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Introduction: Children’s walking patterns evolve with age, exhibiting less
repetitiveness at a young age and more variability than adults. Three-
dimensional gait analysis (3DGA) is crucial for understanding and treating
lower limb movement disorders in children, traditionally performed using
Optical Motion Capture (OMC). Inertial Measurement Units (IMUs) offer a
cost-effective alternative to OMC, although challenges like drift errors persist.
Machine learning (ML) models can mitigate these issues in adults, prompting an
investigation into their applicability to a heterogeneous pediatric population. This
study aimed at 1) quantifying personalized and generalized ML models’
performance for predicting gait time series in typically developed (TD)
children using IMUs data, 2) Comparing random forest (RF) and convolutional
neural networks (CNN) models’ performance, 3) Finding the optimal number of
IMUs required for accurate predictions.

Methodology: Seventeen TD children, aged 6 to 15, participated in data
collection involving OMC, force plates, and IMU sensors. Joint kinematics and
kinetics (targets) were computed from OMC and force plates’ data using
OpenSim. Tsfresh, a Python package, extracted features from raw IMU data.
Each target’s ten most important features were input in the development of
personalized and generalized RF and CNN models. This procedure was initially
conducted with 7 IMUs placed on all lower limb segments and then performed
using only two IMUs on the feet.

Results: Findings suggested that the RF and CNN models demonstrated
comparable performance. RF predicted joint kinematics with a 9.5% and 19.9%
NRMSE for personalized and generalized models, respectively, and joint kinetics
with an NRMSE of 10.7% for personalized and 15.2% for generalized models in TD
children. Personalized models provided accurate estimations from IMU data in
children, while generalized models lacked accuracy due to the limited dataset.
Furthermore, reducing the number of IMUs from 7 to 2 did not affect the results,
and the performance remained consistent.
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Discussion: This study proposed a promising personalized approach for gait time
series prediction in children, involving an RF model and two IMUs on the feet.
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1 Introduction

Children’s walking patterns are distinctive from adults and evolve
with age (Cigali et al., 2011; Senden et al., 2023). At a small age, gait
tends to be less repetitive and will differ from those of adults (Ganley
and Powers, 2005; Jain et al., 2016), emphasizing the need to build
normative data for a pediatric population (Ganley and Powers, 2005).
The differences in school-aged children’s walking patterns are often
attributed to their significantmusculoskeletal changes (Bari et al., 2023),
given that they are in a critical stage of growth and development (Onis
et al., 2007). A recent study (Bach et al., 2021) suggested that the degree
of gait maturity does not always directly relate to the chronological age
of the child. This finding underscores the complexity of assessing gait
development in children. Moreover, it’s been shown that, compared to
adults, young individuals exhibit more variable kinematic patterns
when performing repetitive movements (Kuhtz-Buschbeck et al.,
1996). Additionally, the observed variability in Electromyography
(EMG) waveform within-session for children exhibited
approximately twice the variability of EMG signals (muscle
activation level) for adults (Granata et al., 2005), affecting their joint
kinematics and kinetics within a single session.

Three-dimensional gait analysis (3DGA) is a valuable tool for
understanding a child’s gait pattern and how it compares with
normative data of typically developed children’s gait (Ito et al., 2022;
Bari et al., 2023). The insights gained from 3DGA in children affected by
lower limb movement disorders serve as a foundation for clinical
assessment to target personalized treatment and improve their
walking patterns (Bari et al., 2023). Considering the unique
challenges and broad spectrum of motor impairments in this
population, addressing developmental challenges requires a tailored
approach. The current gold standard for performing 3DGA involves
Optical Motion Capture (OMC) along with force plates due to its high
accuracy and robustness (Chester et al., 2005). However, the high cost of
OMC systems and the time-consuming data post-processing needed
lead to long waitlists for patients and sometimes long-distance travel for
families coming from rural areas (Aminian and Najafi, 2004).

Wearable sensors like Inertial Measurement Units (IMUs) are
potential alternatives to the OMC system, enabling the potential to
capture 3DGA in rural areas and natural environments (Gurchiek
et al., 2019). Unlike the OMC systems, IMUs are inexpensive, small,
and lightweight and can be used outside the clinic by wearing them
or attaching them to the children’s limbs or pelvis (Aminian and
Najafi, 2004). Although IMU sensors are very promising in motion
analysis, challenges such as time-increasing drift errors, which result
in less accurate estimations, still need to be overcome (Aminian and
Najafi, 2004). Moreover, traditional approaches, such as sensor
fusion algorithms (Sabatini, 2006; Madgwick et al., 2011), as well
as the tool package OpenSense (Al Borno et al., 2022), require
placing an IMU on each body segment for accurate kinematics
calculations and functional calibration.

The challenges associated with processing IMU data in adult
populations have been addressed in previous studies (Findlow et al.,
2008; Luu et al., 2014; Dorschky et al., 2020; Giarmatzis et al., 2020; Lim
et al., 2020; Stetter et al., 2020; Mundt et al., 2021; Sharifi Renani et al.,
2021; Tan et al., 2022; Moghadam et al., 2023a) by implementing
Machine learning (ML) models. While each of these studies utilized a
combination of IMUs and ML techniques, their focuses varied: some
concentrated on predicting joint kinematics (Findlow et al., 2008; Luu
et al., 2014; Dorschky et al., 2020; Sharifi Renani et al., 2021; Tan et al.,
2022), som on joint kinetics (Giarmatzis et al., 2020; Stetter et al., 2020),
and few on both kinematics and kinetics prediction (Lim et al., 2020;
Mundt et al., 2021; Moghadam et al., 2023a). These ML models can
establish a direct relationship between the IMUs’ data and OMC
derived gait time series such as, joint kinematics, joint kinetics, and
muscle forces (Moghadam et al., 2023a). Prior research indicated the
efficacy of this approach in adult populations, demonstrating highly
accurate results with low errors during the personalized model (tested
on the same individual used for training). Additionally, reliable
estimations were yielded using generalized models (tested on new
participants not included in the training set), even in scenarios with
limited dataset availability. Among various ML models developed for
the adults population, artificial neural networks (ANN) have been
widely utilized for predicting gait time series. However, there is a limited
body of literature exploring alternative data-driven models that may
demand smaller datasets while achieving comparable results to ANNs.
Building on this context, in a prior study, we demonstrated that
Random Forest (RF) models can yield results comparable to more
intricate machine learning models such as Convolutional Neural
Networks (CNNs) for 3D Gait Analysis (3DGA) in adults
(Moghadam et al., 2023a). Given the greater heterogeneity in
children’s gait, it will be interesting to explore whether RF or CNNs
can be applied to a pediatric population with similar performances.

The primary focus of existingMLmodels for 3DGA in children lies
in gait classification (Kamruzzaman and Begg, 2006; Zhang et al., 2009;
Zhang and Ma, 2019; Choisne et al., 2020; Khaksar et al., 2021) rather
than the development of models for predicting gait time series. There
are only a handful of studies focused on predicting children’s gait using
ML techniques (Kwon et al., 2012; Vigneron et al., 2017; Morbidoni
et al., 2021; Kolaghassi et al., 2022; Kolaghassi et al., 2023). A research
group used EMG sensors’ signals to predict children with cerebral palsy
(CP) knee moment and achieved high correlation coefficients between
0.71 and 0.93 for different participants (Kwon et al., 2012). Another
study proved the feasibility of using neural networks in predicting gait
events from surface EMG signals in hemiplegic cerebral palsy
(Morbidoni et al., 2021). Other studies have employed ML
techniques to estimate one-step-ahead gait trajectories to control
lower-limb robotic devices in children with CP (Kolaghassi et al.,
2022; Kolaghassi et al., 2023). However, none of the mentioned
studies utilized IMUs’ data to develop the ML model. Given the
effective performance of a combination of IMU and ML models in
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adults, exploring its applicability in a heterogeneous pediatric
population would be an interesting avenue for investigation.

It is noteworthy that previous studies have indicated the feasibility
of predicting diverse gait time series in adults using a single IMU on
the pelvis (Lim et al., 2020) or a pair of IMUs on the shanks (Sharifi
Renani et al., 2020; Yeung et al., 2023) or the feet (Gholami et al.,
2020). However, given the unique challenges posed by children’s gait,
it remains crucial to extend this inquiry to children’s gait analysis by
exploring the applicability of using a reduced number of IMUs. A high
number of IMU sensors on the body could be impractical in real-
world gait analysis, particularly for at-home applications, as it requires
high computational power to monitor numerous IMUs (Sivakumar
et al., 2019). Therefore, another aspect requiring investigation is to
quantify the optimal number of IMUs needed for accurately
estimating gait time series in children.

Therefore, this study aimed to assess the feasibility of leveraging data
from IMUs to construct ML models for predicting gait time series in
school-aged children. This goal was pursued through three key objectives.
Firstly, we sought to explore whether personalized and generalized ML
models for predicting gait time series in children could demonstrate

comparable efficacy to their adult counterparts. Secondly, an evaluation
was conducted to compare the accuracy of two distinct ML models–the
multi-output RF and CNN models–for predicting gait time series in
children. The final objective centered on exploring the potential of
placing a singular IMU on each foot, as opposed to employing seven
IMUs distributed across all lower limb segments.

2 Materials and methods

2.1 Participants

Seventeen typically developed (TD) children (9 Females,
8 Males; age = 10.5 ± 2.8 yr [6:15]; height = 147.2 ± 16.9 cm
[119:174]; weight = 37.1 ± 11.7 kg [19.7:56.9]) were recruited for
this study. Each child’s legal guardian provided informed consent
prior to data collection. The research strictly adhered to ethical
principles outlined in the Helsinki Declaration and received
approval from the University of Auckland (New Zealand) human
participant ethics committee (reference number 021615).

FIGURE 1
Pictures of the front (A) and back (B) of a participant, illustrating markers’ placement (numbered in the image) and sensor locations (IMU axes
depicted in red). The study did not utilize data from the Electromyography (EMG) sensors.
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2.2 Data collection

OMC, force plates, and IMUs data were recorded while each
participant completed one static and a minimum of 15 over-ground
walking trials for over 20 m at their self-selected speed. For the initial
five participants, we affixed 37 reflective markers, indicated by
numbers 1 to 37 in Figure 1, on their body segments.
Subsequently, a paper by Bakke and Besier (2022) from our lab
suggested a streamlined marker set, removing markers 6, 7, 8, 9, 10,
11, 18, 21, 32, and 33, which demonstrated equivalent accuracy in
kinematics calculation. For the remaining participants, we adopted
this refined marker set with 27 markers. Marker trajectories were
traced by a 14-camera optical motion capture system (ViconMotion
Systems Ltd., United Kingdom) at a sampling frequency of 100 Hz
for all trials. In addition, seven IMU sensors [Blue Trident, Vicon
IMeasureU Ltd. (NZ)] were secured on the participants’ pelvis
(between left and right posterior superior iliac spine markers),
thighs (1 cm above the lateral aspect of the patella), shanks (1 cm
above the lateral aspect of the ankle), and feet (on the dorsal surface)
as shown in Figure 1, and recorded three axes of angular velocity and
linear acceleration at 2 kHz. Ground reaction forces (GRFs) were
acquired at 2 kHz from three force plates (Bertec, Columbus, Ohio)
embedded in the gait lab floor. The Vicon Nexus software (version
2.12) was used to collect and synchronize marker trajectory, GRF,
and IMUs data and subsequently to reconstruct markers’
trajectories.

2.3 Data processing

After extracting data as C3D files from Nexus, MOtoNMS, a
Matlab Motion data elaboration toolbox for neuromusculoskeletal
applications (Mantoan et al., 2015), was used to filter marker
trajectories and ground reaction forces (GRF) using a
Butterworth fourth order, 8 Hz low pass filter. Then MOtoNMS
was employed for rotating and aligning the lab coordinate system to
the OpenSim coordinate system, where X, Y, and Z-axes correspond
to the frontal, transverse, and sagittal planes, respectively.
Additionally, MOtoNMS was utilized to determine hip joint
center (HJC) locations using Harrington regression equations
from static trials for scaling in OpenSim (Harrington et al., 2007).

A musculoskeletal model was created for each participant by
linearly scaling OpenSim gait 2392 model (Delp et al., 2007), which is
a generic adult model. The Gait 2392 model is a detailed
biomechanical representation, featuring 23 degrees of freedom and
92 musculotendon actuators. Within this model, the pelvis and hip
joints offer three rotational degrees of freedom each, allowing for
movements in the three planes of motion. The pelvis in Gait
2392 allows for movements such as tilt, obliquity, and rotation in
the transverse plane, facilitated by its complex structure of joints. The
hip joint is characterized as a ball-and-socket joint, enabling motions
such as flexion/extension, adduction/abduction, and internal/external
rotation. The knee model is a simple hinge joint with one degree of
freedom allowing for flexion/extension. Additionally, the ankle
(allowing for ankle dorsi/plantar flexion) and subtalar (allowing for
ankle inversion/eversion) joints are simulated as frictionless revolute
joints. The scaling tool in OpenSim (version 3.3) aligns virtual
markers on the generic model with those placed on specific

anatomical landmarks of the participant’s body during the static
trial. The HJCs calculated by MOtoNMS were used to scale the
femur. The kinematics and kinetics of the lower limb joints,
including the pelvis (3 DOF), hip (3 DOF), knee (1DOF in the
sagittal plane), and ankle (2DOF; sagittal and frontal planes), were
calculated for all participants using the inverse kinematics (IK) and
inverse dynamics (ID) tools in OpenSim. To estimate joint kinematics
and kinetics, we picked two gait cycles from each trial, resulting in a
minimum of 30 gait cycles for each participant. The IK tool employs
an optimization technique to ensure precise alignment between the
virtual markers on the scaled model and the corresponding
experimental markers in a least-squares sense (Lu and O connor,
1999; Knudson, 2007). For joint kinetics prediction, we focused on the
gait cycles occurring on the force plates to allow for joint forces and
moments calculation through the ID tool, which solves the equations
of motion (Davis et al., 1991). We excluded trials where the
participant’s feet were not entirely within the force plates.
Therefore, a variable number of kinetics gait cycles remained for
each participant, ranging from a minimum of 8 to a maximum of 18.

This process resulted in a dataset encompassing measurements
for 15 joints kinematics and 15 joints kinetics targets, including
pelvis tilt, pelvis rotation, pelvis obliquity, hip rotation, hip flexion,
hip abduction/adduction, knee flexion/extension, ankle dorsi/
plantar flexion, and ankle inversion/eversion joints angles and
moments for both legs. Finally, the IMU data were down
sampled to 100 Hz to align the data’s frequency with the joint
kinematics and kinetics frequency. This also reduces the
computational load for feature extraction and machine learning
(ML) model construction.

2.4 Joint kinematics and kinetics prediction
using ML models

After processing data for the 17 participants, a total of
73,364 time points for joint kinematics and 21855 time/data
points for joint kinetics were used for the development of ML
models. The outlined procedures (Figure 2), including windowing
IMU data, feature extraction, feature selection, model development,
and model evaluation, were executed as detailed in the
subsequent sections.

2.4.1 Training and testing sets
We implemented two distinct data splitting methods to facilitate

two types of examinations (Figure 2, Step 1); the first looked at the
intra-subject examination accuracy, and the second looked at the
inter-subject prediction accuracy.

Intra-subject examination: In this approach, the training dataset
consisted of 70% of a participant’s gait cycles, and the remaining
30% of gait cycles were allocated for the testing dataset. A total of
17 training and testing datasets were created to cover all participants
and perform the intra-subject examination.

Inter-subject examination: To create training and testing
datasets for this examination, we employed a leave-one-out
approach for our cohort of 17 participants. The dataset was
partitioned to assess the model’s generalization across diverse
individuals. During each iteration, one participant’s gait cycles
were set aside for testing, while the gait cycles from the
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remaining 16 participants constituted the training dataset. This
process was repeated 17 times, each time excluding a different
participant from the training set.

2.4.2 IMU sensors data windowing and feature
extraction

In our pursuit of enhancing the accuracy of the learned models
and emphasizing the main characteristics of the input data (Laird
and Saul, 1994), we adopted a feature engineering technique. From
each IMU, we took six time series, encompassing triaxial angular
velocity and linear acceleration, to extract features.Thus, we had a
total of 42 data vectors from seven IMUs. We organized the input

time series data into sequences of consecutive, sliding, and
overlapping windows. We selected a window size of 0.75 s, as
shown to be the most accurate in predicting gait time series
(Moghadam et al., 2023b).

Then, we employed the Tsfresh (Christ et al., 2018) (Time Series
FeatuRe Extraction on the basis of Scalable Hypothesis tests) python
package to perform feature extraction on the windowed input data
(Figure 2, Step 2). This process yielded a feature vector �xi �
(f1(x1), f2(x2), . . ., fm(xi)) for each vector of input data (xi).
Tsfresh extracted 788 distinct features from each channel of IMU
data, resulting in a substantial total of 33,096 features derived from
the 42 channels of input data.

FIGURE 2
The workflow to develop the ML models. Step 1: Split the data into training and testing sets. Step 2: Window IMU data and feature extraction for the
training dataset. Step 3: Feature selection. Step 4: Keep only the selected features in the training set. Step 5: TrainMLmodels using selected features in the
training set. Step 6: window IMU data and extract the super feature set (determined in step 3) for the test dataset. Step 7: Test the trained model on the
testing set.
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2.4.3 Feature selection
The presence of irrelevant and noisy features may considerably

reduce the performance of the ML model. The process of removing
irrelevant features and selecting the most relevant features is called
feature selection (Figure 2, Step 3). We eliminated all zero-variance
features to initiate the process of determining the most important
features. Then, the Tsfresh feature selector’s built-in function was
utilized to remove any non-significant feature, using the Benjamini-
Hochberg method (Benjamini and Hochberg, 1995). In the next step,
the remaining features were ranked based on their Gini Importance in
predicting each target using a Random Forest (RF) regressor (Hasan
et al., 2016). Then, the top ten features associated with each target were
selected. Our previous findings demonstrated that this selection of
10 features per target yields precise estimations in multi-output models
(Moghadam et al., 2023b).

After feature selection, two comprehensive feature sets were
constructed, each including 150 features. The first merged all the
top features related to kinematics targets, forming the basis for a
multioutput ML model dedicated to kinematics prediction. The
second feature set put all the top features associated with kinetics
targets together to develop amultioutputMLmodel tailored for kinetics
prediction.We retained only the features present in the super feature set
from all the extracted features for the training dataset (Figure 2, Step 4).

2.4.4 Non-linear regression ML models
We developed RF and CNN models to assess their accuracy in

predicting lower limb joint kinematics and kinetics during gait
(Figure 2, Step 5). The hyperparameters for both RF and CNN
models were chosen based on previously optimized models
(Moghadam et al., 2023a). We employed an RF model
comprising 500 trees, each with a maximum depth of 25.

For the CNNmodel, we used amulti-output architecture with five
hidden layers. The selected features were scaled using the Standard
Scaler function from the Sklearn library to ensure all variables fell
within the same range (between zero and one). Targets were also
scaled, and post-prediction, they were rescaled to their original values
using the same scaler. Themodel’s architecture featured an input layer
with a size of 150, followed by two convolutional layers, each followed
by a max-pooling layer. Both convolutional layers comprised
256 filters with a kernel size of three and employed a “relu”
activation function. The max-pooling layers had a pool size of two.
Subsequently, the data was flattened and passed through a dense
output layer with a linear activation function. The number of units in
the output layer corresponded to the number of targets (15 for both
CNN models utilized for kinematics and kinetics prediction). The
‘Adam’ solver with a learning rate of 0.01 was used for weight
optimization, employing the mean squared error as the loss
function. An early stopping mechanism monitored validation loss
and halted training if no improvement was observed after five epochs.
The batch size was set to 32, and the model was trained for a
maximum of 100 epochs to achieve robust results.

2.4.5 Models’ evaluation
To evaluate the performance of the CNN and RF models, we

began by extracting the super feature set from the windowed test
dataset (Figure 2, Step 6). Subsequently, the trained MLmodels were
employed to predict targets, joint kinematics, and kinetics using the
extracted features from test datasets (Figure 2, Step 7). Then, we

computed the root mean square error (RMSE) and Normalized
RMSE (NRMSE) between the OpenSim outputs and the predicted
values generated by each ML model for all targets. Violin plots were
utilized to illustrate the distribution of RMSEs across various IMU
configurations and examinations (intra and inter-subject) for each
target. These plots offer a visual representation of how data is spread
out within each category. In a violin plot, the width of the shape at
any given point indicates the probability of values occurring.
Additionally, within the violins, the median line is depicted as a
short horizontal line, providing a clear reference point for the central
tendency of the data. The reported RMSEs and NRMSEs for intra-
subject and inter-subject examination are average of personalized
and generalized models, respectively. After determining the optimal
ML model and IMU sensor configuration, we conducted additional
analysis by 1) plotting average waveforms from both OpenSim and
ML models’ outputs, 2) calculating R2 values and creating
correlation plots, and 3) generating Bland-Altman (Bland and
Altman, 1986) plots to evaluate agreement between OpenSim
outputs and predicted values for the selected model.

2.5 The effect of reducing IMU sensors to
feet IMUs

In a prior study (Moghadam et al., 2023b), we demonstrated the
feasibility of accurately estimating gait time series using machine
learning models with just two IMUs positioned on the feet. To
explore the applicability of this approach to children’s data, we
replicated the steps described in Figure 2 using two IMUs placed on
the feet instead of the full set of 7 IMUs.

3 Results

3.1 Joint kinematics prediction

The distribution of predicted joint kinematics RMSE revealed
similar predictive accuracy between the RF and CNN models,
whether we’re looking at the personalized models (intra-subject)
or generalized models (inter-subject) (Figure 3). The RF model
exhibited, on average, lower prediction errors of 0.22° in intra-
subject examinations and 0.20° in inter-subject examinations when
compared to the CNN model across all joints and planes of motion.

For the personalized models, reducing the number of IMUs to
only one on each foot did not alter the prediction of joints
kinematics compared to using all seven IMUs (Figure 3A).
Interestingly, in the inter-subject examination, pelvis rotation, hip
rotation, and ankle inversion/eversion angles experienced a decrease
in their prediction errors by using only two IMUs; however, it
increased the RMSE in the inter-subject evaluation for pelvis tilt and
hip flexion/extension (Figure 3B). It is worth mentioning that these
differences were not statistically significant.Independently of the
model and the number of IMUs used, the average RMSE across all
joints and planes of motion indicated considerably lower values in
the intra-subject examinations compared to the inter-subject
examinations. In the intra-subject evaluation, the RMSE spanned
from a minimum of 1.0° (Pelvis tilt) to a maximum of 6.7° (ankle
inversion/eversion). For the inter-subject evaluation, the range of

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Mohammadi Moghadam et al. 10.3389/fbioe.2024.1372669

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1372669


FIGURE 3
Violin plots illustrate the RMSE in degrees for joint kinematics predictions, comparing OpenSim IK outcomes with those from ML models. The red
violins represent errors from the RF model, while the blue violins depict errors from the CNN model. Darker hues indicate models utilizing data from the
full set of IMUs (n = 7), and lighter hues denotemodels using data solely from foot-mounted IMUs (n = 2). Panel (A) presents results from the intra-subject
examination, while panel (B) displays the inter-subject examination results, utilizing models designed to generalize across participants.

TABLE 1 The Normalised RMSE (NMRSE) along with their corresponding standard deviation (SD) values for joint angle prediction across all joints and planes
of motion in intra and inter-subject examinations, based on RF models’ output using two IMUs.

NRMSE (%) ± SD

Joint kinematics target Intra-subject examination Inter-subject examination

Pelvis tilt 14.1 ± 5.1 33.1 ± 20.4

Pelvis obliquity 9.6 ± 2.7 19.7 ± 9.8

Pelvis rotation 13.8 ± 2.7 23.0 ± 13.1

Hip flexion/extension 6.1 ± 1.7 17.7 ± 8.4

Hip adduction/abduction 8.1 ± 1.9 18.4 ± 6.9

Hip rotation 11.9 ± 2.3 21.2 ± 7.1

Knee flexion/extension 5.2 ± 1.6 9.6 ± 6.6

Ankle dorsi/plantar flexion 6.7 ± 1.8 15.3 ± 5.7

Ankle inversion/eversion 10.1 ± 2.2 21.4 ± 5.9

Average 9.5 ± 3.3 19.9 ± 6.4
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RMSE increased, covering values from 2.1° (hip adduction/
abduction) to 17.5° (ankle inversion/eversion).

In our analysis, we found that overall, the RF model gave slightly
better results, and the number of IMUs used (two vs. seven) did not
have an impact on the results. Therefore, we concentrated on the
results provided by the RF model with two IMUs for the subsequent
analysis. After normalizing the RMSE values to the data range, we
observed that the lowest normalized RMSE (NRMSE) was
associated with knee flexion/extension angle, and the highest
NRMSE value was related to the pelvis tilt angle (Table 1). In the
hip and ankle joint angles prediction, the lowest error appeared in
the sagittal plane; however, in the case of the pelvis, the highest error
was associated with the sagittal plane. This finding held true for both
intra and inter-subject examinations. Notably, the NRMSE values
for all joints and planes of motion in the inter-subject results were
nearly twice as high as those observed in the intra-subject
examination. Specifically, the average RMSE across all targets
increased from 9.5% to 19.9% (Table 1). When comparing the
average NRMSE for children below 10 years with children older
than 10 years, a clear trend emerges. On average, the NRMSE is
lower (1.7% in intra-subject and 0.3% in inter-subject examinations)
in the older age group when predicting joint kinematics (refer to
Supplementary Table SA1).

To understand if the prediction accuracy is consistent across the
gait cycle for the intra-subject examination, we performed further
analysis for the RF model outputs encompassing: 1) Average range
of motion (ROM) comparison between the OpenSim IK tool and the
RF model’s output. 2) Correlation plot and R-squared (R2)
Assessment, and 3) Bland-Altman Analysis to provide insights
into the agreements between predicted and measured variables.

Hip, knee, and ankle joint angles in the sagittal plane are
presented in Figure 4. Additional results for other targets,
including pelvis angles in all planes of motion, hip joint angles in
the frontal and transverse planes, and ankle joint angles in the
frontal plane, are detailed in Supplementary Figure SA1.

Plotting an average ROM (standard deviation (±SD)) across all
participants revealed that the predicted waveforms closely followed
the measured waveforms obtained from the OpenSim IK tool. The
SD area of the predicted values fell within the shaded area
representing the measured values, indicating a close fit between
the predicted and measured data in the intra-subject examination
(Figures 4A, D, G; Supplementary Figures SA1A, D, G, J, M, P).

Furthermore, there was a strong correlation between the
OpenSim IK outputs and predicted joint angles, with R2 values
exceeding 0.83 for pelvis angles in all planes of motion
(Supplementary Figures SA1B, E, H), 0.76 for hip angles

FIGURE 4
The plots are made across all participants in the intra-subject examination, specifically for hip (A–C), knee (D–F), and ankle (G–I) joint angles in the
sagittal plane. Panels (A,D,G) present the RF model’s average predictions (the dashed red line represents the average, and the red shaded area indicates
the SD) for joint angles, utilizing data from IMUs placed on the feet. These predictions are compared to the joint angles derived from the OpenSim IK tool
(the solid blue line represents the average, and the blue shaded area indicates the SD). Panels (B,E,H) illustrate the correlation and R-squared (R2)
values for the mentioned joint angle targets. In (C,F,I), we utilized Bland-Altman plots to visually depict the errors throughout one gait cycle for all
participants. In these plots, the dashed blue line represents the mean error, and the mean ± 2SD is depicted as dashed red and green lines. Each distinct
color in these plots represents the results of one participant.
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(Supplementary Figures SA1K, N; Figure 4B), 0.97 for knee angle
(Figure 4E), and 0.77 for ankle joint angles (Supplementary Figures
SA1Q; Figure 4H). The high performance of the RF model in the
sagittal plane was observed at the hip, knee, and ankle.

Strong agreement between the measured and predicted values
was evident in the Bland-Altman plots, with the error falling within
the range of two standard deviations from the mean value for most
participants. No specific pattern in the error values was seen based
on these plots; however, the bias between predicted and measured
kinematics was around zero for all targets (Figures 4C, F, I;
Supplementary Figures SA1C, F, I, L, O, R).

3.2 Joint kinetics prediction

When predicting joint kinetics, the RF model demonstrated
slightly superior performance when compared to the CNN model
(Figure 5). The RF model yielded lower prediction error values than
the CNN model across all joints and planes of motion, with a

reduction of 0.017 Nm/kg RMSE in intra-subject examinations and
0.037 Nm/kg RMSE in inter-subject examinations. The better
performance of the RF model was more pronounced in the inter-
subject examination (Figure 5B).

In terms of the number of IMU sensors used for joint kinetics
prediction, we found nearly identical results when employing only
the feet IMUs as compared to using all 7 IMUs. However, in specific
kinetics targets, such as pelvis tilt and hip flexion/extension in the
intra-subject examination and pelvis obliquity, hip adduction/
abduction, and hip rotation in the inter-subject examination,
even lower prediction errors were achieved by utilizing just two
IMUs placed on the feet. It is important to highlight that irrespective
of the model type and the number of IMUs employed for prediction,
the RMSE values in the inter-subject examination were consistently
higher than the RMSE in the intra-subject examination.

As for the kinematics, we concentrated on the results provided
by the RF model with two IMUs for further analysis. After
calculating the NRMSE between outputs of the RF model and the
OpenSim ID tool, we observed that the highest NRMSE values were

FIGURE 5
Violin plots illustrate the RMSE in degrees for joint kinematics predictions, comparing OpenSim ID outcomes with those from ML models. The red
violins represent errors from the RF model, while the blue violins depict errors from the CNN model. Darker hues indicate models utilizing data from the
full set of IMUs (n = 7), and lighter hues denotemodels using data solely from foot-mounted IMUs (n = 2). Panel (A) presents results from the intra-subject
examination, while panel (B) displays the inter-subject examination results, utilizing models designed to generalize across participants.
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associated with the pelvis tilt in the intra-subject examination
(similar to the kinematics analysis) and hip flexion/extension in
the inter-subject examination. Conversely, ankle dorsi/plantar

flexion exhibited the lowest NRMSE for intra-subject
examination, while knee flexion/extension displayed the lowest
NRMSE for inter-subject examination.

TABLE 2 the NRMSE values along with their corresponding SD for joint moment prediction across all joints and planes of motion in intra and inter-subject
examinations, based on RF models’ output using feet IMUs.

NRMSE (%) ± SD

Joint kinetics target Intra-subject examination Inter-subject examination

Pelvis tilt 13.7 ± 1.9 13.9 ± 3.6

Pelvis obliquity 13.2 ± 2.1 16.8 ± 5.2

Pelvis rotation 12.8 ± 3.4 13.4 ± 3.8

Hip flexion/extension 11.8 ± 2.1 26.4 ± 14.5

Hip adduction/abduction 8.5 ± 2.1 15.1 ± 8.8

Hip rotation 9.6 ± 2.9 10.9 ± 3.3

Knee flexion/extension 8.5 ± 1.9 10.3 ± 2.6

Ankle dorsi/plantar flexion 6.4 ± 1.3 11.7 ± 9.6

Ankle inversion/eversion 12.5 ± 2.3 18.5 ± 7.3

Average 10.7 ± 2.6 15.2 ± 4.9

FIGURE 6
The plots are made across all participants in the intra-subject examination, specifically for hip (A–C), knee (D–F), and ankle (G–I) joint moments in
the sagittal plane. Panels (A,D,G) present the RF model’s average predictions (the dashed red line represents the average, and the red shaded area
indicates one SD) for joint moments, utilizing data from IMUs placed on the feet. These predictions are compared to the joint moments derived from the
OpenSim ID tool (the solid blue line represents the average, and the blue shaded area indicates one SD). Panels (B,E,H) illustrate the correlation and
R-squared (R2) values for the mentioned joint moment targets. In (C,F,I), we utilized Bland-Altman plots to visually depict the errors throughout one gait
cycle for all participants. In these plots, the dashed blue line represents the mean error, and the mean ± 2SD is depicted as dashed red and green lines.
Each distinct color in correlation and error plots represents the results of one participant.
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Just like with joint kinematics, the NRMSE values for all joints and
planes of motion in the inter-subject results were higher than the
intra-subject examination. Specifically, the average RMSE across all
targets increased from 10.7% to 15.2% (Table 2). Similar to the
prediction of joint kinematics, a consistent trend was noted in the
prediction of joint kinetics (refer to Supplementary Table SA2).
Notably, the NRMSE was lower by 1% in intra-subject and 4.3%
in inter-subject examinations for older children (above 10 years old)
as opposed to their younger counterparts (below 10 years old).

To understand if the prediction accuracy is consistent across the
gait cycle for the intra-subject examination, we performed further
analysis for the RF model outputs encompassing: 1) Average
normalized moment comparison between the OpenSim IK tool
and the RF model’s output. 2) Correlation plot and R-squared (R2)
Assessment, and 3) Bland-Altman Analysis to provide insights into
the agreements between predicted and measured variables.

The results for the hip, knee, and ankle joint moments in the
sagittal plane are shown in Figure 6. Additional results for other
targets, including pelvis moments in all planes of motion, hip joint
moments in the frontal and transverse planes, and ankle jointmoment
in the frontal plane, are detailed in Supplementary Figure SA2.

Plotting the average and standard deviation waveforms for joint
moments throughout a gait cycle in intra-subject examination, we
observed that the RF model’s predictions effectively tracked the
OpenSim ID tool output. However, the SD area of the predicted
values did not consistently fall within the shaded area related to the
measured values across the entire gait cycle [(Figures 6A, D, G);
Supplementary Figures SA2A, D, G, J, M, P]. Especially toward the
end of the stance phase (50%–60% of the gait cycle), the model
predicted a lower range of motion in the three joints in the sagittal
plane. Also, at the beginning of the stance phase, we can observe
some discrepancies in knee flexion and hip extension moment
predictions.

Compared to joint angles, the correlation between the measured
and predicted joint moments was lower for the pelvis, with R2 values
of 0.43, 0.31, and 0.41 for pelvis tilt, obliquity, and rotation,
respectively (Supplementary Figures SA2B, E, H). The R2 values
for other joint kinetics were consistent with the performance seen in
joint kinematics prediction. Specifically, the hip joint experienced
R2 higher than 0.73 in all planes of motion (Supplementary Figures
SA2K, N; Figure 6B), the R2 for the knee joint was 0.80 in the sagittal
plane (Figure 6E), and the ankle displayed R2 values higher than
0.83 in both the frontal (Supplementary Figures SA2Q) and sagittal
planes (Figure 6H).

According to Bland-Altman plots, there was a good agreement
between the measured and predicted targets, as the errors were
within a range of two SD of the mean value for most participants.
Similar to joint kinematics prediction, the bias between measured
and predicted variables was around zero for all kinetics targets. An
interesting observation was that during the final phase of the gait
cycle (swing phase), errors were almost zero for most joint kinetics
(Figures 6C, F, I; Supplementary Figures SA1C, F, I, L, O, R).

4 Discussion

The aim of this study was to investigate the feasibility of using a
combination of IMUs’ data and ML models for predicting joint

kinematics and kinetics in school-aged children. To answer this aim,
the first objective was to assess the accuracy of RF and CNN ML
models by quantifying both intra-subject and inter-subject
prediction errors. The second objective was to evaluate the
influence of using only an IMU on each foot versus seven IMUs,
one on each segment of the lower limb, on kinematics and kinetics
prediction performance. We employed a feature engineering
technique to extract and select the most important features from
the IMUs’ acceleration and angular velocity data to enhance the
models’ performance.

4.1 ML comparison

Regarding the first objective, findings suggested that the RF and
CNN models demonstrated comparable performance for predicting
joint kinematics (NRMSE of 9.5% versus 10.6% for personalized and
NRMSE of 19.9% versus 22.5% for generalized models, respectively)
and kinetics (NRMSE of 10.7% versus 12.9% for personalized and
NRMSE of 15.2% versus 17.9% for generalized models respectively)
in TD children. This implies that the complexity of deep neural
network structures may not be necessary for gait time series
prediction. Consequently, it opens the door to more efficient and
easily interpretable modeling approaches, such as the RF model
(Breiman, 2001). Supporting this notion, a separate study found RF
models to outperform CNN models in estimating step length,
showing an absolute error of 5.09 cm for RF compared to
5.26 cm for CNN (Seifer et al., 2023). Furthermore, the
superiority of RF models, with an average error of 5.57°, becomes
evident in gait trajectory generation, surpassing the neural network
model with an average error of 6.00° in another study (Ren
et al., 2019).

The higher performance of RF models could be attributed to
their resilience against overfitting. This resilience arises from their
capacity to amalgamate multiple decision trees trained on
bootstrapped data, coupled with the utilization of feature
randomization, pruning, and averaging (Breiman, 2001). On the
other hand, CNNs exhibit a notable susceptibility to overfitting,
particularly when dealing with smaller datasets (Slijepcevic
et al., 2023).

4.1.1 Intra-subject examination
We created 17 personalized models for predicting kinematics

and kinetics based on customized feature sets specific to each
participant. Our results from the RF model using two IMUs data
demonstrated strong predictive accuracy, with an average RMSE
ranging from 1.61° to 4.16° (NRMSE of 5.2%–14.1%) across all joint
kinematics. The RMSE values for joint kinematics stayed well below
the 5° error threshold, which is often considered a clinically
acceptable level of deviation for assessing joint movements (Slater
et al., 2018). However, the joint kinematics prediction error were
higher than for adults in other studies, where observed values ranged
from 1.38° to 3.96° for all targets (Findlow et al., 2008; Giarmatzis
et al., 2020; Moghadam et al., 2023a; Yeung et al., 2023). Similarly,
joint kinetics prediction error were higher (0.038–0.233 Nm/kg) in
this study than on adult population, where the RMSE ranged from
0.042 to 0.198 Nm/kg (Dey et al., 2019; Mundt et al., 2020;
Moghadam et al., 2023a). This elevated error in both kinematics
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and kinetics prediction in the intra-subject evaluation of children
compared to the adult models underscores the greater variability in
gait time series within individual children across different trials.
Different gait maturity level (Bach et al., 2021) as well as heightened
variability in gait patterns (Kuhtz-Buschbeck et al., 1996) and EMG
gait waveforms (Granata et al., 2005) in children compared to adults
has been shown in other studies. This discrepancy may be attributed
to the increased susceptibility of children to distractions during
walking (Stolze et al., 1998) or to the heterogeneity in children’s gait
cycles compared to adults.

Despite the higher errors in the children’s personalized ML
model compared to adults, the Bland-Altman plots revealed a
notable level of agreement between the measured and predicted
values during the intra-subject examination. Most participants
exhibited errors within the range of two SD from the mean error
value. Additionally, average errors consistently remained near zero
for all predicted targets, underlining the good overall agreement
between the IMU-based and OMC-based kinematics and kinetics. It
is worth noting that no discernible patterns in the error values were
observed, indicating a lack of systematic bias in the predictions
(Bland and Altman, 1986). These findings emphasize the practicality
and suitability of employing this approach, which involves a
personalized RF model utilizing IMU data for accurately
estimating gait time series in children.

One interesting finding of personalized modeling (intra-subject
examination) was the good model performance within the sagittal
plane compared to the other planes of motion for joint kinematics
prediction, especially in the case of hip and ankle joint angles. The
knee angle, only computed within the sagittal plane, demonstrated a
high correlation between the actual and predicted values (R2 of
0.97). The enhanced performance of the RF model in the sagittal
plane (higher R2 and lower errors) can be attributed to the more
prominent joint movements within this plane, which, in turn, yields
more distinct signals from the IMUs. Consequently, this clarity in
the IMU signals contributes to the model’s improved predictive
performance in the sagittal plane. While other planes of motion,
such as the frontal and transverse planes, contribute to a
comprehensive understanding of gait, the sagittal plane takes
precedence in gait analysis due to its primary role in capturing
the fundamental aspects of forward movement. We’ve shown that
the proposed personalized method exhibits remarkable accuracy,
demonstrating a clinically acceptable level of error, particularly in
the sagittal plane. This notable precision positions it as exceptionally
valuable for advancing the gait analysis of children.

4.1.2 Inter-subject examination
In the inter-subject examination of the RF model, the results

were less promising compared to the intra-subject test, with average
RMSE ranging from 3.5° to 9.6° (NRMSE of 9.6%–33.1%) for joint
kinematics. When comparing the outcomes with adults cohort, it
becomes apparent that the RMSE values in adults exhibit lower
errors (RMSE between 2.17° and 6.53°) (Luu et al., 2014; Dorschky
et al., 2020; Lim et al., 2020; Sharifi Renani et al., 2021; Moghadam
et al., 2023a). Similar findings were found for joint moments with
NRMSE of 10.3%–26.4% found in this study compared to 4.54%–
10.74% in previous adults studies (Giarmatzis et al., 2020; Lim et al.,
2020). In fact, these errors are of such magnitude that they do not
provide confidence in the accurate prediction of gait time series in

children not included in the training set. This contrasts with the
previously demonstrated success of inter-subject modeling in
predicting time series for the adult population with limited data
(Giarmatzis et al., 2020; Lim et al., 2020; Stetter et al., 2020;
Moghadam et al., 2023a).

The primary reason for the elevated error in the children’s
generalized model compared to adults can be attributed to the
diverse gait patterns among individual children, given their
ongoing musculoskeletal changes and developmental stages
within the specified age range of six to 15 years in this study
(Onis et al., 2007; Bari et al., 2023). However, as age advances,
there is a reduction in variability within the gait pattern, as
demonstrated in our findings revealing higher errors in gait
analysis for younger children compared to older ones. When
analysing the average (±SD) waveforms of targets within a gait
cycle, we observed a noticeable standard deviation surrounding the
average waveform for the children, reaffirming the high variability of
gait patterns among children. This is comparable to a study by
Fokuchi et al., where a greater deviation area for younger people
compared to the adults’ normative gait data is shown (Fukuchi et al.,
2018). The secondary reason for the high error in generalized
modeling lies in the limitations of the dataset. Effective ML
models typically require access to extensive datasets comprising a
wide spectrum of walking patterns. Consequently, the performance
of a model trained on a small dataset featuring only 16 participants is
inherently limited when applied to new, unseen subjects. The
considerable errors observed in generalized modeling render this
approach less advisable for children who were not part of the initial
training dataset.

4.2 Number of IMUs

Concerning the second objective, we demonstrated that utilizing
two IMUs on the feet, instead of a total of seven IMUs, resulted in
similar accuracy of the models, specifically in intra-subject
examination. Concerning the inter-subject examination, while
there was a slight increase in error for some targets (pelvis tilt,
hip flexion/extension angles and moments, and ankle dorsi/plantar
moment), reducing the number of IMUs to feet IMUs resulted in
decreased errors for specific targets such as pelvis rotation angle, hip
rotation angle, ankle inversion/eversion angles, pelvis obliquity
moment, hip adduction/abduction moment, and hip
rotation moment.

These findings are consistent with our prior research, which
suggested that in adult gait prediction, employing MLmodels allows
us to achieve nearly identical results using only feet IMUs, as
opposed to utilizing seven IMUs (one for each segment)
(Moghadam et al., 2023b). This can be attributed to the
proficiency of ML models in establishing a robust relationship
between IMU data and targets. Another contributing factor is the
identification of alternative features to raw IMU data, thereby
augmenting the predictive capabilities of the ML model, even
when working with a limited number of IMUs. The feasibility of
employing a single IMU on the pelvis (Lim et al., 2020) or a pair of
IMUs on shanks (Sharifi Renani et al., 2020; Yeung et al., 2023) or
feet (Gholami et al., 2020) for predicting a diverse range of gait time
series has been demonstrated in prior studies. Reducing the number

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Mohammadi Moghadam et al. 10.3389/fbioe.2024.1372669

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1372669


of IMUs streamlines model implementation, decreases data
processing time, and lowers sensor-related costs. Additionally, the
potential integration of foot IMUs within shoes, rendering them
inconspicuous during community use, could enhance patient
compliance.

4.3 Limitations and future work

This study presents limitations to be addressed by future
research. Firstly, the utilization of a generic adult model for
scaling and constructing musculoskeletal models for children.
The issue lies in the potential discrepancies between generic adult
models and the individual anatomical characteristics of children.
Developing more precise, subject-specific models would ideally
involve leveraging medical imaging data, such as MRI, CT, or
X-rays, which can be both time-consuming and financially
burdensome (Nolte et al., 2016). To address this limitation,
future research could explore alternative methods like statistical
shape modeling to build children’s musculoskeletal models (Carman
et al., 2022).

Another limitation of this study pertains to the omission of an
investigation into the potential impact of slight variations in the
placement of IMUs that may occur when different individuals are
responsible for placing the IMUs. The concern here is that small
variations could influence the data collected and, consequently,
affect the accuracy and reliability of the results. Addressing this
limitation in future research might involve conducting a sensitivity
analysis or implementing standardized procedures for IMU
placement to mitigate the potential impact of such variations on
the study outcomes. It is noteworthy that a similar analysis was
taken in an adult study and did not change the results (Moghadam
et al., 2023a). So, we expect that these findings apply to children, too,
meaning small changes in sensors’ placement should not
substantially affect the outcomes.

Our study focused on TD children to establish the models,
which will differ from other populations, such as children with
cerebral palsy. The choice of ML model and the number of
required IMUs may differ, as children with movement disorders
often exhibit more complex and diverse gait patterns. Several
research groups have successfully employed regression machine
learning models to estimate gait time series in specific patient
cohorts. Examples of previous studies on patients include the
prediction of knee joint moments during gait in individuals
with CP (Kwon et al., 2012), the estimation of knee joint
kinematics in patients with knee osteoarthritis (Tan et al.,
2022), and the forecasting of gait parameters for patients with
osteoarthritis (OA) and those undergoing total knee arthroplasty
(TKA) (Sharifi Renani et al., 2020). Notably, these investigations
demonstrated high correlation coefficients ranging from 0.71 to
0.99, showcasing the viability of gait time series prediction in
targeted patient groups using wearable sensors and machine
learning models. While the model employed in this study
demonstrates robust performance with TD children, its
suitability for diverse pathologies warrants exploration. Gait
patterns vary significantly across different conditions, making it
imprudent to apply the exact same model to a new population.
Consequently, our future endeavours will involve evaluating the

performance of our algorithm on additional patient cohorts,
including children with cerebral palsy.

Another notable limitation is the computational resources required
for the primary feature extraction and selection processes. We utilized
high-performance computers with 80 GB of RAM memory to address
this demand. However, once the model is trained, it can be executed on
less powerful computers, focusing solely on extracting the selected
features and providing inference from the model.

It is also important to acknowledge that the accuracy of estimations
using data from other labs may not match the precision of our own
results. This discrepancy can be related to variations in equipment and
sensor usage across different laboratories. However, by incorporating
data frommultiple labs into the training dataset for our models, we can
enhance the models’ ability to generalize across different settings. In
future work, it would also be valuable to consider the integration of a
contactless monitoring system, akin to the innovative approach
developed in a separate study (Huang et al., 2024). Integrating such
systems into the ML model holds the potential for real-time prediction
of gait time series in children.

4.4 Strengths and contributions

By developing an ML model for predicting gait time series in
children with diverse gait patterns, we achieved results comparable to
studies focused on the adult population, particularly in the context of
personalized modeling. We believe that our model offers several
advantages over traditional methods that rely on IMUs for gait
analysis. For instance, our model can predict a comprehensive set
of lower limb joint angles and moments during gait using only two
IMUs attached to the feet. To the best of our knowledge, this is the first
study tailored to children’s gait time series prediction, leveraging a
combination of IMU data and ML techniques.

Other methodologies, which would use sensor fusion algorithms
rather than ML, require additional normalization steps to calculate
each IMU sensors’ orientation relative orientation to each body
segment, leading to inaccuracies and numerical drift errors. In
contrast, our personalized models have good accuracy, can be
streamlined, and work independently of the user’s expertise.
Following a single data collection session in a gait lab, remote
patient monitoring becomes feasible by placing IMUs on the
patient’s feet and feeding the IMU data into the model for
inference. Furthermore, this workflow can be utilized in real-time,
as the inference time for the RF model is on the order of milliseconds.

5 Conclusion

The current study showed that RF and CNN models exhibit
comparable results in the context of gait analysis within a typically
developed pediatric population. The practicality of employing only two
IMUs placed on the feet for predicting a comprehensive set of lower-
limb joint kinematics and kinetics was successfully demonstrated. The
presented workflow, employing foot IMUs, not only reduces processing
time but also streamlines the integration of wearable sensors in clinical
settings. Our forthcoming research endeavors will include increasing
the sample size and introducing more variability to the overground
walking scenarios to enhance the accuracy of our generalized model.
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Moreover, future work will be dedicated to developing ML models
tailored to a cohort of children with movement disorders, specifically
children with CP. This expansion promises to bring valuable insights
and tools to the field of pediatric gait analysis, serving as a testament to
the potential for advanced technology to benefit those with unique
clinical requirements.
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