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Introduction: Achieving an adequate level of detail is a crucial part of any
modeling process. Thus, oversimplification of complex systems can lead to
overestimation, underestimation, and general bias of effects, while elaborate
models run the risk of losing validity due to the uncontrolled interaction of
multiple influencing factors and error propagation.

Methods: We used a validated pipeline for the automated generation of multi-
bodymodels of the trunk to create 279models based onCT data from93 patients
to investigate how different degrees of individualization affect the observed
effects of different morphological characteristics on lumbar loads. Specifically,
individual parameters related to spinal morphology (thoracic kyphosis (TK),
lumbar lordosis (LL), and torso height (TH)), as well as torso weight (TW) and
distribution, were fully or partly considered in the respective models according to
their degree of individualization, and the effect strengths of these parameters on
spinal loading were compared between semi- and highly individualized models.
T-distributed stochastic neighbor embedding (T-SNE) analysis was performed for
overarching pattern recognition and multiple regression analyses to evaluate
changes in occurring effects and significance.

Results: We were able to identify significant effects (p < 0.05) of various
morphological parameters on lumbar loads in models with different degrees
of individualization. Torso weight and lumbar lordosis showed the strongest
effects on compression (β ≈ 0.9) and anterior–posterior shear forces (β ≈ 0.7),
respectively. We could further show that the effect strength of individual
parameters tended to decrease if more individual characteristics were
included in the models.

Discussion: The induced variability due to model individualization could only
partly be explained by simple morphological parameters. Our study shows that
model simplification can lead to an emphasis on individual effects, which needs to
be critically assessed with regard to in vivo complexity. At the same time, we
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demonstrated that individualized models representing a population-based cohort
are still able to identify relevant influences on spinal loading while considering a
variety of influencing factors and their interactions.

KEYWORDS

spinal biomechanics, multi body dynamics, subject-specific modeling, individualization,
automated model generation, spinal loading

1 Introduction

Chronic back pain is a multi-factorial problem (Murtezani et al.,
2011; Rabey et al., 2019). Apart from psychological and social causes
(Tagliaferri et al., 2020), spinal degeneration is often associated with
back pain, but it also comes with a variety of possible sources itself
(Kalichman et al., 2009). Thus, age- or disease-related changes in
passive structures can lead to pain and disability, as well as
individual anthropometric conditions, such as body weight or
spinal alignment and deformities (Kalichman et al., 2017). In
vivo investigations on spinal loading are rare and usually
consider single individuals and spinal levels (Wilke et al., 2001;
Takahashi et al., 2006; Rohlmann et al., 2008), providing the
necessary basis for model validation but being unsuitable for
comparative studies on the potential influences of inter-
individual characteristics on spinal loads.

For systematic analyses of spine biomechanics, numerical
modeling and simulation have been widely established in the past
few years (de Zee et al., 2007; Christophy et al., 2012; Bruno et al.,
2015; Ignasiak et al., 2016). Although finite element simulation is
primarily suitable for the examination of deformation states and
internal stresses in single flexible bodies (Périé et al., 2002; Little and
Adam, 2015; Ghezelbash et al., 2016a; El Ouaaid et al., 2016;
Naserkhaki et al., 2016; Vergari et al., 2016; Akhavanfar et al.,
2018; Eskandari et al., 2019), multi-body modeling allows the
consideration of the biomechanics of the spine from a more
comprehensive perspective and can take multiple aspects of
mechanical loading into account (Lerchl et al., 2023). However,
the vast majority of published studies use generic models to focus on
the effects of factors such as sagittal alignment (Bruno et al., 2012;
Bruno et al., 2017; Galbusera et al., 2014; Bassani et al., 2019; Müller
et al., 2021) or body weight (Akhavanfar et al., 2018). Although those
studies are inevitable to examine isolated effects of the parameters of
interest, they fail to capture the complexity of clinical practice. Each
patient comes with a unique combination of influencing factors that
interact with each other and lead to individual loading scenarios. To
address this complexity, a recent trend toward individualized
models has emerged in the relevant literature (Burkhart et al.,
2020; Overbergh et al., 2020; Fasser et al., 2021; Lerchl et al.,
2022; Banks et al., 2023). Individualized modeling is usually
time-consuming, and therefore, respective models are often only
available in small sample sizes. However, in order to obtain
meaningful and statistically significant results, the analysis of
large and diverse patient cohorts is essential. Due to diagnostic
and clinical practice as well as large population-based cohort studies
(e.g., the German National Cohort and the UK Biobank), such
datasets are available for scientific interest, and during the past
decade, developments in data analytics—especially in the field of
artificial intelligence—have been providing promising tools to make

these datasets accessible for further analysis (Sekuboyina
et al., 2020).

For all the potential that individualized models hold, they also
pose special challenges. The balancing act between sufficient model
complexity and necessary simplifications is an integral part of any
modeling process, enabling us to draw distinct conclusions from the
obtained results. Taking into account multiple individual
characteristics inevitably increases model complexity, carries the
risk of generating noise, increases result variance, and therefore
makes it difficult to draw clear conclusions. On the other hand,
oversimplified models can also lead to biased results, such as the
overestimation of individual effects due to the neglect of other
parameters and their interrelations. The question of the right
level of detail is, therefore, crucial in biomechanical modeling. To
the best of our knowledge, there are no musculoskeletal modeling
studies published that examine the effects of multiple parameters on
spinal loading based on a large patient cohort and critically analyze
how different degrees of individualization influence simulation
results using a population-based cohort.

We used a pipeline for the automated generation of
individualized multi-body models of the trunk (Lerchl et al.,
2022) to investigate the influence of different degrees of model
individualization on the observed effects of morphological factors on
spinal loading.We analyzed how the effects of individual parameters
on spinal loading change with the increasing degree of
individualization of the underlying models. Highly individualized
models included a patient-specific spine as well as torso weight
(TW) and its distribution, which was combined with a generic
pelvis, sacrum, ribcage, head–neck, and simplified arms. We carried
out analyses based on a large patient cohort representing a diverse
population in terms of spinal morphology and alignment as well as
torso weight and its distribution (n = 93, M = 55, F = 38, and age =
70 ± 7.6) (Table 1). Parameters of interest were thoracic kyphosis
(TK), lumbar lordosis (LL), torso height (TH)TW, and left of mass
of the torso in anterior–posterior and superior–inferior directions
(CoM AP and CoM SI). According to the degree of
individualization, we combined individualized and uniform
representations of those parameters for different model
configurations.

2 Methods

2.1 Musculoskeletal modeling and
simulation

We used our pipeline for the automated generation of
individualized musculoskeletal models of the trunk, including
upper extremities and head–neck, to segment vertebral
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geometries, as well as torso weight and distribution, from computed
tomography (CT) scans of 93 patients. Therefore, we labeled and
segmented vertebrae using an automated deep learning-based
process (Sekuboyina et al., 2020) and subsequently derived
individual body weight and distribution, spinal alignment, and
points of interest for muscle and ligament attachments (Lerchl
et al., 2022). A medical professional clinically assessed TK and
LL based on the imaging data of each patient.

TH was measured from the upper endplate of T1 to the lower
endplate of L5. TW and CoM were calculated from the soft tissue
segmentation derived from the imaging data. Torso weight was
subdivided into segments for each vertebral level. For each segment,
the algorithm calculated its left of mass and total weight,
corresponding to its individual tissue distribution. We assume an
average density of 0.25 g/cm3 for the lungs, 0.96 g/cm3 for fat, and
1.06 g/cm3 for the remaining soft tissues (Pearsall et al., 1996;
Akhavanfar et al., 2018). Subsequently, we calculated the CoM
across all levels, considering its anterior (AP) and superior (SI)
directions in reference to L5 in our analysis. An overview of the
sample characteristics is summarized in Table 1.

For each patient, we generated three models using multi-body
simulation software SIMPACK 2023x (Dassault Systèmes, France):
one model with individualized spine and torso (Indiv), one with
uniform spine and individualized torso (uniSpine), and one with
uniform torso (uniTorso) and individualized spine. The uniform
spine was derived from patient data, representing the average
healthy spine of a 67-year-old male (TK = 29°, LL = 44°, and
TH = 0.45 m). The uniform torso weight was customized to a
TW of 23.3 kg, with fixed distribution and moment arms for
each level along the thoracolumbar spine. More precisely, highly
individualized models (Indiv) describe models with patient-specific
spine anatomy and torso weight and distribution. Semi-
individualized models, respectively, only include individualized
spinal anatomy (uniTorso) and individualized torso weight and
distribution (uniSpine) (Figure 1).

All models further included generic bodies for the head–neck,
ribcage, sacrum, pelvis, and simplified arms (Figure 2).
Intervertebral discs and paraspinal ligaments are modeled as
non-linear elastic elements. Intervertebral joints L1–L5 are
modeled as spherical joints, and the thoracic spine and ribcage
are simplified as one rigid body. We incorporated detailed generic
muscle architecture for the lumbar spine, including the rectus
abdominis (RA), internal oblique (IO), external oblique (EO),
psoas major (PM), quadratus lumborum (QL), multifidus (MF),
longissimus thoracis pars lumborum (LTL), iliocostalis lumborum
(IL), and interspinales lumborum (IS), based on data from the
literature (Christophy et al., 2012; Bayoglu et al., 2017).

We simulated four static loading tasks for each model, leading to
a total of 1,116 simulations. The investigated load cases were three

variations: upright standing in a neutral position, lifting 10 kg in
front of the chest with a distance of 25 cm from T3 (10 kg, 25 cm),
and lifting 10 kg with stretched arms with a distance of 55 cm (10 kg,
55 cm) and 30° flexion. Respective joint angles were assumed to be
40% sacral rotation and 60% lumbar flexion (Liu et al., 2019a), while
lumbar flexion was distributed as 25.5% for L1/L2, 23.1% for L2/L3,
20.4% for L3/L4, 18.5% for L4/L5, and 12.5% for L5/S1 (Wong et al.,
2006; Christophy et al., 2012). Muscle force estimation was carried
out using combined inverse dynamics and static optimization,
minimizing the sum of cubed muscle stress (Crowninshield and
Brand, 1981). We defined inequality constraints to account for
occurring moments in the intervertebral joints during each load
case and bound constraints to set maximal muscle stress to 1 MPa
(Bruno et al., 2015; Beaucage-Gauvreau et al., 2019; Favier et al.,
2021). To account for changes in posture due to the supine position
during CTs, a previous optimization was carried out to find the
optimal neutral standing position by optimizing lumbosacral sagittal
angles (Lerchl et al., 2022). Model validation was carried out based
on in vivo studies (Wilke et al., 2001; Takahashi et al., 2006;
Rohlmann et al., 2008) using two individualized models, showing
a good overall correlation with measured spinal loads (r = 0.98) and
muscle activity (r = 0.95). Model generation and validation are
described in detail by Lerchl et al. (2022). Lumbar loads were
evaluated based on compression and anterior–posterior shear
forces, which were defined locally in reference to the respective
functional spine unit (FSU). Thus, the compression force was
assumed to be normal to the upper-end plate of the lower
vertebra of the FSU, while the anterior–posterior shear force is
defined in the midplane of the vertebra orthogonal to the
compression force, pointing posteriorly.

2.2 Statistical analysis

First, we qualitatively examined our simulation results for
potential overarching patterns across all lumbar levels. Therefore,
we MinMax scaled absolute compression and shear forces under
consideration of respective signs and applied t-distributed stochastic
neighbor embedding (T-SNE) (Van der Maaten and Hinton, 2008),
a statistical method that maps high-dimensional data to a virtual
two- or three-dimensional space while preserving local similarities.
Therefore, higher-dimensional data are converted into a visualizable
space while concisely containing the underlying information. In
other words, similar data points are clustered closely, while those
that differ strongly are displayed with a matching distance. It is used
for non-linear dimension reduction, pattern recognition, and
visualization of high-dimensional data. In our case, this enabled
us to visually analyze possible trends overarching all lumbar levels.
We used the Python package scikit-learn for statistical analysis and

TABLE 1 Summary of average dataset characteristics, namely, the sample size (n), age, TK, LL, TH, TH, CoM AP, and CoM SI in reference to the sacrum.

n Age Av. TK [°] Av. LL [°] Av. TH [m] Av. TW [kg] Av. CoM AP [m] Av. CoM SI [m]

Full 93 70.0 ± 7.6 42.2 ± 11.5 37.4 ± 12.0 0.43 ± 0.03 25.1 ± 5.9 0.03 ± 0.01 0.21 ± 0.01

Males 55 70.9 ± 7.1 42.0 ± 11.6 36.3 ± 11.7 0.45 ± 0.02 27.0 ± 5.1 0.03 ± 0.01 0.21 ± 0.01

Females 38 68.6 ± 8.1 42.6 ± 11.5 38.9 ± 12.3 0.41 ± 0.02 22.4 ± 5.9 0.02 ± 0.01 0.20 ± 0.01
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applied T-SNE first to the complete dataset for compression
and anterior–posterior shear forces individually, as well as for
combined loading, including both components simultaneously.
Using color mapping, we subsequently analyzed potential
influences of considered individual factors (TK, LL, TH, TW,

CoM AP, and CoM SI) across all lumbar levels in
individualized models.

For quantitative load case- and level-specific analysis of possible
influences on lumbar loading, we used multiple regression based on
the least squares method. Independent variables were TK, LL, TH,

FIGURE 1
Model generation based on 93 patients with different degrees of individualization. For each of the overall 279 models, 4 static loading tasks
were simulated.
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TW, CoM AP, and CoM SI, while compression and
anterior–posterior shear forces were defined as dependent
variables. To ensure comparability despite different underlying
scales, we lefted and standardized the data. We compared the
regression coefficients β of the respective parameters of interest
as a measure of the observed effect strength. The significance of the
results was evaluated based on the determined p-value. Significance
levels were set to 0.05 (*), 0.01 (**), and 0.001 (***). According to the
individualized parameters in the respective models, we applied
multiple regression with three independent variables related to
spinal alignment (TK, LL, and TH) for uniTorso models and
three independent variables related to torso weight and
distribution (TW, CoM AP, and CoM SI) for uniSpine models.
For highly individualized models (Indiv models), we performed
multiple regression with all six independent variables. We
investigated changes in the observed effect strength (β) and
significance (p-value) of each parameter for different degrees of
model individualization. To investigate how the inclusion of
additional individual parameters affects the generated results, we
compared the results from highly individualized models (Indiv) with
those from only partly individualized models, namely, those with a
uniform spine and individualized torso weight and distribution
(uniSpine) or uniform torso and individualized spine (uniTorso).
Furthermore, the coefficient of determination (R2) was used to
evaluate whether the included parameters were able to explain
the observed variability.

3 Results

3.1 T-SNE analysis

We used T-SNE analysis to map results from all lumbar levels to
a two-dimensional space and therefore identify possible effects on
overall lumbar loading. We qualitatively investigated data scattering
for different model configurations and potential patterns due to
applied loading and morphological factors. Concisely clustered data
indicate similar loading overall lumbar levels, while high scattering
data represent vastly differing loading. T-SNE analysis for different
model configurations showed clear load case-specific clustering for
combined loading and compression for each model configuration as
well as in the full dataset, including all models (Figure 3). Although
semi-individualized models form closely grouped clusters for each
load case, transitions between clusters in highly individualized
models are rather smooth, indicating that the load cases are less
determining for resulting loads if models include more individual
parameters. Anterior–posterior shear forces, primarily resulting
from 30° flexion, tended to form a single cluster, while the
resulting groups for unloaded and loaded upright standing
merged into one another with a pronounced overlap for neutral
and loaded standing with 10 kg in front of the chest. However, this
effect was not present in models with a uniform spine, which showed
concise clustering for respective load cases. Furthermore, the
patterns in the results from those models indicated that the
results are highly dependent on one intrinsic factor.

Regarding the considered morphological parameters, a strong
gradient for LL in anterior–posterior shear forces overarching all
load cases could be detected (Figure 4N). Less pronounced but still
notable were the effects due to the anterior CoM location
(Figure 4Q) and superior CoM location (Figure 4R). Detailed
overarching effects of other parameters on lumbar loads could
not be identified conclusively over all load cases (Figure 4) and
needed to be investigated in detailed level- and load-case-
specific analyses.

3.2 Multiple regression

We carried out multiple regression analyses for each load case
and lumbar level to investigate the potential effects of various
morphological parameters on lumbar loading. For the sake of
clarity, we will focus on exemplary results at the L4/L5 level
under upright standing load conditions, while briefly addressing
other load cases. The results will be discussed specifically for
compression forces and anterior–posterior shear forces while
specifically emphasizing the changes due to model configuration.
Note that a negative β in compression indicates unloading, while in
anterior–posterior shear forces, it indicates anterior shifting of the
load. Descriptive statistics on the absolute L4/L5 loading from the
simulations are provided in Table 2.

3.2.1 Effects of torso weight and distribution
During lifting tasks, TW showed highly significant strong effects

(p < 0.001) on L4/L5 compression during for all model
configurations (Figure 5). Effect strength tends to decrease with
an increased degree of model individualization, especially in more

FIGURE 2
Sagittal CT images of one subject with the respective MBSmodel.
Segment masses for soft tissues are visualized by the green spheres.
For the sake of clarity, the dummy bodies for the arms consisting of
two scaled cylinders centrally attached to T3 are not shown here
[adapted from Lerchl et al. (2022)].

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Lerchl et al. 10.3389/fbioe.2024.1363081

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1363081


demanding load cases such as flexion and lifting tasks. In
comparison, the left of mass location barely influenced
compression forces.

TW led to more pronounced anterior shear forces for neutral
and moderately loaded upright standing (10 kg, 25 cm) for both
model configurations, while only significant correlations could be
detected between TW and posterior shear forces while lifting 10 kg
with stretched arms. Significant effects of the calculated left of mass
in the sagittal could only be detected for the anterior position in
uniSpine models, increasing posterior shear forces. No such effects
were observed for Indiv models.

3.2.2 Effects of sagittal alignment and torso height
For compression forces, strong unloading effects could be

correlated to TK in both model configurations during loaded
upright standing (Figure 6). However, effect strength decreased
notably in Indiv models compared to uniTorso models. LL and
TH showed significant weak effects for those models, while most of
these effects were no longer detectable in Indiv models.

For anterior–posterior shear forces, LL showed the strongest
effects for both model configurations. In this study, the respective
effects hardly differ depending on the degree of individualization.
Looking at the influence of TK on shear forces, significant

FIGURE 3
Load case-specific T-SNE analysis for the full dataset (A, E, I) and each model configuration isolated (B–D, F–H, J–L). Semi-individualized models
(uniSpine and uniTorso) showed concise clustering, especially in combined loading and compression (C, D, G, H), while the inclusion of more individual
parameters (Indiv) showed that results due to specific load cases were more similar to each other while still preserving clear clusters (B, F). Note that only
individualization of the spine (K) resulted in comparable scattering in anterior–posterior shear forces as individualization of both the torso and spine
(J). X and y axes represent a virtual space, which serves for projection and is not directly interpretable in terms of the measure and scale of the
underlying data.
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correlations were detected in terms of a posterior shift of force for
increased TK. These effects were even less pronounced in uniTorso
models than in Indiv models. Similar trends could be observed for
other load cases, whereas no more significant effects of TK could be
observed in uniTorso models.

3.2.3 Fit of the applied regression models
Based on the coefficient of determination R2 we evaluated, we

determined to what extent the appliedmultiple regression analyses were
able to explain the observed variability (Table 3). For uniSpine models,
multiple regression with only three independent variables (TW, CoM
AP, and CoM SI) was able to explain the variability almost completely
for all load cases (R2 > 0.93). In comparison, for uniTorso models, the
applied regression models showed a rather poor fit (R2 < 0.47). For
models,R2 during 30° flexionwas notably lower than in other load cases.

4 Discussion

We investigated how model individualization affects results
from musculoskeletal modeling studies on lumbar load
estimation. One objective was to determine whether significant
effects and clear trends can still be identified despite the
increased variance in the results that come with increased model
individualization. Furthermore, we aimed to investigate how the
effect strengths of single parameters change compared to their

respective results in semi-individualized models. Our study
indicates that model individualization in combination with large
patient cohorts holds the potential to obtain statistically significant
results on relevant influencing factors on spinal loading while
considering multiple aspects and their interactions. When
comparing to semi-individualized models, we could detect
changes in effect strength and significance for single influencing
parameters, which might lead to misconceptions on the relevance of
those parameters for spinal loading when only considering strongly
simplified models.

4.1 Results from multivariate analysis

Load case-specific T-SNE analysis showed that for all degrees of
individualization, similar trends could be detected (Figure 3).
However, it is noticeable that the clusters from simulations with
semi-individualized models (uniTorso and uniSpine) were
considerably more compact than those from highly
individualized models (Indiv). This already shows how different
degrees of individualization in the model can influence the results.
Considering only semi-individualized models could lead to the
assumption that different load cases will result in clearly differing
lumbar loading. However, including more individual parameters
diffuses the cluster and thus weakens this apparent correlation while
still preserving the initial trend.

FIGURE 4
T-SNE plots for combined (A–F), compression (G–L) and anterior-posterior shear (M–R) loading in highly individualizedmodels. T-SNE plots based
on individualized models show clear clustering for 30° flexion and for LL across all load cases based on anterior–posterior shear forces (N). The effects of
other parameters need to be investigated in detailed level- and load-case-specific analyses. X and y axes represent a virtual space that serves for
projection and is not directly interpretable in terms of the measure and scale of the underlying data.
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For detailed analysis, we performed multiple regression analyses
on simulation results for each load case and level separately. In this
context, we focused on the potential effects of torso weight and
distribution, as well as sagittal alignment and torso height. In
agreement with the literature, TW had the strongest effect for
both model configurations (Han et al., 2013; Hajihosseinali et al.,
2015; Ghezelbash et al., 2016b). Compression forces were highly
affected by TW for both the uniSpine and Indiv models, with
decreasing effect strength when individualization was increased.
Thus, although both model configurations indicate a relevant
influence of TW, one might overestimate the effect of torso
weight on lumbar loading when only considering generic models.

Regarding the effects of LL on anterior–posterior shear forces,
the tilting of the lumbar vertebrae might most likely be one
explanation for this observation. However, this strictly geometric
explanation does not address the effect of TK on lumbar loading.

Although the observed effects of LL (decreasing compression and
increasing anterior shear) are in accordance with the literature
(Müller et al., 2021), the observed effects of TK did not support
findings from published studies, stating that spinal compression
forces increased with increasing TK, with the most pronounced
effects in the thoracolumbar and lumbar regions (Bruno et al., 2012).
In our study, no significant correlation between TK and
compression could be found for the T12/L1 level for both the
Indiv and uniTorso models, while significant unloading effects
were detected for L4/L5. Apart from the effect of posture, which
was additionally stated by Bruno et al. (2012), one reason for this
discrepancy could be that increased TKmight also be correlated with
other morphological factors, such as LL, and therefore leads to
changes inmuscle activity, which could not be assessed using generic
models, where changes in TK are specifically induced without
including other possible influences that might come along. To

TABLE 2 Statistics on simulation results, exemplary for level L4/L5.

Compression [N]

Load case Model configuration Count Mean Std Min 25th Perc. 50th Perc. 75th Perc. Max

Neutral Indiv 93 604.8 115.7 405.0 518.0 578.3 671.6 933.3

uniTorso 92 584.0 63.8 479.1 539.0 572.6 622.1 799.2

uniSpine 93 589.5 104.4 367.9 522.6 571.8 643.0 893.4

30° Flexion Indiv 88 1,650.9 379.2 1,073.8 1,424.6 1,548.3 1764.3 3,625.2

uniTorso 89 1,543.4 265.3 1,325.0 1,437.3 1,487.7 1549.3 3,494.7

uniSpine 93 1,644.0 379.0 921.7 1,405.8 1,586.7 1789.6 2,867.2

10 kg, 25 cm Indiv 93 964.0 152.5 692.3 850.8 928.6 1059.5 1,393.8

uniTorso 93 961.1 79.6 816.2 914.8 949.9 989.8 1,291.7

uniSpine 93 1,004.4 159.1 707.0 893.8 981.4 1090.9 1,516.0

10 kg, 55 cm Indiv 93 1,677.1 268.7 1,241.2 1,507.7 1,639.8 1796.1 2,755.5

uniTorso 93 1,655.4 166.9 1,381.4 1,550.3 1,622.7 1696.8 2,326.9

uniSpine 93 1,738.6 341.4 1,211.0 1,501.6 1,649.7 1879.6 2,895.7

Shear AP [N]

Neutral Indiv 93 −99.6 84.9 −312.2 −146.6 −95.9 −42.5 119.4

uniTorso 92 −92.0 79.1 −334.5 −137.9 −90.3 −35.9 89.6

uniSpine 93 −125.6 16.1 −169.9 −135.3 −124.2 −116.2 −79.4

30° Flexion Indiv 88 −108.0 167.8 −734.5 −169.0 −98.0 −3.6 264.1

uniTorso 89 −101.1 155.3 −777.4 −156.5 −95.7 −5.3 247.0

uniSpine 93 −99.5 51.3 −522.1 −108.1 −100.9 −89.6 62.8

10 kg, 25 cm Indiv 93 −120.6 107.3 −476.1 −166.2 −105.6 −46.9 159.2

uniTorso 93 −115.9 106.2 −522.0 −167.6 −106.2 −50.3 136.1

uniSpine 93 −136.7 25.6 −262.8 −146.3 −131.3 −119.5 −89.5

10kg, 55 cm Indiv 93 −219.8 179.0 −916.4 −294.9 −202.1 −95.2 275.2

uniTorso 93 −213.6 183.7 −978.9 −294.6 −203.1 −93.0 240.4

uniSpine 93 −212.4 48.0 −517.9 −232.0 −220.8 −198.6 −47.6

Count is the number of successful optimizations. Note that 93 is the maximum number of optimizations carried our per load case and model configuration.
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check for such a correlation, we performed linear regression
analysis, resulting in a moderately significant correlation between
LL and TK (β = 0.4) but a low R2 (0.16), indicating that only a small
part of the variability of thoracic TK can be correlated to LL. In
addition, an influence of spinal alignment on the lever arms of the
back muscles is conceivable, leading to potentially altered muscle
activation and, therefore, changes in resulting lumbar loading. This,
however, goes beyond the scope of this study and should be
investigated separately.

Significant, slightly unloading effects of TH could mainly be
observed for compression forces in upright standing in models with a
uniform torso. This effect vastly disappeared in individualized models,
making TH the least relevant parameter for lumbar loading in the
present study. Assuming that taller subjects tend to have larger vertebrae
and, therefore, larger lever arms of respective muscles, leading to
decreased necessary muscle forces, could be one possible explanation
for this slightly unloading effect (Han et al., 2013; Ghezelbash et al.,
2016b). However, this correlation was not specifically investigated in this
study and should be addressed in future work.

Overall, a decrease in effect strength and significant correlations
with increasing model individualization could be detected, which
supports the thesis that vast model simplification can lead to an

overestimation of the influence of single parameters. Most striking is
the observation that rather strong significant correlations were
detected for the effect of TW in anterior–posterior shear forces,
which either vanished completely or decreased strikingly with
increased model individualization. Anterior–posterior shear
forces, therefore, indicate that there are other strong influences
that were not considered in this study. This observation underscores
the relevance of considering multiple aspects to draw meaningful
conclusions from numerical simulation studies.

Comparing the generated forces from highly and semi-
individualized models (Figure 7) showed that uniSpine models,
in particular, led to high deviation when compared to Indiv
models. This effect is more evident for anterior–posterior shear
forces, which remain in the same range despite different body
weights. This can be observed in different load cases. This
emphasizes the relevance of including individualized spines in
musculoskeletal modeling when it comes to analyzing large,
diverse patient cohorts. Observed outliers could be assigned to
individuals with morphological characteristics that differed
strongly from the average. Thus, extreme compression forces
were mainly observed in one subject with a calculated torso
weight of more than 40 kg, which is an increase of almost 20 kg

FIGURE 5
Effects of torso weight and distribution on compression and anterior–posterior shear in L4/L5. Significance levels were set to 0.05 (*), 0.01 (**), and
0.001 (***), and error bars depict the standard error of the estimate. Regarding anterior–posterior shear forces, includingmore individualized parameters
in the models (Indiv) leads to a decrease in effect strength and even loss of significance, while effects are highly significant in semi-individualized models
(uniSpine). Similar but less pronounced effects could be detected for compression.
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FIGURE 6
Effects of TK, LL, and TH on compression and anterior–posterior shear forces in L4/L5. Significance levels were set to 0.05 (*), 0.01 (**), and 0.001
(***), and error bars depict the standard error of the estimate. Effect strength for TK and LL decreased for compression forces, when models were highly
individualized (Indiv) compared to semi-individualized (uniTorso).

TABLE 3 Summary of R2 values from regression analysis in L4/L5 during neutral standing (neutral), 30° flexion, lifting of 10 kg in front of the chest (10 kg,
25 cm), and with stretched arms (10 kg, 55 cm).

Model configuration Independent variables Load case R2 (FCompr) R2 (FShearAP)

Indiv TK, LL, TH, TW, CoM AP, CoM SI Neutral standing 0.75 0.54

30° flexion 0.44 0.29

10 kg, 25 cm 0.87 0.52

10 kg, 55 cm 0.70 0.48

uniTorso TK, LL, TH Neutral standing 0.11 0.48

30° flexion 0.09 0.32

10 kg, 25 cm 0.47 0.47

10 kg, 55 cm 0.29 0.45

uniSpine TW, CoM AP, CoM SI Neutral standing 0.99 0.92

30° flexion 0.96 0.11

10 kg, 25 cm 0.97 0.69

10 kg, 55 cm 0.93 0.38
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compared to the average of the cohort. In anterior–posterior shear
forces, such extreme values were mainly detected in subjects with
conspicuous features in terms of spinal alignment, such as scoliosis
or hypolordosis.

4.2 Limitations and future perspectives

There are several limitations to this study. The used dataset with
an overall sample size of 93 individuals and an average age of
70 years (Table 1) represents only a small sample of an elderly
population and thus does not allow deriving conclusions for a
general population. We did not directly include the influence of
sex, age, or medical history in this study since respective information
on their related effects on biomechanical properties was not
available. However, associated parameters might be influential to
spinal biomechanics in terms of individual mechanical properties of
connective tissue, muscle morphology, or potential fat infiltration.
Due to the lack of relevant information in our dataset, we included
data from the literature (Panjabi et al., 1976; Christophy et al., 2012;
Bayoglu et al., 2017). Therefore, referring to “model
individualization” throughout this work, it should be emphasized
that even highly individualized models here are only partly
individualized, neglecting the variability in those parameters.
Individual characteristics of the abdominal muscles, such as
physiological cross-sectional areas or potential fat infiltration, can
be associated with reduced capacity for muscle force production
(Avesani et al., 2023) and, therefore, could lead to changes in spinal
loading. In the literature, studies can be found that correlate these
parameters to spinal degeneration and low back pain (Shi et al.,
2022; Liao et al., 2024). Thus, they should be considered in
individualized musculoskeletal modeling of the torso in the
future. Although respective muscle-related parameters can be

derived in vivo from imaging data (Niklasson et al., 2022), the
mechanical properties of passive structures can currently only be
determined with the help of in vitro studies (Panjabi et al., 1976;
Pintar et al., 1992; Ashton-Miller and Schultz, 1997; Heuer et al.,
2007; White, 2022), which require the isolation of the structure of
interest to mount them in respective testing machines and therefore
cannot represent the mechanical properties of the modeled subject.
In order to obtain consistent datasets for biomechanical models,
alternative, noninvasive methods must be developed to determine
these parameters in large subject cohorts, e.g., using a combination
of experimental studies, multimodal imaging, and artificial neural
networks (ANNs), as suggested in earlier publications (Lerchl et al.,
2023; Nispel et al., 2023). Furthermore, we neglected the effects of
intraabdominal pressure (IAP) on spinal biomechanics. However,
individual IAP measurements are usually carried out via the urinary
bladder and require standardized conditions, which is why
respective information is not accessible in large patient cohorts
(Malbrain et al., 2006). However, the biomechanical relevance of the
IAP has been subject to several studies in the past, stating its
unloading and stabilizing effects on the spine (Arjmand and
Shirazi-Adl, 2006; Mokhtarzadeh et al., 2012; Liu et al., 2019b;
Guo et al., 2021). Thus, the IAP should be included in future
studies, although not necessarily in a patient-specific manner.

Apart from general model-related limitations, which are
discussed in detail by Lerchl et al. (2022), we want to emphasize
one major limitation related to muscle modeling. Muscles are
modeled as simple point-to-point actuators acting on a straight
line between the origin and insertion of the respective fascicle.
Considering especially multi-articulate muscles, this can induce
bias, e.g., due to individual alignment or vertebral geometries.
For example, in models with a pronounced LL, this can lead to
lever arms that are considerably larger compared to models that
redirect muscle fascicles along the spine. In the future, this should be

FIGURE 7
Comparison of generated forces from highly and semi-individualized models. The straight black line represents the perfect fit and is only added for
orientation.
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addressed by including via-points along the spine to ensure realistic
lines of action and, consequently, lever arms.

Complex models require the conscientious application and
reflection of appropriate analyses. Evaluation of the coefficients
of determination (R2) showed that most of the variability in
uniSpine models could be explained by TW and CoM, while R2

decreased strikingly for uniTorso models. This can most likely be
explained by the fact that the included individual representation
of the trunk weight as simple point masses in a calculated left of
mass does not induce further variability in the models apart from
the parameters considered in the regression (TW, CoM AP, and
CoM SI). However, individualization of the spine during this
study included more parameters than only TK, LL, and TH, such
as individual vertebral geometries. For one thing, this leads to a
variation in the deformation of the included passive structures,
namely, the intervertebral disc and the paraspinal ligaments,
during joint deflection. The elastic properties produce a
mechanical response in the form of forces and moments in
the respective structures. In combination with individual
vertebral geometries, this will result in individual additional
loading for each subject and, therefore, individual loading of
the intervertebral joints. On the other hand, individual vertebral
geometries may affect lever arms for muscles and therefore
muscle activation, ultimately resulting in lumbar loading,
which could also be the reason for slightly unloading effects
with increased TH. This might be one reason for the poor fits
detected during 30° flexion for model configurations with
individualized spines. It is noticeable that models that neglect
the influence of TW (uniTorso) generally show the poorest fit of
the regression model. The overall decrease in the R2 value could
be an indicator that TW is the most important determinant of
spinal loading. If this is neglected, other parameters, such as
vertebral geometries, become more evident and thus reduce the
proportion of variability explained by the applied regression
model. In the future, it will be essential to examine the
underlying datasets in depth with regard to those parameters
and potential interrelations between them prior to simulation in
order to enable a profound and responsible interpretation of the
intended correlation analyses.

Finally, an ultimate evaluation of the different approaches
regarding their accurate representation of the in vivo
biomechanics of a diverse population cannot be made directly.
We validated our highly individualized model of a single male
based on spinal loading and muscle activation of few subjects
from in vivo data in a previously published study (Lerchl et al.,
2022), but respective data are usually available only for small sample
sizes due to the invasive character of in vivo measurements.
Therefore, a population-based validation of the models in their
different configurations is not feasible. However, there are several
indications in the literature that model individualization in
biomechanics leads to more accurate and realistic results
(Akhundov et al., 2022; Davico et al., 2022; Meszaros-Beller
et al., 2023). Thus, Davico et al. (2022) explored the influence of
individualization in neuromusculoskeletal knee models of children.
Based on experimentally derived data, models with different degrees
of neuromusculoskeletal individualization were developed, and the
obtained muscle and joint reaction forces were evaluated regarding
physiological plausibility. In that context, the authors concluded that

personalization of musculoskeletal anatomy and muscle activation
patterns had the largest overall effect (Davico et al., 2022).
Furthermore, the diversity of potential causes for spinal
degeneration also supports the assumption that the strong
reduction of individual influencing factors does not do justice to
the complexity of spinal biomechanics (Kalichman et al., 2017;
Kalichman et al., 2009). Thus, we are convinced that
consideration of biological variability in musculoskeletal
modeling is necessary and will increase a profound
understanding of the complex interaction of various parameters
influencing spinal loads and eventually leading to spinal
degeneration due to overloading. One possible way to deal with
such limited validation possibilities is to investigate potential
correlations between spinal loading and clinical parameters, such
as possible degenerative changes, based on large-scale, longitudinal
studies (e.g., the German National Cohort). This can help us
understand whether and how morphological and biomechanical
characteristics can actually lead to mechanical overloading and,
eventually, spinal degeneration.

5 Conclusion

In this study, we systematically investigated the effects of
different degrees of individualization in multi-body models of the
spine on generated lumbar loads and their potential correlations with
morphological parameters. We used our validated pipeline for the
automated generation of multi-body models of the trunk to create
279 models based on CT data from 93 patients. The influence on
observed correlations was analyzed with respect to significance, effect
strength, and explainability of observed variability in the results from
static simulations based on multiple regression analysis. We were
able to identify significant effects on lumbar loads for all load cases in
models with different degrees of individualization. However, our
results show that the degree of individualization influences the
observed effect strength of individual parameters. For instance,
in semi-individualized models, TW was the main influencing
factor in both compression and shear loading. Including
additional individualized parameters, however, showed that LL is
more determinant for anterior–posterior shear forces and thus
relatively reduces the importance of TW in this aspect. Based on
the results of this study, we conclude that model individualization
in combination with large patient cohorts holds the potential
to obtain statistically significant results on relevant influencing
factors on spinal loading while considering multiple aspects and
their interactions. They can help identify potential risk factors or
mechanical overloading based on data that represent the complexity
of spinal biomechanics in a more realistic way than generic models
can. However, a special focus should be put on the systematic and
vastly holistic consideration of included parameters in applied
analyses to be able to draw meaningful conclusions from studies
including individualized models.
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