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This study aimed to develop and validate a bone marrow edema model using a
magnetic resonance imaging-based radiomics nomogram for the diagnosis of
osteoarthritis. Clinical andmagnetic resonance imaging (MRI) data of 302 patients
with and without osteoarthritis were retrospectively collected from April 2022 to
October 2023 at Longhua Hospital affiliated with the Shanghai University of
Traditional Chinese Medicine. The participants were randomly divided into two
groups (a training group, n = 211 and a testing group, n = 91). We used logistic
regression to analyze clinical characteristics and established a clinical model.
Radiomics signatures were developed by extracting radiomic features from the
bone marrow edema area using MRI. A nomogram was developed based on the
rad-score and clinical characteristics. The diagnostic performance of the three
models was compared using the receiver operating characteristic curve and
Delong’s test. The accuracy and clinical application value of the nomogram were
evaluated using calibration curve and decision curve analysis. Clinical
characteristics such as age, radiographic grading, Western Ontario and
McMaster Universities Arthritis Index score, and radiological features were
significantly correlated with the diagnosis of osteoarthritis. The Rad score was
constructed from 11 radiological features. A clinical model was developed to
diagnose osteoarthritis (training group: area under the curve [AUC], 0.819; testing
group: AUC, 0.815). Radiomics models were used to effectively diagnose
osteoarthritis (training group,: AUC, 0.901; testing group: AUC, 0.841). The
nomogram model composed of Rad score and clinical characteristics had
better diagnostic performance than a simple clinical model (training group:
AUC, 0.906; testing group: AUC, 0.845; p < 0.01). Based on DCA, the
nomogram model can provide better diagnostic performance in most cases.
In conclusion, the MRI-bone marrow edema-based radiomics-clinical
nomogram model showed good performance in diagnosing early osteoarthritis.

KEYWORDS

radiomics, bone marrow edema, knee osteoarthritis, nomogram, magnetic
resonance imaging

OPEN ACCESS

EDITED BY

Fuyou Liang,
Shanghai Jiao Tong University, China

REVIEWED BY

Zhenyu Shu,
Zhejiang Provincial People’s Hospital, China
Hung-Yin Lin,
National University of Kaohsiung, Taiwan

*CORRESPONDENCE

Zhijun Hu,
hzjz1062@163.com

RECEIVED 31 January 2024
ACCEPTED 22 May 2024
PUBLISHED 12 June 2024

CITATION

Li X, Chen W, Liu D, Chen P, Li P, Li F, Yuan W,
Wang S, Chen C, Chen Q, Li F, Guo S and Hu Z
(2024), Radiomics analysis using magnetic
resonance imaging of bone marrow edema for
diagnosing knee osteoarthritis.
Front. Bioeng. Biotechnol. 12:1368188.
doi: 10.3389/fbioe.2024.1368188

COPYRIGHT

© 2024 Li, Chen, Liu, Chen, Li, Li, Yuan, Wang,
Chen, Chen, Li, Guo and Hu. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 12 June 2024
DOI 10.3389/fbioe.2024.1368188

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1368188/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1368188/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1368188/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1368188/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1368188&domain=pdf&date_stamp=2024-06-12
mailto:hzjz1062@163.com
mailto:hzjz1062@163.com
https://doi.org/10.3389/fbioe.2024.1368188
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1368188


Introduction

Osteoarthritis (OA) is a degenerative disease characterized by
persistent pain and joint dysfunction (Hawker, 2019). According
to statistics, >500 million people suffer from OA worldwide
(Quicke et al., 2022). The pathological changes associated with
OA are complex, and cartilage loss has traditionally been
considered a key feature in OA (Yunus et al., 2020; Wang
et al., 2022). However, whether the initial pathological changes
in OA originate from subchondral bone, calcified cartilage, or
cartilage remains controversial. Under physiological conditions,
osteochondral units comprising noncalcified cartilage, calcified
cartilage, subchondral cortical bone, and subchondral trabecular
bone adeptly transfer loads and provide structural support.
Pathological changes in any tissue structure in the functional
unit destroy the integrity of the joint mechanism and result in the
loss of its physiological function. However, cartilage and
subchondral bone exhibit different mechanical adaptabilities.
Stress distribution in the cartilage changes with the expansion
of subchondral bone (Li et al., 2024). Even a slight 1%–2%
increase in subchondral-bone size substantially amplifies stress
on the cartilage (Burr and Gallant, 2012). Under normal
physiological conditions, subchondral bone effectively absorbs
mechanical loads, maintaining joint function and overlying
cartilage stability. The contribution of pathological changes in
the subchondral bone to OA progression has attracted interest
(Zhang H. et al., 2023). Pathological changes in the subchondral
bone include bone marrow edema-like lesions and bone cysts (Hu
et al., 2021). Bone marrow edema-like lesions fundamentally
participate in the progression of OA, considered a basic risk
factor for pathological structural changes and the most common
imaging manifestations (Driban et al., 2022).

In preclinical experimental studies, subchondral bone
marrow edema occurred during or before cartilage loss
(Zhang et al., 2018). Clinical studies have found a strong
correlation between bone microstructural changes in bone
marrow edema and the pathological characteristics of
cartilage structure and volume loss in the human tibial
plateau (Kon et al., 2016; Zhang S. et al., 2023). In addition,
OA-related pain is closely associated with bone marrow edema
(Perry et al., 2019; Koushesh et al., 2022). A better
understanding of the relationship between bone marrow
edema and OA can provide more information for the
diagnosis, progression, and clinical management of diseases.

The most sensitive imaging method for evaluating OA is
magnetic resonance imaging (MRI) (Demehri et al., 2023).
Wilson et al. (1988) first localized and detected areas with
increased signal strength in the tibia and femur of patients with
OA by using an enhanced magnetic-resonance sequence (Wilson
et al., 1988). Nevertheless, histological analysis, until 2010,
disclosed that bone-marrow edema encompasses marrow
fibrosis, vascular shifts, and local fat necrosis caused by
trabecular microfractures (Leydet-Quilici et al., 2010a).
Therefore, these pathological changes are referred to as
subchondral bone marrow lesions (SBMLs). On MRI scans, bone
marrow edema is identified as a high-signal area on T2-weighted fat
saturation images (Kostopoulos et al., 2023). MRI signal intensity,
volume, and shape parameters of bone marrow edema are

considered biomarkers of joint pain, dysfunction, and the
severity of cartilage damage (Gong et al., 2016; Dong et al.,
2017; Deng et al., 2021). However, these assessment methods are
time-consuming and subjective, with poor intra-observer and inter-
observer variability. In contrast, radiomics extracts a large number
of quantitative image features, such as texture, intensity, and
geometric shape from conventional images, noninvasively
captures subtle lesions, and provides the possibility for
developing new image-based diagnostic methods (Kumar et al.,
2012). Recently, researchers have evaluated radiomics features
using MRI to evaluate knee OA. Hirvasniemi et al and Xue et al
used MRI-based radiomics features from the subchondral bone to
identify knee OA. However, the extraction site of the radiomics
features is not detailed in the area of bone marrow edema
(Hirvasniemi et al., 2021; Xue et al., 2022). Since bone marrow
edemamay be the first pathological change in OA and participate in
its pathological progression, we speculated that a predictive model
constructed from radiomics information extracted from the bone
marrow edema region may improve diagnostic sensitivity.
Therefore, this study aimed to create a diagnostic model for
knee OA based on radiomics of bone marrow edema using MRI.

Materials and methods

Patients

We reviewed the radiology databases of Longhua Hospital
(affiliated with the Shanghai University of Traditional Chinese
Medicine). Participants underwent knee joint radiography and
MRI examinations at our hospital between April 2022 and
October 2023. The inclusion criteria were: patients who
underwent knee joint radiography and MRI examination in our
hospital, with the latter revealing bone marrow edema; and those
who completed the standard visual analog scale (VAS) and Western
Ontario andMcMaster Universities Arthritis Index (WOMAC). The
exclusion criteria were: a history of knee degenerative OA,
inflammatory arthritis, osteoporosis, and other diseases that affect
bone structure; And the contraindications or poor image quality of
MRI or radiographic examination make it difficult to analyze. This
was a retrospective study, and the requirement for informed consent
was waived. The study protocol was approved by the hospital’s
Ethics Committee. Figure 1 shows the process of participant
registration.

Evaluation of knee OA

Two senior orthopedic physicians at our hospital diagnosed and
evaluated knee OA based on clinical symptoms, physical
examination, and imaging manifestations of the patients. When
there was a dispute over the results, a third senior orthopedic
physician arbitrated.

The diagnostic criteria for knee OA were as follows (Zhang et al.,
2010; Joint Surgery Branch of the, 2021): 1) Recurrent knee pain
within 1 month; 2) Knee joint dysfunction with occasional bone
fricatives during movement; 3) Kellgren–Lawrence (K–L)
grade ≥2 in knee joint radiography.
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MRI scanning technology

All participants underwent an MRI examination. MRI scans
were performed using a 3T MRI unit (Verio; Siemens Healthineers,
Erlangen, Germany) with an 8-channel phased array knee coil.
Sagittal 2D fast spin-echo proton density-weighted sequences
with fat suppression were used to evaluate bone marrow edema
and cartilage injury (repetition time/echo time, 2400/43; field of
view, 100 mm; matrix, 320 × 320; flip angle, 150°; and section
thickness, 3.5 mm).

Image segmentation

The area of subchondral bone marrow edema was the target of
image segmentation. In sagittal 2D fast spin-echo proton density-
weighted sequences with fat suppression, areas of bone marrow
edema were delineated as regions of interest (ROI) in each layer.

Image segmentation was independently performed by two
radiologists (A and B). Participants were unaware of whether
they had been diagnosed with knee OA. The open-source
software 3D Slicer 4.11.0 (https://www.slicer.org/) was used for
ROI segmentation, which was completed by radiologist A.
Radiologist B reviewed all manually segmented ROIs by
Radiologist A. If there is a dispute between radiologist A and
radiologist B regarding the delineation range of bone marrow
edema, radiologist C shall arbitrate. Supplementary Figure S1
shows the workflow of radiomics analysis in this study and
presents a schematic diagram of ROI segmentation.

Radiomics feature extraction and selection

All radiomics features were extracted from each ROI of bone
marrow edema using Pyradiomics (https://pyradiomics.
readthedocs.io/en/latest/). Typically, radiomic features include

FIGURE 1
The process of participant registration.
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three categories: intensity, texture, and geometry. We used different
methods such as the gray-level size zone matrix (GLSZM), gray-level
co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), and neighborhood gray-tone difference matrix
(NGTDM) to extract texture features.

We selected features in three steps. First, we screened features
using the T-test or Mann–Whitney U test. Only radiological features
with p < 0.05 were retained. Second, we used Spearman’s rank
correlation coefficient to calculate the correlation between highly
repetitive features, while retaining features with correlation
coefficients>0.9. Finally, the least absolute shrinkage and selection
operator (LASSO) regression model was used to construct the
signature of the dataset. A 10-fold cross-validation with
minimum criteria was employed, where the final value of λ
yielded the minimum cross-validation error. The retained
features with nonzero coefficients were used for regression model
fitting and were combined into a radiomics signature to obtain the
radiomics score.

Radiomics model construction

We input the final features (after LASSO feature selection) into
the machine learning model, including a support vector machine
(SVM) and logistic regression (LR) (seven types) for model
construction. To evaluate the diagnostic performance of the
predictive model, we plotted a receiver operating characteristic
(ROC) curve and analyzed the area under the curve (AUC),
diagnostic specificity, sensitivity, negative predictive value (NPV),
positive predictive value (PPV), precision, and F1.

Clinical characteristics model construction

Age, X-ray K–L grading, and WOMAC were selected as the
clinical characteristics for the diagnosis of knee OA. The selected
clinical characteristics were used to construct a clinical
characteristics model. The construction process of the clinical
characteristics model was almost identical to that of the radiomic
signatures.

Radiomic nomogram construction

A radiology nomogram was established by combining clinical
characteristics and radiomics signatures. We calculated a calibration
curve to compare the consistency between the predicted and actual
observed values. We quantified the distinguishability of the
nomogram by calculating the AUC of two groups, and evaluated
the clinical utility of the nomogram using Mapping Decision Curve
Analysis (DCA).

Statistical analysis

We used Fisher’s exact test or the Chi-squared test to analyze
categorical variables, and the T-test or Mann–Whitney U test was
applied for continuous variables. All statistical analyses were

conducted using the Statsmodes package for Python (version
0.13.2; Python Software Foundation, Wilmington, DE, USA).
Statistical significance was set at p < 0.05.

Results

Comparison of clinical characteristics

The clinical features of patients with OA and non-OA in the
training and independent testing groups are presented in Tables 1, 2.
Patients of 65.89% (199/302) were women, and the average age of all
patients were 63.34 ± 9.51 years. According to clinical diagnosis,
there were 203 OA patients and 99 non-OA patients. The OA
patients constituted 67.77% and 65.93% in the training (N = 211)
and testing (N = 91) groups, respectively.

Feature selection and rad-score
establishment

After extractiong, 1,384 radiomic features were obtained.
Finally, 11 features with nonzero coefficients obtained after
screening were established. Figures 2A,B show the coefficients
and mean standard error (MSE) for the 10x validation, Figure 2C
shows the coefficient values of the final selected nonzero features.
The formula for calculating the rad score is shown in Supplementary
Material S1.

To determine the best-performing model, we constructed seven
models, including SVM, LR, and KNN. Compared to the other
models, the SVM model exhibited the best performance.
Supplementary Material S2 displays the information for all
models. The SVM model achieved the best AUC for the training
and test cohorts, reaching 0.901 and 0.841 for the diagnosis of knee
OA, respectively. Therefore, SVM was used as the basic model for
constructing clinical features. Figure 3 shows a comparison of the
radiomics features between the different models in the training and
testing groups.

Comparison of clinical, radiomic, and
nomogram models

For the clinical characteristic models, in the training group, the
AUC value was 0.819 (95% confidence interval [CI], 0.764–0.874),
and in the testing group, the AUC value was 0.815 (95% CI,
0.716–0.913). For the radiomics feature models, both the training
group (AUC, 0.901; 95% CI, 0.851–0.952) and the testing group
(AUC, 0.841; 95% CI, 0.759–0.924) had better AUC than the clinical
model. The nomogrammodel showed good performance in both the
training group (AUC, 0.906; 95% CI, 0.867–0.946) and the testing
group (AUC, 0.845; 95% CI, 0.760–0.930) (Figure 4). In addition, we
used the DeLong test (Supplementary Material S3) to compare
radiomic signatures, clinical signatures, and nomograms. In the
training and testing groups, the AUC of the nomogram model was
significantly different from that of the clinical model (p < 0.01).

In addition, Figure 5 shows the nomogram calibration curve,
Figure 5A, calibration curve of the radiomics nomogram in the
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training group. The Hosmer-Lemeshow test indicated that the
difference was nonsignificant (p = 0.282). Figure 5B, calibration
curve of the radiomics nomogram in the test group. The Hosmer-
Lemeshow test also indicated that the results were nonsignificant
(p = 0.267). The nomogram calibration curves are based on the
agreement between the probability of the diagnosing knee
osteoarthritis and the actual observation results. Supplementary
Material S4 is the Hosmer Lemeshow H test.

Finally, each model was evaluated using DCA. Based on the
DCA, among these three models, the nomogram model is higher
than the other two within a large threshold range, indicating that the
nomogram model has significant advantages (Figure 6). Figure 7
shows the nomogram developed to visualize the combined model
and reflect the diagnosis of OA.

Discussion

In this study, we developed a comprehensive model that
included the rad-score, age, X-ray K–L grading, and WOMAC
functional score, and established a diagnostic model for knee OA
based on subchondral bone marrow edema. The nomogram model
showed the best discriminative ability and fit, indicating a good
predictive and diagnostic performance. The AUC values of the
training and test groups were 0.986 and 0.845, respectively.

Bone marrow edema-like lesions fundamentally participate in
the progression of OA and are considered basic risk factors for
pathological structural changes and are the most common imaging
manifestations (Driban et al., 2022). The main manifestation is low
signal abnormality of the subchondral bone displayed on
T1 weighted images and high signal abnormality of the
subchondral bone displayed on T2 weighted images (Chimenti
et al., 2020). Wilson et al. (1988) first localized and detected
areas with increased signal strength in the tibia and femur of
patients with OA using an enhanced magnetic resonance
sequence (Wilson et al., 1988). However, the specific pathological
changes associated with bone edema remain unclear. Until 2010,

histological analysis revealed that bone marrow edema encompassed
marrow fibrosis, vascular shifts, and local fat necrosis caused by
trabecular microfractures (Leydet-Quilici et al., 2010b). Therefore,
these pathological changes are referred to as subchondral bone
marrow lesions (SBMLs). SBMLs are beneficial in the early
screening and diagnosis of OA and is a determining factor for
pain and the progression of OA. Joint cartilage injury is considered a
typical pathological change in OA, and patients with bone marrow
edema experience cartilage injury eight times more frequently than
those without bone marrow edema (Horga et al., 2020; Peng et al.,
2021). Several longitudinal studies have also found positive
correlations between BML severity and cartilage defects, cartilage
volume loss, joint space narrowing, and joint replacement (Fan et al.,
2021; Li et al., 2022). Compared to the tibiofemoral joint, bone
marrow edema and cartilage injury occur earlier and more
frequently in the patellofemoral joint, and bone marrow edema is
an indirect sign of cartilage injury (Dong et al., 2017), which is an
important diagnostic value in predicting the occurrence and
development of OA (Luo et al., 2023). Distinctive subchondral
bone pathology marks the anteromedial OA-BML region,
featuring subchondral bone plate thickening, heightened porosity,
increased bone volume percentage, thicker trabeculae, reduced
separation, focal sclerosis, fewer rod-shaped trabeculae and more
plate-shaped trabeculae (Muratovic et al., 2019). OA-related pain is
closely related to BML, and patients with knee OA pain are
2–5 times more likely to have BME than those without pain
(Alliston et al., 2018). One study found a significant correlation
between bone marrow edema and cold knee joint pain, and the
degree of pain was positively correlated with the grading of bone
marrow edema (Deng et al., 2021). In addition, some scholars have
used the Boston Leeds Osteoarthritis Knee Score to score synovial,
effusion, and bone marrow edema in patients with knee OA under
weight-bearing conditions and found that BML and synovial
effusion scores are highly correlated with weight-bearing knee
joint pain (Lo et al., 2009; Perry et al., 2020). Koushesh et al.
found that excessive blood vessels and innervation in BMLs
contributed to our understanding of the relationship between

TABLE 1 Clinical characteristics of participants in our cohort.

Characteristic Total(n = 302) Non-OA(n = 99) OA(n = 203) p value

age 63.34±9.51 61.00±10.38 64.49±8.86 0.004

WOMAC 109.68±19.51 100.03±20.75 114.39±17.04 <0.001

gender 0.012

Female 199(65.89) 55(55.56) 144(70.94)

male 103(34.11) 44(44.44) 59(29.06)

X-ray K-L grading <0.001

0 64(21.19) 58(58.59) 6(2.96)

1 27(8.94) 6(6.06) 21(10.34)

2 60(19.87) 10(10.10) 50(24.63)

3 93(30.79) 15(15.15) 78(38.42)

4 58(19.21) 10(10.10) 48(23.65)

OA: osteoarthritis; WOMAC: Western Ontario and McMaster Universities Arthritis Index(0-10 points per piece); K-L: Kellgren-Lawrence
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TABLE 2 Clinical characteristics of participants in the training and testing groups.

Comparative analysis of different radiomics models

model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Task

LR 0.725 0.696 0.6158–0.7769 0.937 0.279 0.732 0.679 0.732 0.937 0.822 0.639 label-train

LR 0.747 0.822 0.7353–0.9088 0.900 0.452 0.761 0.700 0.761 0.900 0.824 0.621 label-test

SVM 0.768 0.901 0.8512–0.9518 0.993 0.894 0.747 0.952 0.747 0.993 0.853 0.708 label-train

SVM 0.681 0.841 0.7589–0.9239 0.950 0.861 0.687 0.625 0.687 0.950 0.797 0.665 label-test

KNN 0.758 0.802 0.7455–0.8594 0.937 0.382 0.761 0.743 0.761 0.937 0.840 0.800 label-train

KNN 0.736 0.745 0.6444–0.8454 0.917 0.387 0.743 0.706 0.743 0.917 0.821 0.800 label-test

RandomForest 0.995 1.000 0.9995–1.0000 1.000 0.985 0.993 1.000 0.993 1.000 0.997 0.600 label-train

RandomForest 0.725 0.748 0.6390–0.8578 0.783 0.613 0.797 0.594 0.797 0.783 0.790 0.600 label-test

ExtraTrees 1.000 1.000 1.0000–1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 label-train

ExtraTrees 0.780 0.802 0.7067–0.8965 0.867 0.613 0.812 0.704 0.812 0.867 0.839 0.600 label-test

XGBoost 0.991 1.000 1.0000–1.0000 1.000 0.971 0.986 1.000 0.986 1.000 0.993 0.680 label-train

XGBoost 0.747 0.796 0.7050–0.8874 0.817 0.613 0.803 0.633 0.803 0.817 0.810 0.648 label-test

MLP 0.716 0.763 0.6922–0.8342 0.951 0.221 0.720 0.682 0.720 0.951 0.819 0.672 label-train

MLP 0.703 0.796 0.7033–0.8891 0.917 0.290 0.714 0.643 0.714 0.917 0.803 0.727 label-test
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BMLs and OA-related pain (Koushesh et al., 2022). Microarray
analysis has demonstrated that the BML is a highly metabolically
active region with increased cellular renewal, neuronal and bone
remodeling, and inflammatory gene characteristics (Kuttapitiya
et al., 2017).

The prediction and diagnosis of early OA have always been the
focus of clinical orthopedic doctors. Patient symptoms, physical
examination, and imaging are noninvasive methods for clinical OA
diagnosis. However, ordinary radiographic recognition of changes in
the bone structure and joint space indicates that obvious clinical
symptoms have already appeared in OA (Amin et al., 2005). In
contrast, magnetic resonance imaging can detect changes in bone
structure and soft tissue around joints, particularly bone marrow
edema, which can only be detected in magnetic resonance imaging
(Guermazi et al., 2011). Predicting radiological narrowing and
erosion of the joint spaces is of great significance (Haugen et al.,
2016). However, there are currently no reports of MRI-based bone
marrow edema as a predictor of OA. One study used radiomic
features of the subchondral bone and trabecular structure
parameters to construct a model for identifying radiological OA.

The model constructed using radiomics features had a good
recognition rate (AUC, 0.961) (Hirvasniemi et al., 2021). In
another study, a combination model based on the MRI
radiological features of the tibia and baseline features showed
good radiological OA diagnostic performance (AUC, 0.80).
However, as the most complex weight-bearing joint, pathological
changes in the femur and tibia can lead to the occurrence of OA (Xue
et al., 2022). In another study based on X-ray radiomics features and
age-based diagnosis of knee OA, a nomogram model combining
radiomics features and age showed good performance in accurately
diagnosing OA (AUC, 0.849). However, this study focused on
X-rays and could not predict early OA in the future (Li et al.,
2023). Some studies have focused on radiomic analysis of joint-
specific tissues to predict and diagnose OA. One study delineated the
ROI of the cartilage to construct a model for diagnosing clinical OA.
The radiomics feature model performed well in diagnosing clinical
OA (AUC, 0.984) (Cui et al., 2023). In addition, a recent study
suggested that the texture of the infrapatellar fat pad based onMRI is
related to the future development of knee OA and can be used to
predict the diagnosis of knee arthritis 1 year later (Ye et al., 2023).

FIGURE 2
Radiomic feature selection based on LASSO algorithm and Rad score establishment. (A and B) Ten-fold cross-validated coefficients and 10-fold
cross-validated MSE. (C) The histogram of the Rad score based on the selected features.

FIGURE 3
Comparison of radiometric feature model predictions for the training (A) and testing groups (B). SVM achieved the best performance in both the
training and testing groups.
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However, pathological changes in the subchondral bone are
considered the first pathological changes in OA, and bone
marrow edema on MRI is a typical imaging manifestation of
pathological changes in the subchondral bone (Driban et al.,
2022). Developing a predictive model for early OA that targets
bone marrow edema would be beneficial for the early diagnosis of
clinical OA. However, to the best of our knowledge, no relevant
radiomics model is currently available.

In our study, a nomogram was constructed using Rad scores and
clinical characteristics. The AUC of the radiomic features for

diagnosing OA were 0.901 (training group) and 0.841 (testing
group). The AUC for diagnosing the clinical characteristics of
OA were 0.819 (training group) and 0.815 (testing groups),
respectively. Nomograms constructed based on radiological and
clinical characteristics showed good diagnostic performance for
OA. The AUC values of two groups were 0.906 (training group:
95% CI, 0.867–0.946) and 0.845 (testing group: 95% CI,
0.760–0.930), respectively. The nomogram was effective in
diagnosing OA in two groups, exceeding the diagnostic accuracy
of single model. The decision curve indicates that if the threshold

FIGURE 4
AUC comparison of clinical, radiological, and nomogram models in the training (A) and testing (B) groups. The combined nomogram performed
optimally in both the training and testing cohorts.

FIGURE 5
Calibration curves in the training and testing cohorts showing that the nomogram fits perfectly well in both the training (A) and testing groups (B).
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probabilities of patients are 0%–80% (training group) and 35%–83%
(testing group), the radiological nomogram has better
diagnostic value.

Based on our limited knowledge, our research is innovative to
some extent as the diagnostic model for OA was developed without
using a complete readymade scoring system. There are several
semiquantitative scoring systems for OA, such as the Whole
Organ MRI Score (Peterfy et al., 2004) and MRI OA Score
(Hunter et al., 2011), which use manually obtained MRI features
to display signs of the knee joint. These systems were developed to
improve diagnostic efficiency and are used as core ideas in radiomics
research (Tack et al., 2018; Pedoia et al., 2019). The crux of this
matter is that disease diagnosis requires a comprehensive evaluation
of the patient’s symptoms, signs, and auxiliary imaging
examinations. A single scoring system considers only the
radiological scope of OA, which is not ideal for the diagnosis of

clinical OA. In addition, we constructed radiomics based on the
initial pathological changes in osteoarthritic bone marrow edema,
which are of great significance for the prediction and early diagnosis
of clinical OA.

Our study had certain limitations. First, As a single center
retrospective study, our sample size is relatively small, so
compared to the radiomics model, the AUC value of the
nomogram model did not show significant advantage, making
it necessary to conduct large-scale, multicenter studies in the
future. Second, this study is a clinical retrospective study, and its
results need to be validated in large-scale prospective
randomized controlled trials. Finally, histological examination
cannot be performed in this study; therefore, the relationship
between radiomic features and bone marrow edema remains
unclear, and these examinations should be conducted in
future studies.

FIGURE 6
The decision curve analysis (DCA) of the three models of the training (A) and testing (B) groups.

FIGURE 7
The clinical application of nomogram in the diagnosis of osteoarthritis.
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Conclusion

Radiomics analysis using MRI-subchondral bone marrow
edema is an efficient and useful method for the diagnosis of
KOA. The three models all demonstrate good diagnostic ability
for the presence or absence of knee osteoarthritis. The nomogram
model based on radiomics signatures and clinical features exhibited
favorable diagnostic performance, indicating its potential as an
auxiliary diagnostic tool in future clinical applications. This will
increase the clinical predictive and diagnostic ability of knee
osteoarthritis.
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