
Improved multi-layer wavelet
transform and blind source
separation based ECG artifacts
removal algorithm from the sEMG
signal: in the case of upper limbs

Wei Lu1, Dongliang Gong2*, Xue Xue3* and Lifu Gao4

1School of Management, Fujian University of Technology, Fuzhou, China, 2School of Mechanical and
Automotive Engineering, Fujian University of Technology, Fuzhou, China, 3School of Electronic,
Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, China, 4Institute of
Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China

Introduction: Surface electromyogram (sEMG) signals have been widely used in
human upper limb force estimation and motion intention recognition. However,
the electrocardiogram(ECG) artifact generated by the beating of the heart is a
major factor that reduces the quality of the EMG signal when recording the sEMG
signal from the muscle close to the heart. sEMG signals contaminated by ECG
artifacts are difficult to be understood correctly. The objective of this paper is to
effectively remove ECG artifacts from sEMG signals by a novel method.

Methods: In this paper, sEMG and ECG signals of the biceps brachii, brachialis,
and triceps muscle of the human upper limb will be collected respectively. Firstly,
an improved multi-layer wavelet transform algorithm is used to preprocess the
raw sEMG signal to remove the background noise and power frequency
interference in the raw signal. Then, based on the theory of blind source
separation analysis, an improved Fast-ICA algorithm was constructed to
separate the denoising signals. Finally, an ECG discrimination algorithm was
used to find and eliminate ECG signals in sEMG signals. This method consists
of the following steps: 1) Acquisition of raw sEMG and ECG signals; 2) Decoupling
the raw sEMG signal; 3) Fast-ICA-based signal component separation; 4) ECG
artifact recognition and elimination.

Results and discussion: The experimental results show that our method has a
good effect on removing ECG artifacts from contaminated EMG signals. It can
further improve the quality of EMG signals, which is of great significance for
improving the accuracy of force estimation and motion intention recognition
tasks. Compared with other state-of-the-art methods, our method can also
provide the guiding significance for other biological signals.
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1 Introduction

The past decade has seen the rapid development of Surface
electromyogram (sEMG) in the biomedical field which is obtained
from the surface of human skeletal muscle and reflects the changes
of human nerves and muscles effectively. The essence of sEMG is a
kind of nonlinear and non-stationary time series generated by the
superposition of multiple muscles in time and space. Considering
that sEMG has the characteristic of 30–150 ms ahead of body
movement, hence, it is suitable for estimating muscle strength
(Staudenmann et al., 2006; Tang et al., 2016). Furthermore,
sEMG can also provide critical information about muscle
rehabilitation and neurological dysfunction which has been
widely used in sports biomechanics (Ye et al., 2015), and
neuromuscular evaluation systems (Tang et al., 2018), prosthesis
control (Castro et al., 2015), and other tasks. Evidence suggests that
sEMG is an ideal control signal source among others.

sEMG signal is an important information source for human
motion recognition and diagnosis. However, in the record of sEMG,
the sensor is susceptible to heterogeneous noise (e.g., motion noise
and Gaussian noise), cable movement, electrode-skin interface, and
adjacent muscles. Therefore, the collected sEMG contains a large
number of signal sources. What’s more, when some trunk muscles
(e.g., bicep muscles, pectoral muscles, and back muscles) are located
near the heart, the ECG signal produced by cardiac must be recorded
together with the sEMG. This would make the sEMG contaminated
and gets worse when the muscle gets closer to the cardiac
(Allison, 2003).

To our knowledge, sEMG frequency band is between 20 Hz and
250 Hz, The frequency of the power signal is 50 Hz, ECG frequency
band is between 0 Hz and 100 Hz. Due to the overlapping frequency
distribution of these components, it would increase the power content
of sEMG signal and distort the signal amplitude. Consequently,
extracting effective information from sEMG signals becomes more
andmore difficult (Kuiken et al., 2004). Researchers show that when the
muscle is in the state of complete relaxation, the sEMG signal is
accompanied by signal pulsation, which can be determined to be the
artifact generated by the periodic ECG signal (Joseph et al., 2007). In the
EEG-FMRI experiment (Daly, 2021), the authors used amonopole lead
to record the ECG signal, mainly because of the interference caused by
the R wave in the ECG signal. In our previous work, we found that ECG
artifacts have a great impact on the accuracy of elbow flexion force
prediction (Lu et al., 2021). Therefore, it is crucial to improve the signal-
to-noise ratio (SNR) of sEMG signal by removing the artifacts from
sEMG (Abbaspour and Fallah, 2014). Currently, a considerable amount
of literature has been published on signal processing research which has
achieved good results (De Luca et al., 2010; Symeonidou et al., 2018).
Some researchers pay attention to sEMG signal denoising (Nagasirisha
B. and Prasad VVKDV., 2020; Lazaro et al., 2020). Other researchers
have investigated ECG artifact removal. Thesemethods can be classified
into five general categories: High Pass based (HP-based), Template
Subtraction based (TS-based), Wavelet-based (WT-based), Adaptive
Filter-based (AF-based), and Blind Source Separation based (BSS-
based). The characterization of these methods will be described in
detail in Section 2.

In summary, the study of removing ECG artifacts from sEMG
signals of upper limb muscles still faces the following challenges: 1.
Some frequencies of the sEMG and ECG signals overlap, making it

difficult to accurately remove ECG artifacts from the sEMG signal. 2.
sEMG signals are susceptible to interference by factors such as
muscle activity, electrode placement and individual differences,
which increases the difficulty of ECG artifact removal. 3. It is
difficult for current algorithms to balance the accuracy and real-
time performance of artifact removal tasks. In recent years, our team
has been committed to the research of perception and recognition of
human muscle movement information, and has obtained certain
results (Lu et al., 2021; Lu et al., 2022a; Lu et al., 2022b). The problem
of ECG artifact removal in sEMG is the key to hindering our further
research on human motion intention prediction and muscle force
estimation tasks. Therefore, exploring the removal of ECG artifacts
in sEMG is an important and meaningful work.

This paper aims at comprehensive research on eliminating ECG
artifacts from sEMG signals of upper limb muscles based on the
improved blind source separation method. We proposed a IWT-
FastICA algorithm to realized the ECG artifact from sEMG. The
study of using the IWT-FastICA algorithm represents a significant
advancement in signal processing techniques. sEMG are often
contaminated with artifacts caused by ECG signals, especially when
the electrodes are placed close to the heart. These artifacts can obscure
the underlying EMG activity, thus hindering accurate analysis and
interpretation. The IWT is a powerful tool for signal decomposition and
denoising. It breaks down the EMG signal into multiple layers, each
representing a different frequency component. FastICA is an efficient
independent component analysis (ICA) algorithm that separates mixed
signals into their independent sources. In the context of EMG-ECG
artifact removal, FastICA can be used to identify and isolate the ECG
component from the mixed EMG signal. By combining IWT and
FastICA, the IWT isfirst applied to the EMG signal to decompose it into
multiple layers. Then, FastICA is used to identify and extract the ECG
component from the decomposed layers. Finally, the extracted ECG
artifact is subtracted from the original EMG signal, resulting in a cleaner
EMG signal with reduced ECG interference. Our method was
successfully applied to sEMG signals contaminated by ECG signals
to eliminate ECG artifacts. The effectiveness of the proposed method is
demonstrated by comparing the SNR, RE, and CC indexes with state-
of-the-art methods.

2 Related works

According to the technology adopted, ECG artifact removal
methods can be classified into five categories: High-pass Filtering
based (HP-based), Template Subtraction based (TS-based), Wavelet
Transform based (WT-based), Adaptive Filtering based (AF-based),
Blind Source Separation based (BSS-based). Nevertheless, each
method has its advantages and limitations. In this part, we will
discuss the characteristics of each algorithm in detail.

2.1 High pass-based (HP-based)

According to the literature, Redfern et al. (1993) conclude that
the increase of cutoff frequency can reduce the contamination of
ECG signal and smooth the integrated signal. Ten years later, based
on the finding of Redfern, Drake and Callaghan (2006) proved that a
high-pass filter with a cutoff frequency of 30 Hz provides an optimal
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balance between ease of implementation, time commitment and
performance. Although the high-pass filter can effectively remove
low-frequency noise, it may also inhibit some useful low-frequency
components in the signal, resulting in signal distortion. In addition,
the cut-off frequency of the high-pass filter may be affected by
environmental factors, making the filtering effect unstable.

2.2 Template subtraction-based (TS-based)

Template Subtraction technique is to remove artifacts by
subtracting a template signal representing artifacts from the
contaminated sEMG signal. In the literature, Abbaspour and Fallah
(2014) firstly collected the sEMG signals, ECG artifacts, and ECG
signals, then proposed an adaptive subtraction method to clean the
contaminated sEMG signal. The relative error is 0.04 and the
correlation is 97%. Limnuson et al. (2014) proposed an infinite
impulse response (IIR) temporal filtering technique for real-time
stimulus artifact rejection based on template subtraction. Junior
et al. (2019) presented a template subtraction method for reducing
electrocardiographic artifacts in sEMG signals which used the real
contamination and emulated mixtures based on real signals. The
above methods have preserved better the sEMG information
compared with High-Pass Filtering based methods. The disadvantage
of the TS-based technique is that it depends on the choice of template.
If the template is not selected properly, it may lead to unsatisfactory
filtering effect and even introduce new noise. In addition, the template
subtraction filter is weak in processing dynamically changing signals,
and it is difficult to adapt to the filtering requirements of non-
stationary signals.

2.3 Wavelet-based (WT-based)

Wavelet decomposition is considered to be one of themost effective
methods for processing non-stationary signals. The basic idea of ECG
artifact removal by WT-based methods is based on the similarity of
sEMG, ECG artifact, and wavelet function, then reset the wavelet
coefficients and get a clean sEMG signal through wavelet
reconstruction. Zhan et al. (2010) proposed a wavelet-based adaptive
filter for removing ECG interference in EMGdi signals. Wavelet
transform and ICA algorithm were combined to eliminate ECG
artifacts (Taelman et al., 2007; Abbaspour et al., 2016) and proposed
an ECG artifact removal algorithm combining wavelet with the ANFIS
model. Luo and Yang (2018) presented a new algorithm to locate the
peak value of ECG signal by using the square of the low-frequency
coefficient and eliminate the ECG interference coefficient by using the
“inverse” hard threshold. The disadvantage of wavelet transform is that
it needs to decompose and reconstruct the signal at multiple levels. In
addition, the performance of the wavelet filter is affected by the selection
of wavelet basis function, and improper selection may lead to the
degradation of the filtering effect.

2.4 Adaptive filter-based (AF-based)

Marque et al. (2005) proposed an adaptive filter method, which
can effectively remove artifacts in the case of spectral overlap

between sEMG signal and ECG signal. At the same time, this
method can track the signal and noise in real-time. Qiu et al.
(2015) found an adaptive matching filter based on a genetic
algorithm, which can effectively extract sEMG from stimulated
muscles and adjacent muscles. Nagasirisha B. and Prasad
VVKDV (2020) proposed an Enhanced Squirrel Search (ESS)
algorithm which is a combination of an adaptive Least Mean
Square (LMS) filter and an adaptive Recursive Least Square
(RLS) filter based on the adaptive filter. Compared with the
mainstream methods, it eliminates noise and provides a noiseless
sEMG signal to the output of the system. Using the Gram-Schmidt
algorithm and the adaptive Prediction Error Filter (Yeom, 2005),
Wang K. et al. (2020) described the design of a stimulus artifact
removal system that operates at different frequencies, and the
validity of the model was verified in healthy subjects with an
average correlation coefficient of 0.94. However, The AF-based
algorithm needs to adjust the filter parameters in real time
according to the characteristics of the input signal to achieve the
best filtering effect. When the input signal changes rapidly, it may be
difficult for the adaptive filtering algorithm to converge quickly to
the best state, resulting in a decline in filtering effect.

2.5 Blind source separation based
(BSS-based)

Assumes that sEMG signal and ECG signal are independent of
each other, BSS-based algorithms extract multiple independent
components from the raw sEMG. The signal is purified by
recognizing the information of the artifacts. Al Harrach et al.
(2017) concluded a canonical component analysis-based
technique to denoise HD-sEMG recordings at 20% of the
maximum voluntary contraction. This research improved the
signal-to-noise ratio (SNR) of sEMG signal in the isometric
contraction task. Anand et al. (2018) proposed a method for
artifact removal from the raw sEMG by using Canonical
Correlation Analysis. Islam (2017) proposed an ECG mobility
artifact removal algorithm based on ICA, which effectively
realizes the artifact removal method without considering the
mixed process information. Meanwhile, the results improve the
accuracy by ~9% in seizure detection and ~24% in prediction. In the
same year, Clarke et al. (2021) taking the advantage of the ICA and
CCA, presented a novel denoisingmethod called independent vector
analysis (IVA). This method obtained better results in root mean
square error and signal-to-noise ratio. In 2020, Schlink et al. (2020)
summarized the different artifact removal algorithms and get the
conclusion that the canonical correlation analysis filter is superior to
the principal component analysis filter and high-pass filter in
cleaning high-density sEMG during fast walking or running.

In summary, all the above methods could provide ECG removal
with different effects. Nevertheless, each method has its limitation.
Such of the defects of the high-pass filtering algorithm is that the
low-frequency part of sEMG was also removed when the ECG is
removed. The theoretical basis of the TS-based algorithm assumed
that sEMG obeys Gaussian distribution with zero means, but this
hypothesis is not satisfied in most situations. WT-based methods
depict the two major flaws in the selection of mother wavelet and
differentiation of model when the amplitudes of the source signal
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and artifact signal are similar. The main problem with AF-based
methods is that it requires an extra sensor to record the clean ECG as
a reference, which would increase the complexity of the algorithm.
Hence, there is an urgent need for a better approach to ECG
removal. Blind source separation technology can separate
individual source signals from mixed signals without knowing
the specific information of source signals in advance. Therefore,
when the ECG artifact and sEMG tend to be mixed together, blind
source separation technology can effectively separate them to
achieve the removal of ECG artifact. Secondly, the sEMG signal
is often interfered by various noises, but the blind source separation
technology has strong adaptability to non-stationary signals and
noisy environments, and can accurately separate the sEMG signal in
complex environments, improving the quality and reliability of
the signal.

3 Materials and methods

3.1 Component analysis of raw sEMG signal

In the field of biomedicine, artifacts refer to various forms of
information that do not exist in the measured object but appear at
the collection end. The generation of artifacts is mainly related to
two factors: the condition of the subjects and measurement
equipment. The existence of artifacts brings great difficulties to
the analysis of raw signals. sEMG is physiological signals generated
during muscle contractions and records the potential difference
between two electrodes. The reference electrode is placed on the skin
surface without muscle tissue. This will lead to the collected sEMG
signal including all kinds of artifact components. Specifically, the
artifacts can be divided into biological factors and technical factors
(Wang HP. et al., 2020). Technical factors include inherent noise,
50 Hz power frequency interference, limb movement artifacts, and
electromagnetic interference between devices. They can be removed
by many effective denoising methods (Phinyomark, 2010;
Gradolewski et al., 2015; Nagasirisha B. and Prasad VVKDV.,
2020). However, biological factors are the specific attributes of
the human muscle itself, which are mainly produced by cardiac,
muscle movement and are hard to be removed fundamentally. It is
worth noting that some artifacts can’t be avoided, but some can be
controlled. Such as, the artifacts from the subjects and the
equipment can be effectively suppressed in the experiment.
However, for some artifacts that cannot be controlled, such as
ECG signals, the method of threshold removal can be used to
detect and eliminate them.

3.2 Principal of independent
component analysis

Blind source separation (BSS) is to separate the independent
signal source from the linear mixed observation signal by inferring
the characteristics of the signal source. ICA is a branch of BSS. Based
on high-order statistics of signals, ICA decomposes the independent
components from the linear combination of several independent
signal sources. BSS has been widely used in biomedical information
processing (Flexer et al., 2005). The problem of blind source

separation of signals is based on the assumption of statistical
independence between the components of the observed mixed-
signal x(t) and the original signal s(t), and with the help of
some prior knowledge of the probability distribution of the
original input signal to recover the original input signal,
eliminate the influence of the signal artifact, and realize the
extraction of effective information in the original signal (Tong
and Fei-Yun, 2016). Since the collected signals come from
different signal sources, each original signal is considered to be
independent of each other, that is, statistically independent signals
from N signal sources are denoted as:

s1 t( ), s2 t( ) . . . , sn t( ) (1)
Where, s1(t) represents first signal source, s2(t) represents the
second signal source, sn(t) represents the nth signal source.

And the corresponding observed mixed signal is denoted as:

x1 t( ), x2 t( ), . . . , xn t( ) (2)
Where, x1(t) represents the first observed mixed signal, x2(t)
represents the second observed mixed signal, xn(t) represents the
nth observed mixed signal.

Due to the mixed-signal having a linear characteristic and
instantaneous characteristic, for i � 1, 2, . . . , n, the xi(t) can be
drawn as:

xi t( ) � ∑n

j�1aijsj t( ) (3)

Where, aij represents a coefficient or weight which is used to adjust
or scale the amplitude of the signal sj(t).

Hence, the sequence x(t) can be expressed in vector and matrix
form as:

x t( ) � As t( ) (4)
where, x(t) � [x1(t), x2(t), . . . , xn(t)]T is the output signal
observed through the sensor, s(t) � [s1(t), s2(t) . . . , sn(t)]T is the
independent source of an unknown signal with zero means; A �
[αij] ∈ Rn×m represents the mixture matrix.

The separation signal can be calculated if we get the inverse
matrix W of the mixing matrix A:

y t( ) � Wx t( ) (5)
Where y(t) is the separation signal which is equal to the
independent sources of the unknown signal.

To sum up, the key to obtaining the separation signal y(t) is to
determine the separation matrix W, which needs to be determined by
the independence measurement criterion between different signals.

3.3 Our proposed method

sEMG sensors have multiple channel sensors which can
simultaneously record the signals produced by “activity”, such as
ECG, muscle movement, and cable movement. We assume that the
source signals are statistically independent and non-Gaussian.
Therefore, we use ICA based algorithm to separate the source
signal into different components, then eliminate the unnecessary
components. Finally, reconstruct the signal (Sheehan et al., 2022).
The overall framework of our method is shown in Figure 1.
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3.3.1 Improved multi-layer wavelet transform
algorithm for denoising

Typically, sEMG signals are non-stationary signals
contaminated by various noises generated by skin-electrode
interfaces, electronic devices, and external sources. Therefore,
before effectively removing ECG artifacts of sEMG signals,
appropriate filtering procedures should be used to purify the

signals. The wavelet transforms denoising method has been
proposed in the early years and has got good results. In this
study, we adopt a new wavelet transform denoising method
based on multi-layer decomposition analysis (El hanine et al.,
2020; Li et al., 2021). The emphasis of this method is to select a
new threshold rule for sEMG reconstruction and denoising. The
flowchart of the algorithm is shown in Figure 2. The process can be
divided into three steps, namely, multi-level decomposition,
thresholding criteria, and reconstructed signal.

The Wavelet Transform (WT) of the input sEMG signal is
expressed as:

Wa,b t( ) � ∫ sEMG t( )Ψ p t − b( )/a[ ]dt a ≠ 0 (6)

Where Wa,b(t) represents wavelet coefficient, a and b represent the
scale parameters and the shift parameters, is the time shift, sEMG(t)

FIGURE 1
ECG artifact removal framework from sEMG signal.

FIGURE 2
Block diagram of multi-layer wavelet transform for
sEMG denoising.

FIGURE 3
The diagram of the multi-layer wavelet.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Lu et al. 10.3389/fbioe.2024.1367929

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1367929


represents the original signal, Ψ (t) represents the wavelet basis
function, it must satisfy mathematical criteria like finite energy and
no zero-frequency component to be admissible which is defined as:

Ψa,b t( ) � 1��
a

√ Ψ t − b

a
( ) (7)

Step 1: Multi-level decomposition. The raw sEMG time series is
decomposed by a pair of finite impulse response filters, which is
represented by a low-pass filter and a high-pass filter. The low-pass
filter is to extract the approximation coefficients (ylow), and the high-
pass filter is to get the detail coefficients (yhigh). The filter outputs are
then down-sampled as given by Eqs 8, 9, respectively. It is worth
noting that, the 4th order with 9 levels of decomposition wavelet
Daubechies is performed.

ylow � ∑∞
k�−∞x k[ ] p g 2n − k[ ] (8)

Where, ylow is the low-pass component of the output signal which
represents the result obtained after the input signal passes through
the low-pass filter g, x[k] represents the sample value of input signal

at time k, g[2n − k] represents the coefficient or response of the low-
pass filter g at time 2n-k.

yhigh � ∑∞
k�−∞x k[ ] p h 2n − k[ ] (9)

Where, yhigh represents the high-pass component of the output
signal which represents the result obtained after the input signal x
passes through the high-pass filter h, x[k] represents the sample
value of input signal at time k, h[2n − k] represents The coefficient
or response of the high-pass filter h at time 2n-k.

Step 2: Threshold Criteria. Considering the information
contained in each detail, the threshold criteria of each level are
established. The higher the frequency, the greater the correlation
between detail and noise. What’s more, to obtain clean surface
sEMG signals, the signal-to-noise ratio index is associated with each
wavelet transform layer. When the WT level associated with SNR is
higher than the SNR ratio of the original signal, the decomposition
level was selected. The diagram of multi-layers wavelet denoising is
shown in Figure 3. As can be seen from the diagram, A1, A2, A3 . . . ,
An is the approximates of composition in different scales, and D1,
D2, D3, . . . , Dn are the details of composition in different scales.

TABLE 1 Physical parameters of each subject.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Age (years) 26 23 28 30 22

Sex (M/F) M M M F F

Weight (kg) 77 78 75 55 51

Height (cm) 176 180 173 162 160

BFR (%) 19.6% 18.1% 20.3% 26.6% 23.6%

FIGURE 4
Illustration of sEMG and ECG wireless acquisition system.
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The key to affecting the effect of denoising is the selection of
threshold function and quantifying wavelet coefficients according to
thresholds. Traditional threshold functions are divided into the hard

threshold and soft threshold functions which can be described by the
following equation (He et al., 2023).

wj,k
′ � wj,k wj,k

∣∣∣∣ ∣∣∣∣≥ λ
0 wj,k

∣∣∣∣ ∣∣∣∣≤ λ
{ (10)

wj,k
′ � sign wj,k( ) × wj,k

∣∣∣∣ ∣∣∣∣ − λ( ) wj,k

∣∣∣∣ ∣∣∣∣≥ λ

0 wj,k

∣∣∣∣ ∣∣∣∣≤ λ{ (11)

Nevertheless, there are some shortcomings of these two
threshold functions. First of all, the hard threshold function is
discontinuous in the whole wavelet domain and discontinuous at
the point of ± λ. Secondly, there is a constant deviation betweenwj,k

and wj,k
′ in the soft threshold function. Consequently, we proposed

an improved threshold function that can overcome these
shortcomings. It can be described as follows:

wj,k
′ �

wj,k − 2λ

1 + exp λ − wj,k( ) wj,k ≥ λ

0 wj,k

∣∣∣∣ ∣∣∣∣< λ

wj,k + 2λ

1 + exp λ + wj,k( ) wj,k < − λ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

The following conclusions can be drawn from Eq. 12:

1. As the value of wj,k approaches∞, the deviation between wj,k

and wj,k
′ would disappear.

2. The function meet that the noise coefficient decreases while the
signal coefficient increases in the wavelet domain.

3. When the wj,k closes to the threshold ± λ, wj,k
′ is going to

approach zero and make the function continuous.

Step 3: Reconstructed Signal. Applying this threshold criterion
application, the new detail coefficients and the original
approximation coefficients are used to reconstruct the denoised
sEMG signal.

FIGURE 5
Schematic diagram of the subject experiment.

TABLE 2 Detailed description of ECG Sensor and sEMG sensor.

Parameters ECG sensor sEMG sensor

Model ADS1293 EDK0056

Functional description • 3 channel, 24 bit analog front end • High sensitivity, capable of capturing weak EMG signals

• Low noise and low power consumption • Used for surface EMG acquisition

• Built-in programmable gain amplifier

Power supply voltage DC (5V) DC (5V)

Development environment IAR Embedded Workbench IAR Embedded Workbench

Temperature range −20°C ~ 85°C −20°C ~ 60°C

Sampling frequency Up to 25.6 ksps depends on the configuration

Input range ±400 mV Covers the typical range of EMG signals

Input noise 7μVpp (40 Hz bandwidth) —

Output signal Analog Signal Analog Signal

Communication SPI Bluetooth 4.0
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3.3.2 Mean subtraction and whitening
To facilitate calculation, the observed vector x should be

preprocessed. We convert the observed vector x to the
intermediate output Z, which mainly includes meaning subtraction

and whitening. Mean Subtraction is subtracting its mean from the
observed vector. That is, transform the observation vector (Dong et al.,
2020; Jayasanthi et al., 2020). x(t) into zeromean vector which can be
represented by the following formula:

FIGURE 6
Signal acquisition mechanism.

FIGURE 7
Comparison results of different filter.

TABLE 3 The comparison of performance indicators.

Butterworth FIR Moving average Wavelet Improved wavelet

CC 0.911 0.891 0.915 0.902 0.924

RMSE 4.885 5.323 4.784 5.121 4.693

The bold values represent statistically significant levels.
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FIGURE 8
Frequency domain analysis of sEMG after filtering in resting state.

FIGURE 9
Frequency domain analysis of sEMG after filtering in contractile state.
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x′ � x − μ (13)
Where, x′ represents the vector with zero mean after mean

subtraction, x represents the observed vector, μ represents the
expectation of the observed vector.

In general, the collected data are correlated, so it is necessary to
whiten the data to remove the correlation between observation
signals and simplify the extraction process of independent
components. Furthermore, the convergence of the algorithm is
better after whitening. The new data x′ satisfies two properties

after whitening: 1. The correlation between features is low. 2. All the
features have the same variance. The description of the algorithm is
as follows steps:

Step 1. We defined the input sample data as:

Χ′ � x′ ∈ Rn×m (14)

Where, n represents the dimension of data, m represents the
number of samples.

FIGURE 10
Effect of artifact removal of biceps brachii (A) Mixed Signal. (B) Clean sEMG signal. (C) ECG artifact.
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Step 2. Calculate the covariance matrix after mean subtractionΧ′:

CX′ � 1
m
∑m

i�1 Χ′Χ′T[ ] (15)

Step 3. The covariance matrix is decomposed by eigenvalue
decomposition:

CX′ � UΛUT (16)

Step 4. Rotate the data:

Xrot,i � UTx (17)

Step 5. Scale the data on each principal component axis so that its
variance is 1.

XPCAwhiten,i � Xrot,i��
λi

√ (18)

FIGURE 11
Effect of artifact removal of triceps (A) Mixed Signal. (B) Clean sEMG signal. (C) ECG artifact.
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From what has been discussed above, Principal Component
Analysis (PCA) whitening is defined as:

XPCAwhiten � Λ−1
2UTX �

1��
λ1

√ / 0

..

.
1 ..

.

0 /
1��
λn

√

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Xrot,i (19)

After PCAwhitening, the covariance matrix of data is an identity
matrix, that is, each dimension becomes irrelevant and the variance
of each dimension is 1.

3.3.3 Improved Fast-ICA
Fast-ICA, also known as a fixed-point algorithm, takes the

maximum negative entropy as a search direction. The
independent sources are extracted sequentially, and the fixed-

FIGURE 12
Effect of artifact removal of brachialis (A) Mixed signal. (B) Clean sEMG signal. (C) ECG artifact.
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point iterative optimization algorithm is adopted to make the
convergence of the results faster and more robust.

Fast-ICA aimed to find an optimal direction w which makes the
non-Gaussian property of this direction maximize: max J(wTx)
(Qiu et al., 2022; Koldovsk et al., 2022).

In this paper, we selected the negative entropy to measure non-
Gaussian which is defined as:

J wTx( ) � E G wTx( ){ } − E G v( ){ }[ ]2 (20)

Where v represents the random variable with zero mean unit
variance. G(·) represents any non-quadratic function, we select
the G(wTx) � tanh(wTx).

The source signal is estimated by maximizing the objective
function, and the approximate maximum of negative entropy
J(wTx) is generally obtained at the extreme value of E G(wTx){ }.
Based on the Lagrange condition, we can find the extreme value of
E G(wTx){ } under the constraint condition of ‖w‖2 � 1.

E xg wTx( ){ } + βw � 0 (21)
Where g(·) is the derivative G(·).

Here we used the Newton iteration method to solve the
problem of finding the roots of the equation which can be
expressed as:

xn+1 � xn − f xn( )
f, xn( ) (22)

The iteration formula used by Fast-ICA can be described as:

FIGURE 13
Frequency domain analysis of ECG artifacts in different muscle regions.

TABLE 4 The evaluation indexes of each subject and their mean.

RE CC (%) SNR

Adult 1 0.07 92.8 11.35

Adult 2 0.09 97.2 10.27

Adult 3 0.12 96.4 10.56

Adult 4 0.08 97.5 8.92

Adult 5 0.07 93.1 9.96

TABLE 5 Comparison of Artifact Removal performance of different methods.

HP-based TS-based WT-based AF-based Ours

RE 0.06 0.08 0.07 0.08 0.09

SNR 7.19 7.56 9.45 8.75 10.23

CC 92.67% 94.98% 96.28% 95.45% 97.56%
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wn+1 � E xg wTx( ){ } − E g′ wTx( ){ }wn

wn+1 � wn

wn‖ ‖

⎧⎪⎪⎨⎪⎪⎩ (23)

As we all know, the initial values of Fast-ICA are chosen
randomly, different initial values would affect the accuracy and
convergence of the algorithm. Currently, the optimal method to
reduce the sensitivity of the algorithm is by using the fastest descent
method. It is an optimization algorithm that takes the negative
gradient direction as descending direction. The improved algorithm
can be described as follows:

(1) Firstly, construct a random matrix: w.
(2) Calculate the gradient value of E xg(wTx){ } at w.
(3) Calculate the iteration step λ.

(4) Update the iteration equation based on the faster
descent method:

wn+1 � wn + λE xg wTx( ){ } (24)

3.3.4 ECG component identification algorithm
The different components obtained by the improved Fast-ICA

algorithm are considered to be the multiple signal sources.
Therefore, the active components of the ECG need to be
accurately identified. In information theory, entropy is used to
evaluate the degree of signal confusion. Compared with sEMG
signals, ECG signals are used to represent the rhythm and
activity of the human heart which have more regular, less
complex, and lower entropy characteristics. Hence, artifact
components can be separated effectively by the entropy criterion.

TABLE 6 Efficiency performance comparison.

Computing efficiency
level (1–10)

Pros Cons

HP-
based

High (8) Simple implementation, can quickly filter out low-
frequency components

Some useful information will be lost

TS-
based

Medium (5) The realization is simple and the calculation speed is
fast

Sensitive to template selection and may introduce errors

WT-
based

High (8) Multi-scale analysis for non-stationary signals Sensitive to the selection of wavelet base and the computational
complexity may be high

AF-
based

Medium to high (5–8) Automatic adjustment of filter parameters to adapt to
signal changes

The initial rate of convergence may be slow

Ours High (8) Fast independent component analysis for multi-
channel signals

The statistical characteristics of the signal are required

TABLE 7 Accuracy performance comparison.

Computing accuracy
level (1–10)

Features

HP-based Medium (5) Suitable for removing low frequency noise and retaining high frequency signal

TS-based Medium (5) Suitable for removing background noise and extracting dynamically changing targets

WT-
based

High (8) It has multi-resolution characteristics and is suitable for non-stationary signal processing

AF-based High (8) The filter parameters can be automatically adjusted according to the characteristics of the input signal, which is
suitable for the occasions where the statistical characteristics of noise are unknown

Ours High (8) Based on the negative entropy maximization criterion, it has the characteristics of good robustness, fast
convergence and high precision

TABLE 8 Computing requirements comparison.

Computational complexity Computation amount Real-time performance Memory requirements

HP-based Medium (5) Medium (5) Preferably (7) Medium (5)

TS-based Lower (3) Lower (3) Preferably (7) Lower (3)

WT-based Preferably (7) Preferably (7) Preferably (7) Preferably (7)

AF-based Preferably (7) Preferably (7) Preferably (7) Medium (5)

Ours Lower (3) Medium (5) Medium (5) Lower (3)
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Compared with approximate entropy and sample entropy, fuzzy
entropy has the advantages of better anti-noise performance and
higher stability (Erdal et al., 2023). Therefore, fuzzy entropy is used
as the basis for ECG component discrimination. The calculation
process is as follows:

1. Let the time series with length N be denoted as X(i), iϵ(1, n){ }.
2. With the size of the sliding window as M, a group of

M-dimensional vectors are generated in sequence
and denoted as:

Xm
i t( ) � x i( ), x i + 1( ), . . . , x i +m − 1( ){ } − x0 t( ) (25)

x0 t( ) � 1
m

∑m−1
j�0 x i + j( ) (26)

3. Calculate the distance dm
ij between any two vectors, which is the

maximum value of the difference between the two
corresponding elements:

dm
ij � max

k∈ 0,m−1( )
x i + k( ) − x0 i( )] − [x j + k( ) − x0 j( )]∣∣∣∣ ∣∣∣∣{ } (27)

4. The degree of similarity between sequences is calculated by the
fuzzy membership function, which is defined as:

A x( ) �
1 x � 0

exp − ln 2( ) x
r

( )2[ ] x > 0

⎧⎪⎪⎨⎪⎪⎩ (28)

Where, r is the similarity tolerance parameter, which is defined as r
times the standard deviation of one-dimensional time series.

Therefore, the similarity between the two vectors Xm
i (t) and

Xm
j (t) is:

Dm
ij � exp − ln 2( ) dm

ij/r( )2[ ] (29)

5. Define function:

Φm t( ) � 1
N −m + 1

∑N−m+1
i�1

1
N −m

∑N−m+1
j�1,j≠i D

m
ij (30)

6. Increase the sliding windowM toM + 1 and repeat steps from
(2) to (5), obtained Φm+1(t)

Therefore, the fuzzy entropy can be calculated as:

FuzzyEn t( ) � lnΦm t( ) − lnΦm+1 t( ) (31)

7. Finally, ECG components in sEMG can be identified by
threshold judgment. In this paper, the threshold
discriminant proposed by Tichavsk et al. (2006) is used
as threshold judgment. The detailed description is
as follows:

Φ k + 1( ) −Φ k( )<Φ k( ) −Φ k − 1( ) (32)
Where, φ(k) represents the entropy value of the Kth independent
component after ascending order.

If the k value is satisfying the above formula, k is the minimum
integer satisfying the conditions, and the Fast-ICA components

corresponding to the first K entropy values are determined as ECG
artifacts and eliminated.

4 Experimental analysis

4.1 Design of experimental

In this experiment, we selected five healthy adult subjects
without musculoskeletal diseases or a history of major upper
limb injuries. Three sEMG sensors were placed on the different
muscles of the upper limb to collect the raw sEMG signal.
Meanwhile, the ECG sensor was placed on the chest of each
subject. Each subject grabbed a different mass of the load to
perform isokinetic contraction to highlight the validity of the
experimental results. All participants have informed the consent
of the experiment procedure and signed the informed consent form.
The physical parameters of the subjects are shown in Table 1. The
Illustration of sEMG and ECG wireless acquisition system and the
schematic diagram of the subject experiment are shown in Figures 4,
5. The detailed parameters of ECG sensor and sEMG sensor are
shown in Table 2. Each subject performed three contraction tasks,
and the muscles were fully rested before each contraction. The
experiment lasted for 60 s in total. The experimental scheme
adopted in this paper is shown in Figure 6.

4.2 sEMG signal denoising and
performance analysis

We compare the effectiveness of five mainstream denoising
algorithms. They are Butterworth low-pass filtering algorithm
(Barin and Zencir, 2022), FIR low-pass filtering algorithm (Yang
et al., 2022), moving average filtering algorithm (Lee, 2014) and
wavelet filtering algorithm (Ramakrishnan and Selvan, 2003). The
filtering results are shown in Figure 7. From the figure, we can see that
the Butterworth filter, Moving Average filter and Improved Wavelet
filter got better performance. To further verify the effectiveness and
superiority of the denoising methods, correlation coefficient (CC) and
RootMean Square Error (RMSE) indicators are chosen to evaluate the
performance of the different algorithms (Yoo et al., 2018; Iluore et al.,
2022). The results are detailed in Table 3.

CC � Cov x, y( )�������
Var x( )√ ·

�������
Var y( )√ (33)

Where, Cov(x, y) is the covariance of x and y; Var(x) is the
variance of x;Var(y) is the variance of y.

RMSE � N−1 ∑
i
S′ i( ) − S i( )( )2( )1/2 (34)

Where, S′(i) represents the denoised value; S(i) represents the
original value.

Our proposed denoising method gets the best performance in
two indexes. The CC reflects the integrity of valid information
retention, the larger the CC is, the higher correlation between the
raw signal and the filtered signal. RMSE reflects the difference
between the raw signal and the filtered signal.
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4.3 ECG artifact removal results

In order to prove the effectiveness of the next method, we
collected the EMG of biceps muscle in static and dynamic
conditions, and analyzed the frequency domain information after
filtering algorithm, as shown in Figures 8, 9. It can be seen that the
frequency distribution of the filtered EMG signal is 0 ~ 500 hz,
mainly concentrated in 0 ~ 150 hz; 2. In both cases, there will be
obvious spikes around 50 Hz and 100 Hz. In addition to the power
supply interference factor, the largest factor is caused by the ECG
artifact, because the frequency of the signal is close to the power
supply frequency or its frequency multiplier, which appears as a
spike in the frequency domain plot.

In order to clarify the effectiveness and universality of our
artifact removal algorithm, we analyzed the experimental results
of one subject and compared the ECG artifact removal results from
the biceps brachii, triceps and brachialis as shown in Figures 10–12.

As we can see from Figures 10–12, the muscles closer to the
cardiac are more affected by the ECG.Muscles farther from the heart
are less affected by ECG. Our method achieves good performance in
removing ECG artifacts in sEMG signal.

In order to fully demonstrate the advantages of the proposed
algorithm in ECG artifact removal, we performed a frequency-
domain analysis and explored the ECG artifact removal
effectiveness for different muscle locations. As shown
in Figure 13.

The experimental results clearly show the ECG artifact
removal performance at different muscle positions. In
frequency domain analysis, we observed that our method can
effectively identify and separate ECG artifact components. By
comparing the spectra before and after processing, it can be
found that the characteristic frequencies of ECG artifacts are
significantly suppressed, while the useful frequency components
of sEMG signals are well preserved. This result proves that our
algorithm has good artifact removal ability in frequency domain,
and can effectively reduce the interference of ECG artifact to
sEMG signal analysis. The algorithm shows good artifacts
removal effect at different muscle positions, and retains the
original features of sEMG signal.

To further evaluate the performance of the algorithm, we made
statistics on the experimental results of five subjects respectively, and
calculated Relative Error (RE), CC(Correlation Coefficient) and
Signal-to-Noise Ratio (SNR) indicators in sEMG signals, as
shown in Table 4. Compared with the state-of-the-art methods,
the results are shown in Table 5.

We compare the current mainstream algorithms with the
methods in this paper in terms of accuracy, efficiency and
calculation requirements, as shown in Tables 6–8. It is worth
noting that the actual performance indicators of each algorithm
are affected by the differences in design parameters, hardware
implementation methods and input signal characteristics. The
specific performance of each algorithm indicator will vary
according to the actual situation. Therefore, we have only
combined many experiments with a general understanding and
cannot cover all possible situations.

It can be seen from Tables 4, 5, the CC index and SNR index
of the proposed method perform best, indicating that the sEMG
signal after artifact removal in this paper contains more

effective information. At the same time, the algorithm can
effectively improve the quality of the signal while removing
artifacts, and make the useful information in the signal
more prominent.

5 Conclusion

A new artifact removal algorithm in sEMG combining an
improved multi-layer wavelet transform algorithm and Fast ICA
algorithm is presented, which is called the IWT-FastICA
algorithm. By using improved multi-layer wavelet transform
techniques, improved threshold criteria, and through a large
number of comparison experiments, our proposed method has
a better performance in the signal denoising aspect when
compared with other state-of-art filters. For a signal with ECG
artifacts, we adopt FastICA, which has the best performance in a
blind separate source algorithm. Furthermore, the application of
fuzzy entropy theory improves the recognition rate of ECG
artifacts. By the experimental analysis of different muscles and
different movements, the ECG artifacts caused by heart beating
can be significantly improved. The experimental results show
that there are significant improvements in objective indicators
and real application.

The results of this study can provide effective guidance for
human-computer interaction and robot compliant control and
optimization of biomechanical models. In addition, compared
with other mainstream methods, the proposed method has some
advantages, but it still has some limitations in practical
application, such as performance degradation and high
calculation cost when processing complex signals. Therefore,
the combination of deep learning algorithm and signal
processing to achieve the effective removal of ECG artifacts is
worthy of further exploration. We will focus on the following
aspects to carry out further research work: 1. Combined with
noise suppression technology which can remove artifacts and
reduce the influence of other noises on sEMG signal. 2.
Combination with feature extraction and classification
algorithm, more useful information can be extracted from the
processed sEMG signal and some tasks (such as action
recognition and muscle force estimation) can be completed. 3.
Integration of cross-domain technologies: learn from advanced
technologies in other fields (such as signal processing, pattern
recognition, machine learning, etc.) to further improve the
performance of the algorithm.
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