets are spherical shaped and can form
filopodia; at higher values, platelets are more discoid shaped and can
form additional tethers (Jackson, 2007). All these factors influence
platelet function.

Cellular stress on the EC layer can disturb haemostasis and can
trigger platelet activation facilitating platelet binding to the
endothelium (Yau et al., 2015). Stressed ECs can produce reactive
oxygen species, and while the damaging effects of reactive oxygen
species is well determined, a recent paradigm shift has shown that
mitochondrial reactive oxygen species can also act as signaling
molecules to activate pro-growth responses in ECs. One
possibility to assess cellular stress in ECs is to investigate changes
in mitochondrial network formation. Mitochondria constantly
undergo fusion into highly branched networks and fission into
smaller punctate and rod-like structures (Valente et al., 2019).
Long mitochondria networks indicate healthy and stress-resistant
ECs; a high number of short networks or punctate indicate the
presence of cellular stressors causing damage or enhanced

regeneration according to the intensity of the stress signal (Eisner
et al., 2018). Quantitative diffraction limited imaging of the
mitochondrial morphology enables 2D and 3D classification of
cellular health and disease (Valente et al., 2017; Harwig et al.,
2018; Zahedi et al., 2018; Chaudhry et al., 2020; Chu et al.,
2022). The parameters of platelet activation that correlate with
the distribution of mitochondria in endothelial cells, are an
indicator of their physiological state and function.

In this work, we apply two-color 3D localization microscopy,
implemented in a customized microfluidic system with primary
human CD34+ umbilical cord blood cells (Pedroso et al., 2011;
Cecchelli et al., 2014) for simultaneous quantitative nanoscopic
analysis of platelet activation on variously stressed in vitro
adopted ECs, as in a model system. For this purpose, the spatial
distribution of the platelet activationmarker CD62P (P-selectin) was
determined and compared with the mitochondrial distribution in
ECs within the perfused layer. In our model system, a confluent EC
layer in the microfluidic was perfused until more than 65% of the
ECs were flow-oriented (most of them are predominantly oriented
in the center of the channel). A femtosecond laser was focused onto
single ECs to selectively inflict cellular stress on individual ECs
within the orientated, confluent cell layer. These laser-treated ECs
(ltECs) complemented the naturally occurring population of stress-
resistant ECs (srECs) and naturally stress-prone ECs (spECs, due to
cultivation and handling). The two-color 3D SMLM imaging
provided a 3D localization map of mitochondrial distribution
within the ECs, enabled us to classify the ECs into three groups
and spatially correlate them to CD62P distribution in platelets. The
spECs and ltECs showed mitochondrial network fragmentation,
while srECs maintained their typically long and branched
mitochondrial networks. The 3D SMLM localization maps of
immune-fluorescently labelled mitochondria were used to assess
the mitochondrial network integrity using a custom software tool for
the segmentation of puncta, rod, and network structures. This
enabled the classification of ECs based on their mitochondrial
morphology: srECs, spECs and ltECs. Simultaneously, we
quantified anti-CD62P (P-selectin) density in the second color
channel of 3D SMLM images to monitor platelet activation and
to observe platelet reaction to ECs with different stress levels. Our
3D SMLM data of CD62P signals enabled a quantitative comparison
of platelet volumes and densities under static or flow conditions.

2 Materials and methods

2.1 Microfluidics fabrication

A 175 μm thick PET foil (Optimont 501, Bleher Folientechnik
GmbH) was sandwiched between two double-sided adhesive tapes
(Adhesive Research Arcare 90445, thickness 80 μm) for a total
thickness of 335 μm. A single straight microfluidic channel
(36 × 1.5 mm) was cut from this foil using a craft cutter
(Silhouette Portrait 2) (Kokalj et al., 2014). The top was sealed
by an impermeable 30 μm thick PET foil (Bleher Folientechnik
GmbH). Two tube connectors (EV Group) were fixed on top using
double-sided adhesive tape. The bottom layer was a microscope
coverslip (Menzel 24 mm × 50 mm, #1 SPEZIAL, Thermo
Scientific). The coverslip enabled observation of the sample area
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with a high magnification/high NA objective lens. To give the chip
the required rigidity, a 3 mm acrylic glass frame was fixed on top
using double-sided adhesive tape. After assembly, the microfluidic
chip was baked at 60 C for 1 h. Tubing and the microfluidics chip
were placed into a petri dish and properly sealed using parafilm for
UV sterilization. Each side was exposed to UV light for 2 min
(Dymax ECE, United StatesA). Tubing, tube connectors, and
acrylic frame were reused after proper washing with 1% sodium
dodecyl sulfate, 70% 2-propanol and deionized water.

2.2 Automated cell counting using
deep learning

A convolution neuronal network (CNN) was trained for the
automatic segmentation of cell nuclei. The centers of nuclei were
indicated by normalized 2D symmetrical Gaussian functions with a
sigma of 5 pixels. The network was trained using phase-contrast
images of cultivated ECs in which each nuclei center was labelled by
hand (N = 364). Images with varying EC densities and illumination
settings were acquired. A standard inverted microscope (Axiovert
135, Carl Zeiss) using a 10x air phase contrast objective lens and
microscopy camera (AxioCam MRc5, Carl Zeiss) was used. The
architecture of our CNN is based on the residual neuronal network
(He et al., 2016) combined with a U-Net (Xie et al., 2018; Falk et al.,
2019) (4 layers deep, Supplementary Figure S3). Full-size grayscale
phase contrast images (1,292 × 968 pixels, 0.68 μm pixel size) and
target images containing the nuclei centers were cut into smaller
128 × 128 sub-images with 50% overlap. The training was performed
on a NVidia RTX 3060 graphics card (12 GB VRAM) using the
Keras (TensorFlow v2.10.1) (Chollet, 2015) backend, binary cross
entropy loss function and ADAM optimizer (Kingma and Ba, 2015).
Our CNN converged after about 9 epochs (batch size: 128, training
images: 45,360, validation images 5,040). Full-size images (1,292 ×
968 pixels) were reconstructed from overlapping smooth blended
predicted images (128 × 128 pixels). We used a second-order spline
window function for blending with 50% overlap (Chevalier, 2017).
Positions of nuclei centers from predicted full-size images were
determined by non-maximum suppression (Neubeck and Van Gool,
2006) (window size: 19 pixels) of the predicted Gaussian centers.
Peak values also showed how certain the network was about detected
cell nuclei. Based on this CNN we build a graphical user interface
which allows the user to approximate the cell density during
cultivation without detaching the cells. The approximate cell
count can be calculated by multiplying the density with the area
of the used cell culture dish.

2.3 Cultivation of EC

Primary human ECs were differentiated from CD34+ cells
isolated from human cord blood (Pedroso et al., 2011; Cecchelli
et al., 2014) and were provided in frozen aliquots of 106 cells at
passage five by Prof. Fabien Gosselet, Université d’Artois, France.
After thawing, cells were seeded onto gelatine (0.1% in PBS)-coated
10 cm-dishes (Treated, 100 × 20 mm, Corning) in ECM-5 (ECM,
Sciencell) supplemented with 1% endothelial cell growth
supplement (Sciencell), gentamycin (50 μg/mL, Biochrom AG, ref

A-2712), and 5% of preselected, heat-inactivated FBS and cultivated
at 37 C, 5% CO2. After reaching confluency, ECs were washed
3 times with prewarmed PBS, detached with a trypsin/EDTA
solution, counted, and seeded at approximately 5 × 105 cells/mL.
Expression of the EC marker CD31/PECAM-1 was confirmed by
flow cytometry (data not shown) and immunofluorescence
(Supplementary Figure S4).

The UV-sterilized microfluidic chip was coated using 0.1%
gelatine solution for 15 min at 37 °C. Next, the tubing
(1.52/3.22 mm inner/outer diameter respectively, Roth) with a
length of 290 cm, a peristaltic pump (Ismatec, ISM930, 4 Channel)
and long needles (Sterican®, 0.80 × 120 mm, B. Braun) which were
inserted into a sterile bioreactor tube (Tubespin® Bioreactor 50 with a
septum, TPP, #86050) were attached to the microfluidic chip forming
a closed loop. The tubing was filled up to the 3-way stopcock
(Discofix® 3SC, B. Braun) using prewarmed ECM-5. Suspended
cells (1.6 × 105 cells/mL) were transferred into the microfluidic
chip via a septum connected to the perpendicular connector of the
3-way stopcock utilizing a 1 mL syringe (Omnifix®-F, B. Braun) with
0.70 × 30 mmneedle (Sterican®, B. Braun). Next, the microfluidic chip
and bioreactor tube containing the ECM-5 (5 mL) was placed into the
incubator with tubing still connected to the peristaltic pump outside.
The peristaltic pump was connected to a computer controlling the
perfusion using custom-written software. For the first few days, the
pump was active (119 μL/min) for 5 min every 4 h until confluence
was reached. After confluence, the perfusion time was gradually
increased (5 min, 10 min, 20 min, 30 min) whereas the delay time
was stepwise decreased (3 h, 2 h, 1 h 0.5 h and 0.25 h) until constant
flow was reached. Cells were kept under constant flow (up to 7 days).
ECM-5 within the bioreactor reservoir was changed every 2 days.
Every day, cell morphology was observed by an inverted microscope
(Axiovert 135, Carl Zeiss). The EC density was determined using an
automated cell counting CNN from acquired phase-contrast images
(as described above). Experiments were performed, in case >65% of
cells orientated into flow directions (after two to 7 days). EC tight
junction formation was validated using fluorescent markers against
CD144/VE-cadherin (see Supplementary Figure S1C,D) and
CD31/PECAM-1 (see Supplementary Figure S4D-F).

ECs under static conditions were prepared as mentioned above.
After confluence, ECs were washed 3 times with prewarmed PBS,
detached from the 10 cm dish with trypsin/EDTA solution and
counted. The middle 2 chambers of a Lab-Tek™ chambered cover
glass (155382, 4 chambers, Nunc, Thermo Scientific) were coated
with 0.1% gelatine solution for 15 min at 37 °C. ECs were seeded at
approximately 3 × 105 cells/cm2 and incubated in 900 μL ECM-5 for
4 days, the medium was exchanged every 24 h.

2.4 Human platelet concentrate

Single donor platelet concentrates were provided by the Red
Cross Blood Transfusion Service (Linz, Upper Austria). All samples
were collected during routine thrombocyte apheresis in accordance
with the policies of the Red Cross Transfusion Service, Linz. All
blood donors signed their informed consent that residual blood
material can be used for research and development purposes. All
experimental protocols were approved by and carried out in
collaboration with the Red Cross Blood Transfusion Service, Linz.
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Platelet concentrates were generated by single platelet apheresis
using an automated cell separator (Trima Accel Automated Blood
Collection System, TerumoBCT) at the Red Cross Blood
Transfusion Service (Linz, Upper Austria). All blood donors
signed an informed consent that blood material can be used for
research and the study was conducted in accordance with the
policies of the Red Cross Transfusion Service. Platelets were
finally stored in SSP+ (Macopharma) and ACD-A (acid citrate
dextrose + adenosine, Haemonetics® anticoagulant citrate
dextrose solution, Haemonetics®, Braintree) was used as an
anticoagulant. 2 mL of the platelet concentrate
(containing ~1 × 106 platelets/μL) were aseptically transferred
into a separate storage bag and experiments were carried out
within 24 h after donation.

2.5 Laser-induced cell injury

A Workshop of Photonics (WOP) multiphoton lithography
instrument equipped with an ultrashort pulsed laser (CARBIDE,
1 MHz repetition rate, 290 fs pulse duration, Light Conversion) with
two available wavelengths (1,030 nm and 515 nm) was used for cell
treatment. The laser beam was focused with a 50× magnification air
objective lens (NA = 0.42, Mitutoyo). A 3-axis stage (AEROTECH
Nanopositioner) was used for sample motion.

The medium reservoir within the bioreactor tube was exchanged
with a mixture of 10% human platelet concentrate and ECM-5. The
whole microfluidic chip was taken out of the incubator. Since the
microfluidic chip and tubing formed a closed system, no further
precautions to keep a sterile environment were necessary. After the
microfluidic chip was placed within the WOP imaging chamber,
flow was applied (119 μL/min) which allowed the platelets to
interact with the ECs during the laser treatment. Depending on
the duration of the laser experiment (max 1 h), up to 5 single cells
within the center of the channel were selected and subsequently,
laser treated using the 515 nm laser at 25%–30% power
(1.22–1.38 mW peak power in the focal plane). The ECs’ nuclei
were focused during the laser treatment procedure until a visual
change within the cell’s cytoplasm was observable or blebs formed
(nuclei were treated for several seconds each). Each ltEC’s position
was marked on both edges of the microfluidic channel using 100%
laser power. The treatment time was limited to 1 h to limit the stress
of all ECs due to the environmental change (temperature, gas).
Afterwards, the microfluidic chip was put into the incubator at 37°C/
5% CO2 for 15 min under flow conditions with platelets to recover.

2.6 Fluorescence microscopy

For immunostaining, cells were rinsed in pre-warmed HBSS
containing Ca2+ and Mg2+. Cells were then fixed with 4%
paraformaldehyde in cytoskeleton buffer with sucrose (CBS,
according to a protocol of Louise Cramer (Symons and
Mitchison, 1991)) for 20 min at room temperature. Cells were
permeabilized in 0.5% Triton X-100 with CBS for 10 min and
blocked in 10% albumin from chicken egg white (Sigma-
Aldrich, Vienna, Austria) in CBS for 30–60 min. P-selectin
(CD62P, 100 μg/mL, BioLegend) conjugated Alexa Fluor©

647 was used to stain activated platelets. Mitochondria of
cells were stained using an anti-mitochondria monoclonal
antibody (500 μg/mL, Sigma-Aldrich) conjugated Alexa
Fluor© 488. For co-staining CD62P and mitochondria, a
solution of 1:150 anti-CD62P and 1:100 anti-mitochondria
antibody diluted in CBS was used to stain ECs and platelets
for 1 h and washed 10 times using PBS.

Fluorescence microscopy images were acquired using a modified
Olympus IX81 inverted epi-fluorescent microscope with an oil-
immersion objective lens (PlanApo N, 60×, NA 1.42, Olympus).
Samples were mounted on a XYZ piezo stage (PI Mars; P-562.3CD,
Physical Instruments) which has nanometer accuracy, combined with a
coarsemechanical stage with a travel range of 1 cm× 1 cm (Hybrid, JPK
Instruments). A tube lens with an additional magnification of 1.6 was
used to achieve a final imaging magnification of 96 (corresponding to a
pixel size of 167 nm). Cells were illuminated with a 640 nm solid-state
laser (diode-pumped, iBeam Smart, Toptica Photonics) and a 488 nm
laser (diode-pumped, iBeam Smart, Toptica Photonics). Signals were
collected using an Andor iXonEM+ 897 (back-illuminated) EMCCD
camera (16 μm pixel size). The following filter sets were used: dichroic
filter (ZT405/488/561/640rpc, Chroma Technology GmbH), emission
filter (446/523/600/677 nm BrightLine quad-band band-pass filter,
Semrock, Rochester), and additional emission filters: ET 700/75 M,
Chroma Technology GmbH; ET 525/50 M, Chroma Technology
GmbH. For 3D measurements, a cylindrical lens (f = 1,000 mm,
Thorlabs) was placed into the optical detection pathway of the
microscope.

2.7 Two-color 3D SMLM imaging

Simultaneous imaging of the cell’s mitochondria, as well as the
activation of platelets, were measured using a two-color beam
splitter (OptoSplit II; Cairn Research) with a filter cube for
675 and 525 nm (ET 525/50, H568LPXR, HC 675/67, AHF).
Both color channels were projected onto the same camera chip
but spatially separated into two non-overlapping spectral channels.
To achieve nanometer accuracy, we applied direct stochastic optical
reconstruction microscopy (dSTORM) (Heilemann et al., 2008). A
cylindrical lens in the optical detection pathway of the microscope
introduced astigmatism and allowed for 3D imaging. Axial-
depended deformation of the point spread function (PSF) was
calibrated using a sample of homogeneous distrusted
TetraSpeck™ beads (0.1 μm, Invitrogen) that were moved along
the axial axis at defended steps (10 nm) over a range of 200 frames.
Since astigmatism depends on the wavelength, both color channels
were simultaneously acquired but calibration curves were separately
calculated. For imaging, samples were illuminated for 20 ms using
both 640 nm and 488 nm lasers at a frame rate of 20 images/s. All
illumination protocols were controlled using custom-written
acquisition software. For image reconstruction, a sequence of
10,000–20,000 images were recorded, and the single-molecule
signals were analyzed using custom-written software (Mayr et al.,
2020). The two-color channel regions provided from the calibration
images were roughly overlaid. These regions were further used for
analysis of each subsequent dSTORM experiment and were the
bases for combining the channels. After all single-molecule signals
were localized, both channels are combined into one dataset without
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subpixel chromatic correction. Single-molecule signals with
intensities below 500 photons as well as a lateral positional
accuracy above 75 nm were discarded. The datasets were drift-
corrected using the redundancy cross-correlation (RCC) method
(Wang et al., 2014). Due to a small overlap of the Alexa Fluor©

488 emission and the 675/67 nm filter, fluorescent bleed-through
had to be corrected. Therefore, random forest classification
(Breiman, 2001) to identify single-molecule signals in the Alexa
Fluor© 647 channel that were emitted from Alexa Fluor© 488 signals
were utilized. A custom-written software enabled the categorization
of rendered Alexa Fluor© 647 SMLM images using a brush tool into
two classes–certain signals coming from Alexa Fluor© 647 and Alexa
Fluor© 488 signals from bleed-through. Features used for the
random forest classification included frame number, intensity,
background, background error, sigma x and y and a 3 × 3 pixel
grid of intensity values from the original image around the signal’s
position in both color channels. Random forest classification was
then trained and fluorescence data that were not classified as
originating from Alexa Fluor© 647 channel were discarded.
Finally, the two-color images were rendered using “autumn” and
“winter” color maps (adapted fromMATLAB©) illustrating the axial
positions. Each signal was rendered as a symmetrical
Gaussian function.

2.8 Mitochondria classification

To classify mitochondrial morphology into puncture, rod and
network structures, localizations from 3D SMLM had to be
converted into 3D volumes. Localizations with lateral and axial
positional accuracies of 100 nm and 150 nm, respectively, were
filtered. Furthermore, background localizations with insufficient
neighbors (density: 0.65 signals/μm³) within a radius of 250 nm
were also filtered out. For volume reconstruction, image stacks
with a voxel size of 85 nm × 85 nm x 25 nm and 8-bit grayscale
color depth were chosen. A lower axial voxel size was used to
compensate for higher axial positional accuracies and the
maximum depth (1,000 nm) archivable of 3D astigmatism
SMLM. Each localization was rendered using an anisotropic 3D
Gaussian function, with its sigma dependent on the calculated
positional accuracy. Next, the volume data was smoothed using a
symmetrical 3D Gaussian filter with a sigma of 1.5 and a window
size of 7. These smoothed volumes were then thresholded using a
GPU (Cuda, NVIDIA) accelerated adaptive local threshold
approach. Herein, for each voxel, the histogram within a box of
11 × 11 × 11 voxels was calculated and the threshold for this voxel
was determined by the intermeans (also called iso-data) algorithm
(Ridler and Calvard, 1978). Based on the work of Lee et al. (Lee
et al., 1994) and the ImageJ plugin “Skeletonize3D” by Ignacio
Arganda-Carreras et al., a C++ implementation was created and
used to calculate the 3D medial axis or also call “skeleton” from the
threshold volumes. The skeleton was analyzed and segmented
using a C++ implementation of the ImageJ plugin
“AnalyzeSkeleton” from (Arganda-Carreras et al., 2010).
Additionally, the volume of each mitochondria segment was
reconstructed from the threshold volume using the flood-fill
method and volumes with less than 50 detected voxels
(originating from mitochondria signals) were discarded.

Furthermore, each segment which represents either the skeleton
of a single mitochondrion or a cluster of mitochondria was
classified into puncture, rod, and networks using random forest
classification (parameters: number of branches, number of
endpoints, number of junctions, number of slabs, number of
triples, number of quadruples, average branch length, maximum
branch length, the shortest path, number of voxels, width, height,
depth). Training data was generated by manual classification of
2,200 segments. During training, the selected sample size was
enough for a reliable classification of unseen mitochondrial
segments (see Supplementary Movie S3 for an animation of the
mitochondria classification). In a final step, the percentage of
voxels in each class was calculated for each EC or cluster of ECs.

2.9 Platelet’s volume and density
determination

Platelet’s volume and density were determined from 3D
SMLM data of CD62P signals. The membrane of individual
platelets was approximated via alpha-shapes concave hull
algorithm using a MATLAB© script (release 2020b). An alpha
value of 1 μm was chosen, and the single-molecule signal
densities were calculated from the CD62P signals found within
the calculated volume. To determine the number of CD62P
signals in the proximity of the platelet’s membrane, the alpha
shape hull was shrunken by 60 nm and the number of signals
within the shrunken volume was determined. The percentages of
CD62P signals in membrane proximity (with a 30 nm radius)
were calculated by subtracting the signals within the shrunken
hull from the total number of determined CD62P signals (N) and
normalized by N.

3 Results

3.1 Design of the microfluidic platform

We designed an innovative microfluidic platform to mimic
flow conditions within capillaries, under close to physiological
conditions to study platelet-endothelial interactions. Figure 1A
shows a schematic drawing of the developed microfluidic platform
(including chip, tubes, medium reservoir, injection port, and
peristaltic pump). The bottom of the chamber consists of a
0.15 mm thick coverslip enabling high NA (NA > 1.4 objective
lens, working distance ~0.3 mm) imaging. A channel
(1.5 × 36 mm2, 335 μm thick, aspect ratio 4.5, cross area
0.5 mm2) was cut into a sandwiched polymer foil with a final
channel volume of 17 μL. The Navier-Stokes equation in 3D for
rectangular channels according to (Pisapia et al., 2022) was used to
calculate the shear stress acting on the ECs. A viscosity value of
η � 0.875mPa · s (99% cell culture medium (RPMI +5% FBS
(Poon, 2022)) + 1% whole blood (Roux et al., 2020) to account
for the platelets), as well as the given channel length of 34 mm
(excluding the inlet size) and a flow rate of 119 μL/min, was used.
Additionally, considered was the hydraulic resistance of the
290 cm long tubing. The calculated values for pressure, flow
velocity and wall shear stress were 51 Pa, 3.95 mm/s and
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62 mPa, respectively. In comparison, typical blood vessel wall
shear stress values of 0.1–2 Pa have been reported (Roux et al.,
2020). Since we have assumed a viscosity value of platelet
concentrate diluted in cell culture medium and not of whole
blood, the resulting wall shear stress is only ~3%, which occurs
under physiological conditions.

The microfluidic platform was seeded with CD34+ umbilical
cord blood cells (CD34+, CD45+, CD31+, KDR−, vWF−, CD14−,
ECs; kindly provided by Prof. Grosselet, University of Artois)
(Cecchelli et al., 2014), which have previously shown an
improved wound healing- and vascular differentiation
potential (Fina et al., 1990; Pedroso et al., 2011; Yang et al.,
2011; Buchroithner et al., 2021). In our experiments, CD34+

umbilical corde blood cell-line that differentiated to ECs
(Cecchelli et al., 2014) had tighter intercellular junctions
compared to HUVEC/Tert2 (see Supplementary Figure S1).
The delivery of ECs into the channel was applied using a
3-way stopcock with a septum and a syringe. A peristaltic
pump delivered 595 μL of medium from a reservoir into the
channel every 4 h at a flow rate of 119 μL/min. Every 24 h, ECs’
morphology and confluency were observed with phase-contrast
imaging. An automated cell counting software was applied to
quantify EC proliferation (red dots indicate detected nuclei of
Figure 1B). Values around 500 cells/mm2 provide a confluency of
~95–98%. Once confluency was reached, the delay time of the
peristaltic pump was gradually decreased (3 h, 2 h, 1 h, 0.5 h and
0.25 h). Simultaneously, the active pump time was increased
(5 min, 10 min, 20 min, 30 min) until continuous pumping
was reached. ECs were cultured under constant flow
conditions at 62 mPa shear stress until on average 65% of
them aligned with the flow direction. Figure 1B shows the
microfluidic chip seeded with ECs after 2 days of continuous
flow, where ECs already align with the flow direction. Live cell
platelet interaction experiments under flow conditions were

tested on a confluent EC monolayer seeded in the blood vessel
chip. We tracked individual platelets (see Supplementary Figure
S3A) flowing over the EC monolayer and confirmed platelet
adhesion and activation using CD41 and CD62P (see
Supplementary Figure S3B), respectively.

3.2 Laser treatment of endothelial cells and
mitochondrial morphology

Platelets adhered on a tight and flow-orientated monolayer of
perfused ECs (see Supplementary Figure S3B). More precisely,
platelets preferably adhered to disrupted intercellular junctions
(see Supplementary Figure S1) or to ECs with signs of stress that
occurred presumably due to manipulating cells outside the
incubator. The 2 cell populations were labelled stress-resistant EC
(srEC) and stress-prone EC (spEC) based on platelet adhesion.
However, these individually stressed cells were difficult to
monitor in the tight cellular layer, via white light microscopy. To
gain spatio-temporal control of cellular stress, single EC (ltECs)
nuclei were treated with a femtosecond pulsed laser. Experiments
(N = 11, three to five ECs treated each) targeting single ECs were
carried out using a 515 nm laser (290 fs pulse duration, 1 MHz
repetition rate) with a peak power of 1,600 W/μm³ and an air
objective lens (50x, NA = 0.42) (Buchegger et al., 2019;
Buchegger et al., 2021; Naderer et al., 2024). During laser
treatment, ltECs exhibited morphological changes, nucleoplasm
leakage, as well as occasionally nuclear bleb formation
(Figure 2B). Bleb formation was comparable to experiments with
laser treatment of NIH3T3 cells (Wickman et al., 2013). Recent
works have also proven that laser irradiation can lead to increased
levels of ROS, induced membrane or DNA damage and frequently
lead to cell death (Davidson and Duchen, 2007; Tang et al., 2014;
Eisner et al., 2018). Cell death of ltECs within <1 h after laser

FIGURE 1
Microfluidic platform design and cell seeding. (A) shows a schematic drawing of the microfluidic system. The system was connected to a 3-way
stopcockwith a septum to allow injectingmedia containing suspended CD34+ endothelial cells (ECs). A peristaltic pumpwas used to dispense cell culture
medium from the reservoir with a variable flow rate. (B) shows a phase-contrast image of CD34+ adherent ECs within the microfluidic chip after 2 days
under constant flow (most ECs aligned with the flow direction). The red dots indicate automatically detected nuclei using a convolutional neuronal
network. Number of detected nuclei in the image: 111 on 0.19 mm2.
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treatment has been confirmed using LIVE/DEAD™ Red Dead Cell
Stain (Figures 2C,D).

3.3 Platelet binding to endothelial cells

Subsequently, simultaneous two-color 3D SMLM imaging was
used to correlate the stress-classified ECs via mitochondrial
organization (green-channel) to the position of platelets and their
CD62P distribution (red-channel). The 3D distribution of
mitochondria has been used to analyze cellular stress levels of
individual ECs within the perfused layer (dead cells confirmed
via LIVE/DEAD assay). Three to five individual ECs in the
center of the microfluidic chip were selected and subsequently
treated using fs-laser pulses (<60 min outside the incubator). The
microfluidic chip was placed back into the incubator for 15 min to
allow ECs to recover. Subsequently, ECs were fixed and stained for
imaging. To analyze the 3D mitochondria morphology, single-
molecule positions of anti-mitochondria antibodies were
converted into a 3D volume and analyzed. Volumes with a voxel
size of 85 nm × 85 nm x 25 nm were rendered from the single-

molecule signals as a 3D Gaussian function. These mitochondria
volumes determined from the 3D localization positions were
subsequently smoothed, thresholded, segmented and skeletonized
to quantify their spatial orientation (Arganda-Carreras et al., 2010).
Based on the resulting 3D skeletonized image, parameters like
segment voxels, number and length of branches were calculated.
These parameters were used to classify mitochondria segments into
puncta, rod, and network categories using machine learning
(random forest classification (Breiman, 2001)). A 3D surface
reconstruction (marching cube algorithm (Lorensen and Cline,
1987)) of the classified mitochondria structures is shown in
Figure 3E. The colors green, cyan, and blue indicate the
categories puncta, rod and network, respectively. The overall
results of the classification are presented in Table 1. Based on the
distribution of classified voxels in each category, the stress level of
single ECs can be determined (Leonard et al., 2015; Zahedi et al.,
2018). Large, interconnected mitochondrial networks were observed
in srECs (Tang et al., 2014), while puncta and rod-like mitochondria
arrangements were highly represented in spECs.

Subsequently, the two-color image analysis was used to correlate
the EC-mitochondria-distribution to the protein distributions

FIGURE 2
Bright-field microscopy images of laser-treated endothelial cells (ltECs). (A) shows an image during the laser treatment process. A femtosecond
pulsed laser was used to stress selected cells within the developed microfluidic chip under flow conditions. (B) depicts an image of a ltEC forming blebs
(red arrows) under flow conditions. (C) shows a bright-field microscopy image of a ltEC under static conditions. (D) displays an image of the same cell as
shown in (C) after fixation and overlayed with a LIVE/DEAD™ Red Dead Cell Stain in green, which indicates that ltEC dies within <1 h after
laser treatment.
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(CD62P) of the locally adherent platelets incubated under various
conditions. Experiments were either conducted under static (SC) or
dynamic (DC) conditions. In SC experiments, ECs were cultivated

and incubated with platelets under static conditions. In DC
experiments, ECs were cultivated within the microfluidic system
under flow conditions (119 μL/min) and platelets were added into

FIGURE 3
3D single-molecule localization microscopy (SMLM) images of endothelial cells (ECs) mitochondria within the microfluidic chip under flow
conditions. (A) shows a SMLM rendering of mitochondria (positional accuracy of 46 nm lateral and 53 nm axial) of a laser-treated EC (ltEC) stained with
anti-mitochondria antibody conjugated to Alexa Fluor© 488. Axial positions are represented using rainbow colours from violet (below focus) to dark red
(above focus). 3D SMLM data were converted into a volume image and each mitochondria segment produced by skeleton analysis was classified
using random forest classification. Mitochondria morphology classification of (A) resulted in 33% puncta, 23% rods and 44% networks. (B) shows a bright-
field microscopy image of the same EC as in (A). In (C) a reconstructed 3D SMLM image of a stress-resistant EC (srEC) with a continuous mitochondria
network (positional accuracy of 51 nm lateral, 80 nm axial, 20% puncta, 20% rods and 60% networks) is displayed. (D) depicts a reconstructed 3D SMLM
image of a stress-prone EC (spEC) (positional accuracy of 52 nm lateral, 66 nm axial, 29% puncta, 32% rods and 39% networks). (E) visualizes a 3D surface
reconstruction of a volume rendering from 3D SMLM localizations (positional accuracy of 22 nm lateral and 125 nm axial) of multiple srECs. The results of
mitochondrial classification were colour-coded and indicate the categories: puncta (green), rod (cyan) and network (blue) with 8%, 7% and 85% of voxels
in each category, respectively (see Supplementary Movie S3 for an animation of the classification procedure).

TABLE 1 Statistics of cellular mitochondriamorphology classification of endothelial cells (ECs) under different conditions. Mitochondria segments of whole
and partial ECs were extracted and classified. The percentage of voxels found in each category was then compared to the total number of voxels found
within each extracted EC. Median, mean, and standard error were calculated for each experimental condition: static cultivation, dynamic cultivation within
the microfluidic chip under flow conditions and laser-treated ECs under dynamic conditions.

State #
ECs

Mean
puncta (%)

Median
puncta (%)

Mean
rods (%)

Median
rods (%)

Mean
networks (%)

Median
networks (%)

Shown
in

Static 27 24.9 ± 2.8 24 31.9 ± 3 28 43.1 ± 5.1 48 Figure 3A

Dynamic 16 28.1 ± 3.5 25.5 32.8 ± 3.6 28.5 39.1 ± 5.3 36 Figure 3C

Laser-
treated

4 33.5 ± 6.5 31.5 37.5 ± 5 38 29.25 ± 10 37.5 Figure 3D
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flow. For SMLM imaging, the adhered, fixed platelets were stained
with anti-CD62P antibodies conjugated to Alexa Fluor© 647 and
mitochondria (platelets, ECs) were stained with anti-mitochondria
antibodies conjugated to Alexa Fluor© 488. 3D SMLM images were
subsequently corrected for spatial drift (Wang et al., 2014) as well as

fluorescent bleed-through (custom software) and the mitochondria
morphology was classified. Table 2 shows the voxel classification of
mitochondria morphology for each image in Figure 4. Mitochondria
of platelets were discarded due to their smaller size during analysis.
On average 1.32 ± 1.3 and 1.63 ± 1.4 activated platelets per EC were

TABLE 2 Voxel classification results of the cellularmitochondria segments analyzed from all ECs in each image of Figure 4 under different conditions (static,
dynamic and laser-treated ECs). The percentage of voxels found in each class compared to the total number of voxels is presented in the columns “puncta”,
“rod” and “networks”. The number of identified platelets for each image is presented in the column “# Platelets”.

State Puncta (%) Rod (%) Networks (%) # Platelets Shown in

Static 31 30 39 13 Figure 4A

7 18 75 4 Figure 4B

Dynamic 41 32 27 5 Figure 4C

14 15 71 1 Figure 4D

Laser-treated 22 34 44 0 Figure 4E

26 27 47 0 Figure 4F

FIGURE 4
Two-colour 3D single-molecule localization microscopy (SMLM) images of activated platelets on an endothelial cell (EC) layer and mitochondrial
networks. (A) and (B) show SMLM images of activated platelets and mitochondria under static conditions. The pink circles indicate identified single
platelets. The “autumn” colour map (sequential increasing shades of red-orange-yellow) represents the axial position of platelets stained using anti-
CD62P antibodies (conjugated to Alexa Fluor© 647). The positional accuracy of SMLM signals in (A) was 24 nm lateral and 55 nm axial for the red
channel and 39 nm lateral and 107 nm axial for the blue channel. For (B) a positional accuracy of 31 nm/36 nm lateral and 69 nm/99 nm axial was
calculated for the red/blue colour channel, respectively. The “winter” colour map (shades of blue to green) represents the axial positions of mitochondria
(anti-Mitochondria marker conjugated to Alexa Fluor©488). (C) and (D) display 3D two-colour SMLM reconstructions of two selected images from a
dynamic experiment. Likewise, mitochondria were indicated by “winter” and CD62P on platelets by “autumn” colour maps. Additionally, identified
platelets are indicated by pink circles. For (C) a positional accuracy of 30 nm/47 nm lateral and 46 nm/75 nm axial and for (D) 28 nm/45 nm lateral and
44 nm/75 nm axial were calculated for the red/blue colour channel, respectively. (E) and (F) show 3D two-colour SMLM reconstructions of a region in
proximity of laser-treated ECs (ltECs) under flow conditions. However, the “autumn” colour channel representing activated platelets shows only single-
molecule background signals, without any indication of platelets around ltECs. For (E) a positional accuracy of 30 nm/49 nm lateral and 46 nm/79 nm
axial and for (F) 40 nm/49 nm lateral and 63 nm/78 nm axial was calculated for the red/blue colour channel, respectively. It is noteworthy that usually
only individua, non-aggregated platelets were bound to the ECs.
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determined in SC andDC experiments, respectively. We were able to
show that CD62P+ platelets adhered only in the space between spEC
within the EC layer. No CD62P signals could be observed in
proximity to ltECs. Moreover, more CD62P+ platelets were
bound to the EC layer under SC than DC, indicating that shear
force affects the binding of platelets to the spEC within the
endothelial layer. Since no platelet activation was observed in
surroundings of ltECs under DC, we did not test for platelet
activation of ltECs under SC.

3.4 P-selectin clustering on
adherent platelets

3D single-molecule fluorescence signals of the labelled CD62P were
used to approximate the volume of individual platelets via the alpha-
shapes concave hull algorithm. The number of identified platelets in each
image in Figure 4 is presented in Table 2. A total of thirteen and four
round-shaped platelets are displayed in Figures 4A,B, respectively.
Figure 4C shows four single platelets spread between spECs. Platelets
under SC (N = 31 platelets) showed a spherical shape with certain
aggregate formation (Figures 4A,B) presumably in the intercellular space
of the EC layer. Since platelets have to withstand shear force while
interacting with spECs, larger activated platelets were observed under
DC compared to SC. Only ~27% of the platelets activated under DC
(total N = 37 platelets) were in a similar volume range compared to the
platelets activated under SC. We observed on average 6 times larger
volumes of CD62P+ platelets adhering to spECs under DC (compared to
SC, see Table 3). In addition to the volumes, the CD62P densities in the
platelet membranes were also determined and compared using 2CALM
analysis (2-sample Comparative Analysis of 3D LocalizationMicroscopy
Data (Mayr et al., 2020)) regarding their differences in density or the
shape of the clusters formed. Using the calculated alpha-shapes, we show
that for both activation conditions ~3.8/~6.87 times more CD62P
proteins are present in the platelet membrane (first 60 nm layer)
compared to other layers in activated platelets under SC and DC (see
Supplementary Figure S5). In total, the inner layers harbor ~57% and
~31% of CD62P in activated platelets under SC and DC respectively; the
contributing proteins were stored in the alpha-granules. Here we show
that the CD62P reservoirs have been more depleted in the dynamically
activated platelets. In total numbers ~20,000 and ~3,000 CD62P
localizations have been observed on the membrane activated platelets
under DC and SC respectively. A more precise analysis of the CD62P
protein surface distribution indicated that, ~62% for activated platelets
under DC (CD62P in the upper membrane/bottommembrane: 5,586 ±
170/14,524 ± 338 for N = 37 platelets) and 56% for activated platelets
under SC (CD62P in the uppermembrane/bottommembrane: 863 ± 33/
1,979 ± 213 for N = 31 platelets; see Table. 3) were localized in the
bottom half of the platelets, in the EC membrane proximity.

The variation of total number of localized CD62P within the
activated platelets under SC and DC might be introduced by the
reduced accessibility of the antibodies to the CD62P in granules and
capability of shading. Thus, we observe a higher CD62P density at
the EC/platelet interface relative to the upper half of the cell; this
tendency decreases for SC. Next, we compared the clustering on top
and bottom (EC/platelet interface) of the activated platelets under
SC/DC. 2CALM analysis, have been performed to quantify and
compare the CD62p clustering (platelet’s upper membrane/bottom
membrane), under DC. The pairwise 2CALM comparison of the
CD62P clusters shows a similarity of the clusters in the upper
membrane (N = 7; with sufficient CD62P density for cluster
analysis out of N = 31) to the lower membrane (N = 25) upon
dynamic activation for ~85% of the compared pairs (see
Supplementary Figure S6A). For activated platelets under SC the
CD62P densities are not sufficient high for a statistically meaningful
comparative cluster analysis. Solely three statically (out of
N = 31 analyzed) activated platelets had sufficient CD62P
molecules at the EC/platelet interface (bottom membrane) for a
statistical comparison of the CD62P clustering to the dynamically
activated platelets (N = 25). Nevertheless, the pairwise comparison
of the CD62P clusters between the bottom membranes of activated
platelets under SC and DC show dissimilarity for most of the
compared pairs (see Supplementary Figure S6B). Moreover no
platelets were adhering to ltECs under DC as exemplified by
Figures 4E,F. The inability of platelets to adhere indicates that
these ltECs were unable to express adhesion molecules to
facilitate platelet binding, presumably due to nuclear damage.

4 Summary

Single-molecule localization microscopy (SMLM) enables
imaging of subcellular structures and proteins with nanometer
precision to study platelet endothelial interaction under static and
dynamic conditions. Next to image reconstruction, SMLM data
can be directly used to Figures 4E,F relevant information in a post-
processing step. The machine learning supported analysis enabled
the correlation of 3D localization positions/densities of activation
markers with the mitochondria morphology of stressed/un-
stressed ECs. Here we can show that applying two levels of
stress to ECs, one that approximates the physiological
conditions of hypoxia under cultivation and handling, and the
other induced by laser beam damage, we were able to quantify the
cellular stress based on mitochondrial morphology. Simultaneous
two-color 3D SMLM was capable to generate additional value for
non-diffraction limited objects like mitochondria. For data
analysis: filtering of outliers, background signals and residual
fluorescent bleed-through was successfully applied to the

TABLE 3 Statistical comparison of activated platelet volumes and densities from 3D single-molecule signals of CD62P under static and dynamic conditions.

State #
Platelets

Mean signal density of
CD62P in the Mambrane

Median
platelet
volume

Mean platelet
volume

Platelet volume
25% quantile

Platelet volume
75% quantile

Static 31 734 ± 261 signals/μm³ 1.4 μm³ 1.6 ± 0.22 μm³ 0.67 μm³ 1.9 μm³

Dynamic 37 808.5 ± 553.1 signals/μm³ 6.6 μm³ 9.4 ± 1.5 μm³ 3 μm³ 12 μm³
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localized positions. 3D volume reconstruction from SMLM
mitochondria localizations allowed us to use well-established
algorithms for mitochondria morphology analysis while still
preserving the localization data.

The higher resolution of 3D mitochondria images helped to
segment the mitochondrial network and reduced the complexity of
pre-processing steps compared to example confocal volume analysis.
The added value of this work is the simultaneously acquired two-
color SMLM (mitochondria and CD62P) data, for volume and
density comparison of activated platelets under static and
dynamic conditions. In the future, our platform could be useful
to study complex medical conditions such as platelet binding to the
pre-treated endothelium, platelet to platelet- or platelet to
neutrophil binding, thrombus formation (Tsai et al., 2012), the
result of pathogens and toxins on platelet adhesion (Fulda et al.,
2010) as well as pharmacological effects in the interaction of platelets
with the endothelium (Bieberich et al., 2021) at the single-cell level.
Additional variables such as the effect of cellular stress could be
studied under controlled conditions. This new technology will help
clinicians and researchers in their task to omit animal studies when
searching for adequate and precise technologies to investigate
dynamic platelet interaction with the endothelium under
physiological and pathophysiological conditions.
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