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A novel photoelectrochemical (PEC) aptasensor based on a dual Z-scheme α-
Fe2O3/MoS2/Bi2S3 ternary heterojunction for the ultrasensitive detection of
circulating tumor cells (CTCs) was developed. The α-Fe2O3/MoS2/Bi2S3
nanocomposite was prepared via a step-by-step route, and the
photoproduced electron/hole transfer path was speculated by conducting
trapping experiments of reactive species. α-Fe2O3/MoS2/Bi2S3-modified
electrodes exhibited greatly enhanced photocurrent under visible light due to
the double Z-scheme charge transfer process, which met the requirement of the
PEC sensor for detecting larger targets. After the aptamer was conjugated on the
photoelectrode through chitosan (CS) and glutaraldehyde (GA), when MCF-7
cells were presented and captured, the photocurrent of the PEC biosensing
system decreased due to steric hindrance. The current intensity had a linear
relationship with the logarithm of MCF-7 cell concentration ranging from 10 to
1×105 cells mL−1, with a low detection limit of 3 cell mL−1 (S/N = 3). The dual
Z-scheme α-Fe2O3/MoS2/Bi2S3 ternary heterojunction-modified PEC aptasensor
exhibited high sensitivity and excellent specificity and stability. Additionally, MCF-
7 cells in human serum were determined by this PEC aptasensor, exhibiting great
potential as a promising tool for clinical detection.
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1 Introduction

Circulating tumor cells (CTCs) are a dependable biomarker for cancer diagnosis,
detection, and prediction. They are released from primary or metastatic sites of tumors and
circulate through peripheral blood to distant body regions (Hong and Zu, 2013; Tang et al.,
2016; Wang et al., 2023a; Gong et al., 2023). Quick, inexpensive, and highly sensitive
techniques to identify CTCs are urgently needed. Various conventional strategies have been
established for the detection of CTCs including the immunomagnetic bead approach (Den
Toonder, 2011), reverse transcriptase polymerase chain reaction (RT-PCR)-based
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technique (Dirix et al., 2009), enzyme-linked immunosorbent
immunoassay (ELISA) (Van der Auwera et al., 2010), and
fluorescence spectroscopy (Yang et al., 2018). Nevertheless,
complicated operations, expensive instruments, and low
sensitivity limit these methods for CTC-based clinical diagnostics.
The photoelectrochemical (PEC) aptasensor, as a novel and quickly
evolving technique, has found widespread use in trace analyses as an
efficient method. The PEC aptasensor delivers reasonable specificity
between the aptamers and target analytes (Zhong et al., 2023). As
“chemical antibodies,” aptamers are single-stranded oligonucleotide

sequences synthesized from the SELEX process (Stoltenburg et al.,
2007; Fang and Tan, 2010; Yi et al., 2023; Zhao et al., 2023).
Meanwhile, the PEC aptasensor has a high sensitivity because the
excitation light source and current signal are separated completely,
which minimizes interference between the input and output signals
(Osterloh, 2013). Additionally, the PEC aptasensor offers
exceptional benefits including simplicity, low cost, and easy
integration by integrating a relatively simple optical and
electrochemical instrument (Freeman et al., 2013; Yue et al.,
2013). However, in order to achieve the very sensitive detection
of CTCs, PEC aptasensors require a strong photocurrent because of
the dielectric and relatively large size of CTCs.

Currently, semiconductors are preferred as photoactive
materials for the PEC aptasensor because of their exceptional
photocurrent enhancement. Molybdenum disulfide (MoS2) is a
typical photoactive material, which has a band gap is
approximately 1.8 eV (Wu et al., 2017) and energy levels that
match the visible region of the solar spectrum, making it efficient
for visible-light harvesting (Li et al., 2011; Hong et al., 2014).
However, the challenges related to undesired photo-generated
carrier (electron/hole, e−/h+) lifetimes may limit its PEC
performance (Pei et al., 2019). Constructing a heterostructure (or
heterojunction) with other semiconductors is considered the most
efficient strategy (Liu et al., 2017; Han et al., 2018). To further boost
the light utilization and electron–hole pair separation, Z-scheme
heterojunction has been carried out using multiple semiconductors
with well-matched band structures, which exhibits a distinct
photocatalytic redox ability (Saravanakumar and Park, 2021; Yu
et al., 2021). Bismuth trisulfide (Bi2S3), with a direct band gap
(1.3–1.7 eV), is also ideally suited to absorb visible light and

FIGURE 1
SEM images of (A) α-Fe2O3, (B) α-Fe2O3/MoS2, and (C) α-Fe2O3/MoS2/Bi2S3. (D) XRD patterns of α-Fe2O3, α-Fe2O3/MoS2, and α-Fe2O3/MoS2/Bi2S3.
(E) SEM-EDS mapping of α-Fe2O3/MoS2/Bi2S3. Scale bar for (A–C) is 1 μm.

FIGURE 2
Proposed charge transfer and photocatalytic mechanisms of the
double Z-scheme α-Fe2O3/MoS2/Bi2S3 ternary heterojunction.
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particularly well-matched with MoS2 nanosheets for the
construction of Z-scheme heterojunction in PEC analysis. For
example, Q.A. Drmosh prepared Z-scheme Bi2S3/MoS2/TiO2

nanotube-based photoelectrodes with enhanced visible light
absorption and increased charge lifetime (Wang Q. et al., 2023).
Similarly, hematite (α-Fe2O3), with its band gap (1.9–2.2 eV),
nontoxic nature, and excellent and chemical stability, is also a
promising photocatalyst in the visible-light region (Zhang Z.
et al., 2020; Wheeler et al., 2012). In photocatalysis, the
combination of α-Fe2O3 and MoS2 (α-Fe2O3/MoS2) is also a
suitable candidate to use as a Z-scheme heterojunction. Guo and
Xing designed a hollow flower-like polyhedral α-Fe2O3/MoS2/Ag
Z-scheme heterojunction that demonstrated excellent photocatalytic
degradation for 2,4-DCP (Guo et al., 2020). To enhance the activity
of Z-scheme photocatalysts even more, the double Z-scheme

photocatalytic system coupling of three or more semiconductors
has gained extensive attention in photocatalysts, which enhanced
visible light absorption and achieved more efficient charge carrier
separation and transfer (Jiang et al., 2018).

Herein, we presented a novel PEC aptasensor based on a dual
Z-scheme α-Fe2O3/MoS2/Bi2S3 ternary heterojunction for the
ultrasensitive detection of CTCs. The α-Fe2O3/MoS2/Bi2S3
nanocomposite was prepared via a step-by-step route, and α-
Fe2O3/MoS2/Bi2S3-modified electrodes exhibited greatly
enhanced photocurrent under visible light. The photoproduced
electron/hole transfer path was speculated by conducting trapping
experiments of reactive species to demonstrate the charge transfer
process. After the aptamer was conjugated on the photoelectrode,
MCF-7 cells were captured through a specific immunoreaction
between the aptamer and tumor, leading to the decrease in

SCHEME 1
Schemata of the preparation of the α-Fe2O3/MoS2/Bi2S3 ternary heterojunction (A) and fabrication of the PEC aptasensor (B).

FIGURE 3
Photocurrent response (A) and EIS spectrum (B) of FTO electrode. (a), α-Fe2O2/MoS2/Bi2S2 heterojunction (b), α-Fe2O2/MoS2/Bi2S2 heterojunction/
Apt-DNA (c) and α-Fe2O3/MoS2/Bi2S3 /Apt-DNA/BSA (d) and α-Fe2O2/MoS2/Bi2S2/Apt-DNA/BSA/MCF-7 cell.
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photocurrent due to steric hindrance. The evolution of the current
signal could be reflected directly through the concentration of
MCF-7 cells. The fabricated PEC aptasensor showed excellent
sensitivity, stability, and selectivity. Additionally, MCF-7 cells in
human serum were determined by this PEC aptasensor, which
exhibited great potential in clinical detection.

2 Materials and methods

2.1 Materials and apparatus

Ferrous sulfate hydrate (FeSO4·7H2O), urea, ethanol,
ammonium molybdate tetrahydrate ((NH4)6MoO24·4H2O),
thiourea, bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), glacial
acetic acid, glutaraldehyde (50%, GA), ascorbic acid (AA),
isopropanol (IPA), p-benzoquinone (BQ), methylene blue (MB),
and chitosan (CS) were purchased from Aladdin Reagent Company
(Shanghai, China). Fluorine-doped tin oxide (FTO) glass was
obtained from South China Xiangcheng Technology Co., Ltd.
Oligonucleotides and bovine serum albumin (BSA) were
purchased from Sangon Biotech Co., Ltd. (Shanghai, China), and
all chemical reagents were analytical grade without further
purification.

Aptamer DNA (Apt-DNA):

NH2 − C12−CACTACAGAGGTTGCGTCTGTCCCACGTTGTCA
TGGGGGGTTGGCCTG

All the electrochemical measurements were carried out on a CHI
760E electrochemical workstation (Shanghai Chenhua Instrument
Co., Ltd., China) with a three-electrode system composed of FTO as
the working electrode, a platinum electrode as the counter electrode,
and a saturate Ag/AgCl electrode as the reference electrode.
Electrochemical impedance spectroscopy (EIS) and cyclic
voltammetry (CV) were performed in 5 mM K3Fe(CN)6/
K4Fe(CN)6 (0.1 M KCl) as the supporting electrolyte.

2.2 Preparation of the double Z-scheme α-
Fe2O3/MoS2/Bi2S3 ternary heterojunction

Flower-like α-Fe2O3 with nanorod petals was prepared as
depicted in a previous report with minor modification (Wang
et al., 2023c). First, 2.28 g of FeSO4·7H2O and 0.6 g of urea were
dissolved in 100 mL mixed solution (VH2O:VC2H5OH = 4:1) and
sonicated for 10 min. Then, the mixed solution was transferred into
a 250-mL three-necked flask to reflux at 90°C for 6 h. After
precipitation and drying at 60°C for 24 h, the reddish brown
FeOOH powder was prepared. Subsequently, the α-Fe2O3

nanorods were obtained by the calcination of the prepared
FeOOH at 500°C for 3 h in a Laboratory Muffle stove.

α-Fe2O3/MoS2 nanocomposites were successfully prepared via a
hydrothermal route. First, 0.1234 g of (NH4)6MoO24·4H2O and
0.2284 g of thiourea were dissolved in 35 mL of distilled water
and stirred for 30 min. Then, 0.357 g of α-Fe2O3 was added to
the above solution under stirring for 30 min. Subsequently, the

FIGURE 4
Effects of the (A) concentration of Apt-DNA, (B) amount of AA, (C) incubation time of the Apt-DNA with the photoelectrode, and (D) captured
electrode with MCF-7 cells.
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obtained solution was transferred to a 50-mL Teflon-sealed
autoclave and heated to 200°C for 6 h. After being cooled to
room temperature, the α-Fe2O3/MoS2 nanocomposites were
obtained after being centrifuged and washed three times.

α-Fe2O3/MoS2/Bi2S3 nanocomposites were successfully
prepared by a hydrothermal process. First, 0.0236 g of thiourea
was added in 25 mL distilled water and stirred for 3 min. Then,
0.076 g of Bi(NO3)3·5H2O was added to the above solution and
stirred for 20 min. Then, 0.04 g of α-Fe2O3/MoS2 nanocomposites
was added and stirred at 180°C for 20 min. After being cooled to
room temperature, the α-Fe2O3/MoS2/Bi2S3 nanocomposites were

obtained after being centrifuged and washed. The product was dried
in an oven at 60°C for 24 h for the next experiment.

2.3 Fabrication of the PEC aptasensor and
PEC detection of CTCs

The PEC aptasensor based on a direct dual Z-scheme α-Fe2O3/
MoS2/Bi2S3 ternary heterojunction for the ultrasensitive detection of
CTCs is shown in Scheme 1. First, 20 μL (2 mg mL−1) of α-Fe2O3/
MoS2/Bi2S3 nanocomposites were dropped to the surface of FTO,

TABLE 1 Comparison of the performance of the PEC aptasensor with other methods for CTC detection.

Method Linear range Detection limit Reference

Electrochemistry 18–1.5 × 106 cells/ mL−1 6 cells/ mL−1 Zhang et al. (2020b)

PEC 102–5 × 105 cells/ mL−1 15 cells/ mL−1 Ding et al. (2023)

Fluorescence 10–105 cells/ mL−1 3 cells/ mL−1 Chen et al. (2021)

Chemiluminescence 102–1 × 106 cells/ mL−1 15 cells/ mL−1 He et al. (2015)

Colorimetry 102–105 cells/ mL−1 12 cells/ mL−1 Wang et al. (2018)

This work 10–105 cells/ mL−1 3 cells/ mL−1

FIGURE 5
(A) Photocurrent responses of the PEC aptasensor toward MCF-7 cells and (B) relationship of the PEC signal and cell concentration at different
concentrations ranging from 10 to 1×105 cells mL−1. Inset of (B) shows linear relationship between the change in photocurrent intensity (ΔI) and the
logarithm value of the MCF-7 cell concentration. (C) Selectivity of PEC detection for MCF-7 cells including the blank, HeLa, L929, MCF-7 cells, and
mixture cells containing HeLa, L929, and MCF-7. (D) Stability of the PEC biosensor under repeated light irradiation from 0 to 700 s.
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and 20 μL of mixture solution containing chitosan and acetic acid
(chitosan/acetic acid = 1%, w/v) was added on the electrode surface
of FTO/α-Fe2O3/MoS2/Bi2S3. After being dried at 37°C, the FTO/α-
Fe2O3/MoS2/Bi2S3 electrode was immersed in GA solution (0.2%)
and incubated for 30 min. Then, 20 μL of aptamer DNA (5 μM) was
dropped onto the electrode and incubated for 40 min at 37°C.
Subsequently, 20 μL of BSA (1%) was used to block the
nonspecific binding sites, and the capture electrode FTO/α-
Fe2O3/MoS2/Bi2S3/CS/GA/BSA was constructed. A volume of
20 μL of MCF-7 cell solution with different concentrations was
dropped onto the electrode surface and incubated for 120 min at
37°C. Finally, the PEC response of the biosensor was recorded in
10 mL of PBS (0.01 M, pH 7.4) containing ascorbic acid (AA,
0.14 mol L−1) under visible light irradiation using a LED lamp
(excitation wavelength, 450 nm; 100 W) with on–off light
switching of 10 s.

3 Results and discussion

3.1 Characterization of the α-Fe2O3/MoS2/
Bi2S3 ternary heterojunction

SEM was used to analyze the morphology of the as-synthesized
samples. As shown in Figure 1A, the SEM image of α-Fe2O3

displayed a uniform flower-like nanostructure, and the nanorod
petal was approximately 3–4 µm in length. The SEM image of α-
Fe2O3/MoS2 (Figure 1B) revealed that α-Fe2O3 was encapsulated in
MoS2 nanosheets and exhibited ripples, which indicated the
formation of the α-Fe2O3/MoS2 heterojunction. Subsequently,
Bi2S3 grew in the layered MoS2, and the α-Fe2O3/MoS2/Bi2S3
ternary heterojunction exhibited an icicle flower-like structure,
as shown in Figure 1C. X-ray diffraction (XRD) patterns were used
to characterize the α-Fe2O3/MoS2/Bi2S3 ternary heterojunction.
Figure 1D shows the characteristic diffraction peaks that
correspond to the JCPDS card No. 33–0664 α-Fe2O3,
respectively. Additionally, three peak representatives (14.13°,
28.47°, and 32.91°) which belonged to the (002), (004), and
(100) crystal planes of MoS2 (JCPDS card No. 75–1539),
respectively, proved the formation of MoS2. Meanwhile, a few
prominent peaks of Bi2S3 appeared based on JCPDS card No.
17–0320. These illustrated the formation of the α-Fe2O3/MoS2/
Bi2S3 ternary heterojunction. As expected, the element mapping
images (Figure 1E) showed the distribution of O, Bi, Mo, S, and Fe,
offering direct evidence of the effective achievement of α-Fe2O3/
MoS2/Bi2S3 ternary heterojunction. The UV-vis absorption spectra
of α-Fe2O3, α-Fe2O3/Bi2S3, and α-Fe2O3/MoS2/Bi2S3 were

investigated as described in Supplementary Figure S1. Both
MoS2 and Bi2S3 presented a broad absorption spectrum across
the visible light region. For the α-Fe2O3/MoS2/Bi2S3
heterojunction, α-Fe2O3 also enhanced its absorption ability in
visible light, which would lead to an increase in
photocatalytic activity.

3.2 Photocatalytic mechanism of the α-
Fe2O3/MoS2/Bi2S3 ternary heterojunction

The band gap energy (Eg) of α-Fe2O3 (2.1 eV), MoS2 (1.38 eV),
and Bi2S3 (1.41 eV) was investigated by UV–vis diffuse reflectance
spectroscopy, and the flat-band potentials (α-Fe2O3, 0.69 eV;
MoS2, −0.4 eV; Bi2S, 0.59 eV; all vs. SSCE) were derived using
Mott–Schottky plots, as shown in Supplementary Figure S2. Their
valence bands (VBs) were 0.93 eV, −0.16 eV, and −0.35 eV,
respectively, which was obtained based on the following
formula: VB = CB + Eg. The trapping experiments of reactive
species in this photocatalytic process were carried out. In this work,
IPA (radical •OH scavenger) and BQ (radical •O2− scavenger)
were employed as quenchers in the degradation experiment of
methylene blue (MB), as shown in Supplementary Figure S3.
During this photocatalytic process, both BQ and IPA
significantly reduced the degradation rate of MB, demonstrating
that a larger amount of •OH and •O2− on the surface of α-Fe2O3/
MoS2/Bi2S3 was involved in the degradation of MB. The standard
potential of the OH−/•OH pair (+2.40 eV vs. NHE) was lower than
the VB position of α-Fe2O3 and higher than the VB position of
both MoS2 and Bi2S3. We could speculate that only h+ of α-Fe2O3

reacted with OH− or H2O to form •OH. Meanwhile, the standard
potential of the O2/•O2−pair (−0.33 eV vs. NHE) was more positive
than that of Bi2S3 and more negative than the CB of both α-Fe2O3

and MoS2. It was concluded that •O2−was more possible to be
produced by Bi2S3.

Based on these, the transfer pathway of electrons in α-Fe2O3/
MoS2/Bi2S3 is shown in Figure 2. Under visible irradiation, photo-
generated e−/h+ was produced on the CB and VB of α-Fe2O3, Bi2S3,
and MoS2. The e− in the CB of α-Fe2O3 and MoS2 transferred to the
VB of MoS2 and Bi2S3 to recombine with the h+, respectively. This
resulted in the accumulation of high-energy e− and h + on the VB of
Bi2S3 and the CB of α-Fe2O3, where they participated in
photocurrent production. This double Z-scheme heterojunction
promoted the detecting photocurrent intensity in the PEC
aptasensor because it effectively inhibited the recombination of
electron–hole pairs and absorbed sufficient light.

3.3 Characterization of the PEC aptasensor

As shown in Figure 3A, the photocurrent of FTO/α-Fe2O3/
MoS2/Bi2S3 (curve b) was much larger than that of the naked FTO
electrode (curve a) due to the creation of ternary heterojunctions
with high light absorption and photoelectric conversion efficiency.
Steric hindrance caused a reduction in photocurrents after Apt-
DNA (curve c), BSA (curve d), and MCF-7 cell (curve e) were
assembled on the photoelectrode of FTO/α-Fe2O3/MoS2/Bi2S3.
These demonstrated that the PEC aptasensor was successfully

TABLE 2 Spiked detection of CTCs in serum samples (n = 6).

Add
(cells mL−1)

Detected
(cells mL−1)

Recovery
(%)

RSD
(%)

50 46 92 6.2

100 93 93 7.8

500 538 107.6 6.5

1,000 1,053 105.3 5.7
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constructed. Meanwhile, electrochemical impedance spectroscopy
(EIS) was also carried out to validate this process. The diameter of
the high-frequency semicircle in the Nyquist plot corresponded to
the electron transfer resistance (Ret) of the electrode surface (Luo
et al., 2022). As shown in Figure 3B, the Ret value of the naked FTO
electrode was small (curve a), and it drastically decreased (curve b)
when the α-Fe2O3/MoS2/Bi2S3 heterojunction was dropped on the
FTO electrode. Subsequently, when the Apt-DNA (curve c), BSA
(curve d), and MCF-7 cell (curve e) were continuously assembled on
the FTO/α-Fe2O3/MoS2/Bi2S3 surface, they led to an increase in Ret

because they impeded the diffusion of electrons to the electrode
surface, indicating their successful immobilization.

3.4 Optimization of PEC measurement
conditions

A number of parameters, including the concentration of Apt-DNA,
the amount of AA, and the incubation time of the Apt-DNA with the
photoelectrode and captured electrode with MCF-7 cells, were
optimized. As shown in Figure 4A, the photocurrent response
peaked at 0.15 mol L−1, and no obvious change was observed at
higher concentrations. As a result, the concentration of AA in all
subsequent experiments was 0.15 mol L−1. The impact of Apt-DNA
concentration on the PEC response of the biosensor is shown in
Figure 4B. The photocurrent decreased as the concentration of Apt-
DNA increased up to 5M, after which there was no obvious change,
indicating Apt-DNA saturation. Accordingly, 5 µM of Apt-DNA was
used in all subsequent experiments. The immobilization time is also
shown in Figure 4C. The photocurrent decreased in the range from 0 to
60 min and then remained constant. It was that the amount of Apt-
DNAwas saturated after a certain time.Meanwhile, the incubation time
of Apt-DNA with the captured electrode was also examined, as shown
in Figure 4D. The ideal duration was found to be approximately
120 min. Under optimal conditions, the photocurrent was large and
stable, which would be performed for subsequent experiments.

3.5 Detection performance of the PEC
aptasensor

The PEC response decreased with an increase in MCF-7 cell
concentrations due to steric hindrance (Figure 5A). The decrease in
photocurrent intensity demonstrated a good linear relationship with
the logarithm of the MCF-7 cell concentration in the range from
10 to 1×105 cells mL−1 (Figure 5B). The linear regression equation
was y = −0.36 lgC cells+2.79 (C cells, cell mL−1) with a correlation
coefficient (R2) of 0.9952 (n = 3) and a low detection limit of
3 cell mL−1 (S/N = 3). Therefore, the PEC aptasensor exhibited an
ultrasensitive detection of MCF-7 cells compared with the other
biosensors given in Table 1.

3.6 Application of the PEC aptasensor in
real samples

To assess the application potential, the prepared PEC
aptasensor was used to detect MCF-7 cells in real samples.

MCF-7 cells with different concentrations (10, 50, 100, 500, and
1,000 cells mL−1) were spiked into serum samples for the assay. The
recoveries of MCF-7 were between 92% and 107.6% with a relative
standard deviation (RSD) from 5.7% to 7.8% (Table 2),
demonstrating great potential for the detection of CTCs in
real samples.

4 Conclusion

In summary, we developed a dual Z-scheme PEC aptasensor
based on the α-Fe2O3/MoS2/Bi2S3 ternary heterojunction for the
ultrasensitive detection of CTCs. The α-Fe2O3/MoS2/Bi2S3
ternary nanocomposite was prepared via a step-by-step route,
and the analysis of radical trapping experiments confirmed that
the active species •O2−, h+, and •OH were produced in the α-
Fe2O3/MoS2/Bi2S3 photocatalytic system. The mechanism
analysis demonstrated that the charge transfer of the α-Fe2O3/
MoS2/Bi2S3 nanocomposite followed a dual Z-scheme route,
which exhibited a significant enhanced photocurrent under
visible light, resulting in improved visible light absorption,
increased surface area, and enhanced separation efficiency of
photo-generated electron–hole pairs. The constructed PEC
aptasensor offered a linear PEC response, with the CTC
concentration ranging from 10 to 1×105 cells mL−1 and a low
detection limit of 3 cell mL−1 (S/N = 3). Additionally, MCF-7 cells
in human serum were determined by this PEC aptasensor, which
exhibited great potential in clinical detection.
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