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Tendon injuries, a common musculoskeletal issue, usually result in adhesions to
the surrounding tissue, that will impact functional recovery. Macrophages,
particularly through their M1 and M2 polarizations, play a pivotal role in the
inflammatory and healing phases of tendon repair. In this review, we explore the
role of macrophage polarization in tendon healing, focusing on insights from
animal models. The review delves into the complex interplay of macrophages in
tendon pathology, detailing how various macrophage phenotypes contribute to
both healing and adhesion formation. It also explores the potential of modulating
macrophage activity to enhance tendon repair and minimize adhesions. With
advancements in understanding macrophage behavior and the development of
innovative biomaterials, this review highlights promising therapeutic strategies for
tendon injuries.
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1 Introduction

Tendons, dense connective tissues responsible for transferring force from muscles to
bones, play a crucial role in movement by storing elastic energy and withstanding immense
tensile forces. (Docheva et al., 2015). Various injury mechanisms, such as acute overload,
tearing, overuse, or age-related degeneration, can lead to tendon injuries. (Thomopoulos
et al., 2015). Despite significant advancements in surgical and rehabilitation techniques,
tendon repair may encounter postoperative complications. (Voleti et al., 2012). Tendon
adhesion, a major complication following tendon injury, affects approximately 40% of
patients after surgery, restricting tendon gliding ability and potentially leading to lifelong
disability. (de Putter et al., 2012; Titan et al., 2019).

To understand tendon adhesion and healing, it is essential to firstly explore tendon biology,
focusing on its collagen composition. Natural tendons are characterized by a sophisticated
hierarchy of collagen intermingledwith tenocytes and non-collagenous elements. (Benjamin et al.,
2008). The tendon as a whole is wrapped in a thin layer called the epitenon. Beneath this layer are
the fascicles, aligned with the tendon’s length and visible post-dissection, each surrounded by the
endotenon, which also provides blood and nerve supply to the tendon. (Voleti et al., 2012).
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Based on this structural foundation, we examine the detailed
composition of tendon fascicles, crucial components of tendon
architecture. Tendon fascicles consist of collagen fibers
interspersed with tenocytes and are identifiable under optical
microscopy at about 10 μm in diameter. (Screen et al., 2004).
Electron microscopy further uncovers collagen fibrils, marked by
periodic crimping in relaxed states. (Sharma and Maffulli, 2005). At
a more minute level, microfibrils, formed from cross-linked
tropocollagen molecules, lay the foundation of this structure,
with tropocollagen being a water-soluble triple helix of
polypeptide chains. (Screen et al., 2004). These complex
structures, down to tropocollagen, are essential for understanding
tendon response to stress and repair initiation.

The critical issue of tendon adhesion following injury or surgery
was a key focus of current study. (Legrand et al., 2017). Further
research has been dedicated to understanding the genesis and
prevention of these adhesion, particularly in healing intrasynovial
flexor tendons. (Voleti et al., 2012). Animal studies have shed light
on critical elements influencing tendon repair and adhesion
development, including initial injury severity, quality of surgical
repair, and the significance of mechanical loading. (Thomopoulos
et al., 2015). While mechanical loading facilitates collagen type III
synthesis and boosts growth factor levels as well as cellular and
matrix activities at the injury site, its excess can compromise healing.
(Wong et al., 2009). Additionally, prolonged immobility is also
implicated in adhesion development, as evidenced in various animal
models. (Wong et al., 2014).

In the context of these findings, adhesion prevention has become
a central goal in tendon repair research, especially considering its
role in functional recovery, as adhesions can complicate the healing
process and impair functional recovery. (Hu et al., 2023). In light of
this, researchers have come to realize that the immune system plays
an important role in tendon healing and adhesion formation, many
studies have focused on how to modulate the immune response at
the injured site. (Chisari et al., 2020). Bao et al. (Bao et al., 2024)
expand the horizon of the anti-inflammatory effects primarily
driven by sympathetic nerve through β2 adrenergic signals on
macrophages, and made a history of using sympathetic
stimulation to significantly prevent macrophage-mediated
peritendious inflammation. In this context, the role of
macrophages, particularly their involvement in the inflammatory
response and modulation of the healing process, has garnered
increasing attention. This focus stems from the understanding
that inflammatory processes, driven largely by macrophages, are
critical in the formation of adhesions during tendon healing.
(Sunwoo et al., 2020). Additionally, researchers have recognized
the significant impact of macrophages on tendon healing and
adhesion formation, leading to a shift in focus towards
understanding how macrophages specifically regulate tendon
adhesion. (Xu et al., 2020) (Table 1).

The natural healing process of injured tendons involves three
consecutive and overlapping stages: the inflammatory phase,
proliferative phase, and remodeling phase. (Nichols et al., 2019).
During the inflammatory phase, cytokines derived from platelets
signal an elevation in vascular permeability, attracting circulating
inflammatory cells, including phagocytic neutrophils, monocytes,
and macrophages, to the injury site. (Marsolais et al., 2001; Chisari
et al., 2020). The subsequent proliferative phase is characterized by

the release of growth factors, such as vascular endothelial growth
factor and members of the transforming growth factor beta (TGF-β)
family, stimulating angiogenesis, granulation tissue formation, and
fibroblast proliferation. (Wong et al., 2009). In the final remodeling
phase, newly synthesized collagen fibers realign along the
longitudinal axis of the tendon until they can withstand load.
This process may take up to 2 years to complete. (Lomas et al., 2015).

In the context of macrophage-mediated regulation, the
dominance of macrophages becomes significant beyond the initial
24-h period following injury. (Wong et al., 2009). Understanding
how macrophages modulate the inflammatory and proliferative
phases, and their potential impact on the subsequent remodeling
phase, is essential for unraveling the intricacies of tendon healing. As
we delve into the macrophage-specific aspects of tendon healing, the
focus shifts towards strategies that enhance intrinsic healing while
minimizing the impact of extrinsic healing, with the ultimate goal of
improving the functional recovery of tendons (Stauber et al., 2020).

2 Pathology of macrophage-
mediated adhesion

Macrophages are key components of the human innate immune
system, widely distributed across connective tissues and various
solid organs (Murray, 2017). Their high heterogeneity and plasticity
enable them to play diverse roles in human diseases, driven by their
ability to differentiate into distinct phenotypes under varying stimuli
in the local microenvironment (Mosser and Edwards, 2008; Mould
et al., 2019).

Classically activated macrophages, or M1 macrophages, emerge
under the induction of lipopolysaccharide (LPS), interferon-gamma
(IFN-γ), or tumor necrosis factor-alpha (TNF-α) (Di Benedetto et al.,
2019). These M1 macrophages are known for their involvement in
phagocytosis and display pro-inflammatory characteristics, essential in
the body’s response to pathogens and injury.

Conversely, alternative activated macrophages, or
M2 macrophages, develop in response to interleukin-4 (IL-4) or
interleukin-13 (IL-13) (Viola et al., 2019). These M2 macrophages
exhibit anti-inflammatory and pro-healing functions, playing a vital
role in tissue repair and regeneration. Notably, M2 macrophages are
further subclassified into M2a, M2b, M2c, and M2d subtypes, each
characterized by unique activation stimuli, molecular expressions,
and functional attributes (Paoli et al., 2014).

Furthermore, Lehner et al (Lehner et al., 2019) have identified a
specific population of tissue-resident macrophages in murine and
human tendons. These macrophages are key to phagocytosis,
inflammatory cytokine secretion, and extracellular matrix-related
proteins, playing a crucial role in tendon health and response to
injury. Fujii et al. (2022) extend this understanding in the context of
anterior cruciate ligament reconstruction (ACLR) in mice,
identifying two distinct macrophage populations that infiltrate
the tendon/bone interface post-surgery: the CD9+ IL1+ and
CX3CR1+ CCR2+ macrophages. The CD9+ IL1+ macrophages
peak 1 day after surgery with a highly inflammatory profile,
transitioning later to a homeostatic state, while the CX3CR1+
CCR2+ macrophages accumulate more gradually and express
interferon signature genes that might suppress bone formation.
In addition, Li et al. (2023) provides the first evidence that
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macrophages are a primary source of TGF-β1, which is crucial in
recruiting stem cell and make it differentiate into myofibroblasts to
the surrounding site of injured tendon. This breakthrough sheds
light on a crucial antiadhesion landmark of drug therapies, as it
identifies an accurate cellular target to reduce peritendinous
adhesion by manipulating the TGF-β1 pathway.

In normal tendon tissue, both in the outer membrane and inner
fibrous layers, macrophages are sparsely distributed. (de la
Durantaye et al., 2014). However, this changes during the acute
inflammatory phase following tendon injury. (Wong et al., 2009). In
such instances, injured tendon tissue releases chemokines, including
C-C chemokine ligand 2 (CCL2), which recruit immune cells,
predominantly macrophages. (Sugg et al., 2014). This influx of
macrophages leads to the further release of chemokines and
cytokines, amplifying the inflammatory response and playing a
crucial role in the initial phase of tendon healing. (Marsolais
et al., 2001) (Figure 1).

The C-C chemokine receptor type 2 (CCR2) is particularly
significant in this context, as it plays a vital role in the activation

of macrophages, especially those exhibiting pro-inflammatory
characteristics. (Liu et al., 2017). Utilizing CCR2 knockout
models, researchers have demonstrated reduced recruitment of
monocytes and a subsequent decrease in the inflammatory
environment at wound healing sites. (Willenborg et al., 2012).
This discovery has prompted exploration into CCR2 inhibition as
a potential therapeutic approach, with studies in various conditions,
including traumatic brain injury and nonalcoholic fatty liver disease,
showing promising results. (Morganti et al., 2015; Flores-Toro et al.,
2020). In tendon healing, particularly in the context of rotator cuff
repair in CCR2 knockout mice models, there has been an observed
decline in macrophage infiltration and suppression of interferon
pathways. (Eliasberg et al., 2023).

Recent insights into macrophage-mediated adhesion pathology
reveal the significant role of macrophage-secreted Secreted
Phosphoprotein 1 (SPP1) in aggravating tendon adhesions. (Liu
et al., 2022). Moreover, the interaction of SPP1 with fibroblasts, via
cytokine secretion and cellular communication, leads to enhanced
fibroblast activation and migration, further exacerbating adhesion

TABLE 1 The effect of macrophage targeted therapies on the healing tendons in animal models.

Injured tissue Intervention Effect on macrophage Effect on tendon healing

Murine Supraspinatus Tendons CCR2 Knockout (CCR2KO) Reduced macrophage infiltration Improved biomechanical properties
(higher load-to-failure and stiffness)

Eliasberg et al. (2023)

Murine Achilles Tendons Acute Achilles tenotomy and repair A shift to M2 macrophages coordinating
ECM deposition and tissue repair

Agent of degradation and repair in injured
tendon tissue Sugg et al. (2014)

Murine Supraspinatus Tendons Mechanical stimulation Macrophage M2 polarization Promoted MSCs chondrogenesis, and
improved matrix formation Wang et al.

(2023a)

Murine Flexor Digitorum Longus
Tendons

Neutralization of active TGF-β1 and genetic
manipulation

Reduced TGF-β1 production by
macrophages

Attenuation of peritendinous adhesion
formation Li et al. (2023)

Murine Flexor Digitorum Longus
Tendons

COX siRNAs and Pla1a/Etv1 axis-related
treatments

M2 macrophage polarization, increasing
Pla1a protein secretion

Enhanced tendon healing Jing et al. (2023)

Murine Supraspinatus Tendons polarized Macrophages and their derived
exosomes

Exosome production and subsequent effects
on FAPs

Reduced muscle atrophy and fatty
infiltration Liu et al. (2023)

Murine Achilles Tendons Extracellular vesicle-educated macrophages M2-like immunophenotypic shift in EEMs Improved mechanical properties of the
healing tendon Chamberlain et al. (2019)

Murine Achilles Tendons TDSCs seeded in Small Intestinal
Submucosa scaffolds

Promotion of M2 macrophage polarization Reduced adhesions and regulated ECM
formation Mao et al. (2022)

Murine Achilles Tendons Nano-micro fibrous woven scaffolds Promotion of M2 macrophage polarization Better tissue organization, reduced
inflammatory response Cai et al. (2023)

Murine Achilles Tendons Wnt3a-modified nanofiber scaffolds Promotion of M2 macrophage polarization Accelerated tendon healing, increased
mechanical strength, reduced

inflammatory response Wei et al. (2023)

Murine Achilles Tendons Extracellular vesicles from inflammation-
primed adipose-derived stem cells

Inhibiting M1 polarization and promoting an
M1-to-M2 transition

Reduced inflammation, increased tendon
cell proliferation, and improved collagen

production Shen and Lane, (2023)

Murine Achilles Tendons PDTC-loaded electrospun membranes Inhibition of NF-κB pathway in
macrophages

Reduced peritendinous adhesion and
inflammation Lu et al. (2023)

Murine Peritendinous tissue JSH-23-loaded PLA membranes Inhibition of NF-κB phosphorylation and
polarization

Tendon healing enhancement Wang et al.
(2022)

Murine Achilles Tendons Lipid nanoparticle-assisted miR29a delivery
via core-shell nanofibers

Promotion of M2 macrophage polarization Improved collagen composition and
alignment, higher mechanical strength

Chen et al. (2022)
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formation. (Kapur et al., 2019). Wang et al. (Wang et al., 2024)
further reveal that elevated SPP1 expression in macrophages
enhanced fibroblasts activation to myofibroblasts through
CD44 positive feedback pathway, which indicates a crucial
cascade amplification between macrophages and myofibroblasts
in the field of in inflammatory hyperplasia.

3 M1 macrophage-mediated adhesion
mechanisms

In the early stages of tendon healing, the infiltrating
macrophages at the site of injury are predominantly of the
M1 phenotype (Sunwoo et al., 2020). Their concentration
significantly increases within the first 2 weeks of tendon healing,
and they localize to the newly formed tendon tissue and areas of
tissue remodeling (Marsolais et al., 2001; Sugg et al., 2014).
M1 macrophages contribute to the propagation of inflammatory
responses by releasing a range of pro-inflammatory cytokines and
mediators, such as interleukin-1 (IL-1), IL-6, IL-12, tumor necrosis
factor-alpha (TNF-α), and reactive nitrogen and oxygen species
(Barrientos et al., 2008; Koh and DiPietro, 2011). While they exhibit

stronger microbicidal properties, M1 macrophages also have an
increased potential for causing collateral damage to surrounding
healthy tissues (Chamberlain et al., 2011; Sica andMantovani, 2012).
Additionally, M1 macrophages contribute to the degradation of the
extracellular matrix, engaging in processes such as phagocytosis of
cellular debris and apoptosis (Mosser and Edwards, 2008).

Given the pivotal role of M1 macrophages in the early stages of
tendon healing, it is important to understand the underlying
mechanisms that regulate their activity. One such critical aspect
is epigenetic regulation, particularly through DNA methylation
(Chen et al., 2023). Crucial DNA methyltransferases like DNA
methyltransferase 3b (DNMT3b) and DNMT1 are involved in
the polarization of these macrophages. DNMT3b inhibits
peroxisome proliferator activated receptor (PPAR)γ1, a regulator
of the anti-inflammatory M2 phenotype, thereby promoting the
M1 phenotype crucial for the early inflammatory response in tendon
healing (Yang et al., 2014). DNMT1 contributes by mediating the
hypermethylation of genes that are essential for the pro-
inflammatory activities of M1 macrophages (Denis et al., 2011).
This intricate regulation of gene expression through epigenetic
mechanisms underscores the complexity of M1 macrophage
behavior in tendon healing and their critical role in initiating the

FIGURE 1
Macrophage polarization in Tendon healing.
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inflammatory response that is essential for early stages of
tissue repair.

Furthermore, the emerging role of non-coding RNAs (ncRNAs)
in macrophage polarization is gaining attention (Ning and Liu,
2013). MicroRNAs (miRNAs) and other ncRNAs, such as long non-
coding RNAs (lncRNAs) and circular RNAs (circRNAs), are
significant regulators of macrophage behavior. For example,
under the stimulation of IL-13 or TGF-β, miR-155 targets IL-
13Rα1 and SMAD2, leading to a bias towards M1-like gene
expression (Louafi et al., 2010). Beyond miRNAs, there is
increasing interest in the role of long non-coding RNAs
(lncRNAs) (Wang et al., 2020). LncRNA cyclooxygenase-2 (cox-
2), for instance, is more prevalently expressed in LPS-induced
M1 macrophages than in IL-4-induced M2 macrophages, and its
suppression results in a decrease in M1 macrophage markers (Ye
et al., 2018). Additionally, circular RNAs (circRNAs), which have a
unique covalently closed loop structure, are also being studied for
their relationship with macrophage polarization. Notably, circRNA
Cdyl has been found to promote M1 polarization by inhibiting the
nuclear translocation of interferon regulatory factor 4 (IRF4) (Song
et al., 2022). In a similar vein, circRNA PPM1F is known to enhance
the NF-κB signaling pathway following LPS stimulation, promoting
M1 polarization (Zhang et al., 2020). This highlights the growing
importance of understanding ncRNA-mediated regulation in
macrophages, particularly in the context of their role in tissue
healing and adhesion mechanisms.

Besides, an increasing number of studies indicate that
M1 macrophages may influence the tissue microenvironment
through the secretion of exosomes, which function to transport
molecules containing biological information (Momen-Heravi et al.,
2014). Lou et al. (2023) discovered that miRNA-155-5p, which is
highly expressed in exosomes derived from M1-polarized
macrophages, exerts antiangiogenic effects by targeting the
GDF6-Akt axis, ultimately impacting the healing process in
diabetic conditions.

4 M2 macrophage-mediated adhesion
mechanisms

In contrast to M1 macrophages, M2 macrophages play a
significant role in promoting fibroblast proliferation and
stimulation of new tissue deposition. (Mantovani et al., 2002; Sun
et al., 2023). The increase in the concentration of M2 macrophages
primarily occurs in the later stages of the tendon healing process,
especially in the region where the tendon extracellular matrix is
located (Nichols et al., 2019). Sugg et al. (2014) found that in healing
mouse tendons, the concentration of M2 macrophages within the
first 28 days post-injury was similar to that of normal, uninjured
tendon tissue. However, after 28 days of tendon injury, there was a
significant increase in M2 macrophages, becoming the predominant
macrophage phenotype at the site of injury. Wang L. et al. (2023)
found that mechanical stimulation promotes the polarization of
macrophages into the M2 phenotype and secretion of elevated levels
of TGF-β1, ultimately, facilitates the chondrogenic differentiation of
MSCs and enhances the process of tendon to bone healing in an
acute rotator cuff repair model. Interestingly, while the study found
that TGF-β1 secreted by M2 macrophages promotes tendon repair,

another study revealed a potential drawback of TGF-β1, as it may
contribute to tendon adhesion. The research findings by Li et al.
(2023) suggest that TGF-β1 derived from M2 macrophages recruits
mesenchymal stem cells and promotes the formation of
myofibroblasts in tendon adhesion. Besides, due to its association
with the inhibition of pro-inflammatory cytokines including IL-1β,
IL-8, GM-CSF, and TNF-α, TGF-β1 is involved in terminating the
inflammatory response during tendon healing, with
M2 macrophages playing a role in this process (Fadok et al.,
1998). Another research has been demonstrated that
M2 macrophages facilitate tendon healing by secreting
phospholipase A1 member A (Pla1a) (Jing et al., 2023). The
secretion of Pla1a not only promotes tendon cell proliferation
and reduces apoptosis but also leads to decreased
Etv1 expression. This dual action of Pla1a, regulated by
M2 macrophages, plays a critical role in reducing tendon
adhesion and enhancing cell viability.

Contrasting with the earlier discussed role of M1 macrophage-
derived exosomes, Liu et al (Liu et al., 2023) found that exosomes
derived from M2 macrophages uniquely influence the
differentiation of fibro-adipogenic progenitors, highlighting their
distinct role in tendon healing mechanisms. The study provides
detailed insights into the dynamic interactions between these
exosomes and fibro-adipogenic progenitors, emphasizing that
M2 macrophages significantly promote brown/beige fat
differentiation, a crucial factor for effective muscle regeneration
and reducing fatty infiltration.

M2 macrophage could also be associated with an elevated
propensity for scar tissue formation. Wojciak et al (Wojciak and
Crossan, 2008) found that the existence of inflammatory cells within
the synovial sheath and epitenon during the healing process of
tendons prompts synovial fibroblasts and epitenon cells to augment
their fibronectin synthesis, thereby establishing a framework that
facilitates the subsequent formation of adhesions. Moreover, an
elevated M2 macrophage activity was detected in the fibrotic healing
process observed in murine flexor digitorum longus tendons with
Type II Diabetes (Ackerman et al., 2017). These fibrotic tendons
displayed diminished biomechanical strength when compared to the
repaired tendons of the nondiabetic control group. This excessive
fibrosis could potentially be attributed to the excessive production of
TGF-β1 by the M2macrophages, which has been associated with the
development of pathological fibrotic conditions in various tissues
(Colwell et al., 2005).

In summary, the complex role of M2 macrophage is greatly due
to the distinction between intrinsic and extrinsic healing processes
in tendon repair. Intrinsic healing, originating from within the
tendon, involves tenocytes and internal collagen synthesis, aiming
for the restoration of normal tendon structure and function (Stauber
et al., 2020). This contrasts with extrinsic healing, where repair is
facilitated by external cells including fibroblasts and macrophages,
often leading to the formation of adhesion (Voleti et al., 2012).
Therefore, while M2 macrophages are integral to anti-inflammatory
responses and promote tissue remodeling, which is beneficial in
early stages of tendon repair, their prolonged predominance in later
stages can inevitably promote extrinsic healing. Excessive
M2 activity may lead to an imbalance in the healing process,
deviating from the desired intrinsic repair pathway. Thus, in
developing therapeutic strategies for tendon injuries, a critical
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goal is to modulate macrophage activity to encourage a balance that
supports intrinsic healing, while mitigating the risk of excessive
extrinsic tissue formation. This balance is essential for optimal
tendon recovery, emphasizing the need for precise temporal and
spatial control of macrophage phenotypes during the
healing process.

5 Reprogramming of M1 to
M2 transition

An increasing amount of evidence suggests that macrophages
exhibit a vast spectrum of phenotypes and functions, shaped by
specific differentiation signals, surrounding cell types, and the
molecular context of different tissues. (Williams et al., 2018;
Lehner et al., 2019). This diversity is more intricately understood
through advanced technologies such as single-cell RNA-seq and
single-cell mass cytometry by time of flight, which allow for the
analysis of macrophage phenotypes with unprecedented resolution.
(Murray, 2017; Arlauckas et al., 2021). These studies reveal that
macrophages exist in a continuum of numerous subtypes,
emphasizing the complexity of their roles in various physiological
contexts. While the classification of macrophages into M1 and
M2 phenotypes provides a useful framework, it serves primarily
as a starting point for exploring the regulation of the optimal balance
between inflammation and regeneration during tendon healing.

5.1 Interaction between MSCs and
macrophages in M1 to M2 reprogramming

Delving into the mechanisms of macrophage transformation,
particularly the reprogramming from the M1 to M2 transition, it is
crucial to understand the dynamic interplay of macrophages within the
healing environment. A significant aspect of this reprogramming is the
interaction between macrophages and mesenchymal stromal/stem cells
(MSCs), which has been shown to critically influence tendon healing
(Maggini et al., 2010). MSCs modulate macrophage behavior by
inhibiting M1 markers such as TNF-α and iNOS, and promoting
M2 polarization, thereby resulting in improved tendon and ligament
healing (Abumaree et al., 2013). A recent study revealed that MSCs
facilitated the transition of monocytes into macrophages, heightened
the response tomicrobial stimuli, shifted naivemacrophages towards an
M1 state, and simultaneously reduced the activity of already activated
M1 macrophages while promoting M2 macrophage activation
(Vasandan et al., 2016). Despite the current lack of complete
understanding regarding the mechanisms underlying MSC-induced
macrophage polarization at various stages, several studies have
identified certain key factors. For instance, Németh et al. (2009)
found that MSCs preconditioned with LPS or TNF-α can modify
macrophage behavior through the release of prostaglandin E2
(PGE2), which interacts with macrophages through the EP2 and
EP4 receptors. Another study by Chamberlain et al. (2019) showed
that macrophage can be educated with extracellular vesicles (EVs)
instead of direct coculture with MSCs, suggesting a paracrine-mediated
mechanism by which MSCs polarize macrophages. Injured tendons
treated with these EV-educated macrophages exhibited improved
mechanical properties, reduced inflammation, and earlier

angiogenesis, therefore result in superior tendon healing. He et al.
(2019) demonstrated that exosomes derived from MSCs can drive
macrophages towards M2 polarization. Depletion of MSC-derived
exosomes resulted in a reduction in the M2 phenotype of
macrophages, suggesting that MSC transplantation induces
M2 polarization of macrophages and facilitates wound healing
through the transfer of microRNAs within exosomes (Figure 2).

5.2 Comprehensive insights of biomaterials
and mechanical stimuli in macrophage
polarization

The pivotal role of biomaterials and scaffolds in directing
macrophage polarization, a crucial aspect of tendon healing, cannot
be overstated. Recent studies have highlighted that material cues can
induce macrophage polarization towards either a pro-inflammatory or
pro-resolving phenotype, which in turn leads to prolonged inflammation
or tendon regeneration, respectively (Lin et al., 2018). (Hotchkiss et al.,
2016) highlighted the significance of biomaterials’ chemical properties in
this context, finding that different titanium-based surfaces affect
macrophage activation. This study underscores the influence of
surface properties on macrophage behavior and tissue remodeling.
Wang et al. (2022) demonstrated that phosphorylation of NF-κB is
an excellent unidirectional molecular switch to M1, which gives a
insightful solutions to the long-standing challenge of selective control
of macrophage polarization. Lu et al. (2023) inhibited M1 macrophages
by NF-κB inhibitor PDTC to significantly reduce tendon adhesion
formation and promote tendon healing, which firstly makes a record
in peritendinous adapted treatment. Further, the physical structure of
biomaterials plays a crucial role in macrophage phenotype modulation.
Notably, the elongated shape of M2 macrophages compared to
M1 macrophages has been leveraged to influence macrophage
polarization (Tylek et al., 2020). McWhorter et al. (McWhorter et al.,
2013) demonstrated that macrophage elongation, induced by aligned
topography, leads to M2 polarization, a process inhibited by disrupting
actin or myosin. Chen et al. (Chen et al., 2010) and Luu et al. (Luu et al.,
2015) further explored this concept, observing maximal elongation and
anti-inflammatory cytokine production in macrophages on substrates
with 400–500 nm wide grooves.

The elasticity of substrates also impacts macrophage behavior,
with studies showing that different stiffness levels affect activation
and cytokine profiles. (Patel et al., 2012). Comparisons of 2D and 3D
collagen matrices revealed that 3D environments are more
conducive to pro-resolving cytokine secretion, suggesting their
suitability for future studies in macrophage polarization.
(Friedemann et al., 2017). The influence of mechanical loading
on macrophage polarization during tendon healing is another
crucial aspect. Blomgran et al. (Blomgran et al., 2016) found that
mechanical loading delays the shift from M1 to M2 macrophages
and Treg cells during tendon healing in rats by influencing the
inflammatory response. This delay in macrophage polarization,
caused by mechanical loading, potentially impacts the timing and
quality of tendon repair. Conversely, Schoenenberger et al.
(Schoenenberger et al., 2020) reported that mechanical loading
tends to promote a shift toward an M2-like macrophage
phenotype, considered beneficial for tissue healing. These insights
highlight the need for further evaluation in biomaterial design to
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modulate macrophage polarization for improved tendon healing
outcomes. Understanding the interplay among biomaterials,
mechanical stimuli, and macrophage behavior is vital for
advancing tendon repair strategies.

5.3 Exploring specific biomaterials in
macrophage polarization and
tendon healing

With the growing focus onmanipulating the inflammatory response
via biomaterials and scaffolds, considerable research has been directed
towards developing various materials. These materials, each with unique
attributes and mechanisms, are pivotal in influencing macrophage
polarization, underlining their importance in tendon healing
advancements. Small Intestinal Submucosa (SIS), as a naturally
occurring decellularized matrix material, has been used to treat
tendon defects in animals and has shown the ability to enhance
tendon tissue regeneration. (Gilbert et al., 2007; Zhang et al., 2019).
Mao et al. (Mao et al., 2022) seeded tendon-derived stem cells (TDSCs)
onto a hydrogel coating of SIS to promote proliferation and enhance their
adhesion and differentiation capabilities. In a 12-week rat Achilles tendon
defect model, the combination of SIS scaffold and TDSCs promoted
tendon regeneration and induced polarization of macrophages towards
the M2 phenotype at the injured site, demonstrating their ability to
modulate the immune micro-environment.

Derived from the natural macromolecule amniotic membrane,
the decellularized amniotic membrane is another naturally derived

biomaterials that has gained prominence due to its unique
characteristics. (Tenenhaus, 2017). A recent study highlights the
effectiveness of using decellularized amniotic membrane in tendon
sheath repair to prevent adhesion. (Liu et al., 2018). This approach is
marked by its ability to reduce inflammation and tissue swelling, as
well as minimize adhesion formation. Additionally, the amniotic
membrane group demonstrated enhanced biomechanical properties
in the early postoperative phase compared to control groups. Studies
have shown that biologically derived materials, such as decellularized
surgical meshes, influence macrophage polarization, with a higher
presence of M2 macrophages correlating with positive tissue
remodeling outcomes. (Brown et al., 2012). Besides, functional
biomaterials developed from naturally derived polysaccharides for
tissue regeneration and pharmaceutical application have shown their
role on altering macrophage phenotypes and influencing the immune
response and tissue healing by recognizing cell membrane receptors.
(Li and Bratlie, 2021). These findings suggest the potential of
decellularized amniotic membrane as an effective biological
material for tendon sheath reconstruction, contributing to
improved healing and functionality while decreasing adhesion risks
by modulating macrophage activity towards a constructive
remodeling phenotype.

Recent trends in research have shown an increased focus on
synthetic biomaterials over naturally derived ones. This shift reflects
the versatile and customizable nature of synthetic materials, which
offers broader possibilities for manipulating macrophage
polarization in tendon healing. Cai et al. (Cai et al., 2023)
developed a novel high-strength nano-micro fibrous woven

FIGURE 2
MSC interacts with Macrophage.
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scaffold with native-like anisotropic structure and
immunoregulatory function for tendon tissue engineering
application. This scaffold, made from polylactic acid and silk
fibroin, effectively modulate the polarization of macrophages
towards the M2 phenotype, demonstrating significant
immunomodulatory capabilities. Additionally, research involving
a Wnt3a-modified nanofiber scaffold, as demonstrated in a study,
further underscores the potential of material-based approaches in
modulating macrophage polarization. (Wei et al., 2023). This
scaffold, designed to deliver the Wnt3a protein, not only
facilitated the early functional recovery of Achilles tendon
injuries in rats but also promoted the transition from an M1-
dominated macrophage microenvironment to an M2-dominated
one at the injury site, thus supporting tendon regeneration through
an immunomodulatory mechanism. Similarly, a study by Shen et al.
(Shen and Lane, 2023) revealed that extracellular vesicles from
primed adipose-derived stem cells can effectively modulate the
macrophage response towards M2 polarization, aiding in
reducing inflammation and enhancing tendon healing, providing
a complementary biological approach to the material-based
strategies.

A notable advancement in tendon repair is highlighted in the
work of Cai et al. (Cai et al., 2022), where the synergistic
combination of self-healing hydrogel and siRNA
nanoparticles presents a groundbreaking approach in
macrophage modulation. This innovative design integrates the
mechanical resilience and biocompatibility of hydrogels with the
targeted gene-silencing capability of siRNA nanoparticles.
Furthermore, the influence of biomaterial degradation
products on macrophage behavior is a critical factor in
peritendinous adhesion. (Wang S. et al., 2023). The findings
suggest that the degradation of polylactide nanofibers could
potentially modulate the inflammatory response and aid in
tissue remodeling through the STAT6 signaling pathway.
Their breakthrough of mechanism about Polylactic acid
degradation related M2 polarization around tendon can
address previously immunoreactivity challenging problems
within the field of re-adhesion.

Naturally derived biomaterials such as Small Intestinal
Submucosa (SIS) and decellularized amniotic membrane are
known for their biocompatibility and anti-inflammatory
properties, which are advantageous in reducing inflammation and
adhesion in tendon healing. On the other hand, synthetic materials
like polylactic acid and silk fibroin scaffolds are notable for their
customizability and control over macrophage responses. While
natural materials bring biological compatibility, synthetic
alternatives offer tailored functionality, though they might require
intricate engineering for optimal biocompatibility. This contrast
emphasizes the need for careful material selection in tendon repair,
based on specific therapeutic objectives.

5.4 The role of molecular pathway NF-κB in
macrophage polarization

Furthermore, the understanding of macrophage polarization
in tendon healing extends beyond material-based strategies to
molecular mechanisms. In this realm, the role of NF-κB as a

transcription factor is crucial. NF-κB plays a significant role in
promoting the classical activation of macrophages, typically
associated with the M1 phenotype. (Chen et al., 2017; Fan
et al., 2020). Lu et al. (Lu et al., 2023) encapsulated the NF-κB
inhibitor PDTC in electrospun polylactic acid (PLA) membranes,
demonstrating that inhibiting NF-κB in macrophages can reduce
tendon adhesion formation. Wang et al. (Wang et al., 2022) used
the selective NF-κB inhibitor JSH-23 to demonstrate its role in
macrophage polarization and the release of inflammatory
cytokines. They confirmed that phosphorylation of NF-κB
contributes to M1 polarization and the release of pro-
inflammatory cytokines. Moreover, Chen et al. (Chen et al.,
2022) loaded miR-29a into lipid nanoparticles incorporated
into electrospun fiber membranes, finding that miR-29a
downregulated NF-κB p65 expression and nuclear
translocation at the injury site, promoting M2 polarization
and inhibiting inflammation. These studies highlight the
importance of targeting molecular pathways such as NF-κB to
modulate macrophage behavior, providing insight into the
complex interplay of cellular and molecular mechanisms in
tendon healing.

However, it is crucial to maintain a balanced macrophage
response during tendon healing. While promoting
M2 polarization can suppress early inflammatory responses,
excessive M2 activity may lead to adverse outcomes, such as the
formation of adhesive tissues due to heightened fibroblast
proliferation and excessive extracellular matrix deposition.
(Colwell et al., 2005; Ackerman et al., 2017). Conversely,
M1 macrophages, despite their potential for causing collateral
tissue damage, are indispensable for effective tendon repair.
Studies have shown that reducing M1 macrophages and
neutrophils excessively does not improve Achilles tendon healing,
whereas a moderate decrease in the M1/M2 ratio appears to be
optimal for the healing process. (Chamberlain et al., 2011). This
underscores the importance of a balanced M1 and M2 macrophage
presence for optimal tendon recovery.

6 Conclusion

In conclusion, while this review has highlighted significant
advancements in understanding macrophage polarization in
tendon healing and adhesion mechanisms, the path forward calls
for focused exploration. Future research should aim to unravel the
complex molecular pathways influencing macrophage behavior,
particularly the role of non-coding RNAs. Additionally, the
development and clinical application of innovative biomaterials
that can modulate macrophage activity presents a promising
avenue for enhancing tendon repair and reducing adhesion
formation. These focused areas of research hold the potential to
significantly advance our understanding and treatment of
tendon injuries.
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