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Developing efficient bioprocesses requires selecting the best biosynthetic
pathways, which can be challenging and time-consuming due to the vast
amount of data available in databases and literature. The extension of
the shikimate pathway for the biosynthesis of commercially attractive
molecules often involves promiscuous enzymes or lacks well-established
routes. To address these challenges, we developed a computational workflow
integrating enumeration/retrosynthesis algorithms, a toolbox for pathway
analysis, enzyme selection tools, and a gene discovery pipeline, supported by
manual curation and literature review. Our focus has been on implementing
biosynthetic pathways for tyrosine-derived compounds, specifically L-3,4-
dihydroxyphenylalanine (L-DOPA) and dopamine, with significant applications
in health and nutrition. We selected one pathway to produce L-DOPA and two
different pathways for dopamine–one already described in the literature and a
novel pathway. Our goal was either to identify the most suitable gene candidates
for expression in Escherichia coli for the known pathways or to discover
innovative pathways. Although not all implemented pathways resulted in the
accumulation of target compounds, in our shake-flask experiments we achieved
a maximum L-DOPA titer of 0.71 g/L and dopamine titers of 0.29 and 0.21 g/L for
known and novel pathways, respectively. In the case of L-DOPA, we utilized, for
the first time, a mutant version of tyrosinase from Ralstonia solanacearum.
Production of dopamine via the known biosynthesis route was accomplished
by coupling the L-DOPA pathway with the expression of DOPA decarboxylase
from Pseudomonas putida, resulting in a unique biosynthetic pathway never
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reported in literature before. In the context of the novel pathway, dopamine was
produced using tyramine as the intermediate compound. To achieve this, tyrosine
was initially converted into tyramine by expressing TDC from Levilactobacillus
brevis, which, in turn, was converted into dopamine through the action of the
enzyme encoded by ppoMP fromMucuna pruriens. This marks the first time that an
alternative biosynthetic pathway for dopamine has been validated in microbes.
These findings underscore the effectiveness of our computational workflow in
facilitating pathway enumeration and selection, offering the potential to uncover
novel biosynthetic routes, thus paving the way for other target compounds of
biotechnological interest.

KEYWORDS
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tools, bioprocesses, pathway design, Escherichia coli

1 Introduction

The shikimate pathway links the carbohydrate metabolism
with the synthesis of aromatic amino acids, involving the
formation of several aromatic intermediates, which are
precursors to a great variety of secondary metabolites with
applications in the pharmaceutical and food industries
(Averesch and Krömer, 2018). Thus, the aromatic nature of
this pathway holds a huge commercial interest with the
potential for replacing fossil fuel-derived aromatics and plant-
based compounds. However, the complex nature of some of these
compounds combined with the lack of established pathways and
known enzymes/genes impairs the development of efficient
microbial cell factories when solely relying on a manual
revision of databases and literature.

Of particular interest are compounds derived from tyrosine,
such as L-DOPA and dopamine, which have significant industrial
and commercial value as prescription drugs for the treatment of
various medical conditions (Min et al., 2015; Juárez Olguín et al.,
2016). Recent research has focused on producing these compounds
in Escherichia coli to establish efficient and sustainable bioprocesses.
Two types of enzymes, tyrosinase (Tyr) and p-hydroxyphenylacetate
3-hydroxylase (PHAH), have been investigated for the conversion of
tyrosine into L-DOPA. Subsequently, L-DOPA can be converted
into dopamine through the action of DOPA decarboxylase (DDC).
In recent years, despite the abundance of protein candidates
catalyzing these reactions, only a few of them have been
explored. Maximum reported L-DOPA titers obtained with
PHAH are in the 700 mg/L range (Fordjour et al., 2019), while
Tyr allowed to obtain up to 300 mg/L. However, when the ddc gene
is added, dopamine accumulation exceeded 1 g/L (Nakagawa
et al., 2011).

In recent years, retrosynthetic and enumeration
computational tools have emerged to harness continuously
curated and updated metabolic network databases, greatly
facilitating the design of novel and efficient biosynthetic
pathways. The diversity in tools is associated with differences
in metabolic network representation, such as the use of graphs or
stoichiometric matrices, and the specific search algorithms they
employ, including graph searches, flux balance analysis, or
retrosynthetic searches. The selection of these tools often
hinges on several factors, including the nature of the target

metabolites and the preferred host organism (Wang et al.,
2017; Sveshnikova et al., 2022b). After (re)constructing a
specific pathway, it becomes necessary to assign an enzyme
sequence to each catalytic reaction for the in vivo
implementation. To facilitate this task, a range of
bioinformatics tools is available to mine candidate protein/
gene sequences. These tools employ diverse approaches,
including molecular simulations, density functional theory, or
partitioned quantum mechanics and molecular mechanics, or
machine learning techniques (Alderson et al., 2012; Rahman
et al., 2014; Mellor et al., 2016; Carbonell et al., 2018).

To address the challenges in aromatic compound production
while expanding nature’s portfolio, we have established a
computational workflow that combines pathway design tools
based on enumeration, such as FindPath (Liu et al., 2015), and
retrobiosynthesis search algorithms, in particular BNICE.ch
(Hatzimanikatis et al., 2005) and RetroPath2.0 (Delépine et al.,
2018); a Retrotoolbox for pathway analysis [ShikiAtlas
(Mohammadi-Peyhani et al., 2021; Sveshnikova et al., 2022a)];
enzyme selection tools – BridgIT (Hadadi et al., 2019) and
Selenzyme (Carbonell et al., 2018) – and an in-house gene-
finding pipeline. This workflow aims to efficiently design
pathways for the production of high-value tyrosine-derived
compounds in Escherichia coli, including L-DOPA and dopamine.

From the generated pathways, we considered biochemical
routes containing known enzymes or orphan reactions (which
lack protein or gene sequences associated), favoring maximum
carbon conservation and minimal length. BridgIT and Selenzyme
were used to assign an Enzyme Commission (EC) number to each
reaction and provide a first indication of appropriate gene
candidates, and an in-house structure-based gene discovery
pipeline ranked the most suitable gene candidates for
expression in E. coli, focusing on prokaryotic sources to
prevent issues arising from protein solubility and post-
translational modification. This information was
complemented with relevant data retrieved from literature and
databases, giving preference to enzyme variants with enhanced
activity and previously validated expression in E. coli. The
designed pathways were then implemented in vivo using
molecular biology methods, with various designs tested.

In Figure 1, we provide a schematic representation of this
comprehensive workflow.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Ferreira et al. 10.3389/fbioe.2024.1360740

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1360740


2 Materials and methods

2.1 Pathway generation and analysis

Different computational frameworks utilizing enumeration –

FindPath (Liu et al., 2015) – and retrobiosynthesis search algorithms
– BNICE.ch (Hatzimanikatis et al., 2005) and RetroPath2.0
(Delépine et al., 2018) – were employed to generate pathways for
producing target aromatic compounds derived from the shikimate
pathway, specifically from tyrosine. Since the results obtained using
the various algorithms regarding the compounds studied in this
paper were similar, the ShikiAtlas Retrotoolbox (https://lcsb-
databases.epfl.ch/SearchShiki) was chosen as the platform for
analyzing biosynthetic pathways for L-DOPA and dopamine due
to its user-friendly interface. Considering tyrosine as the starting
compound, the maximum number of reaction steps was set to 30,
and the minimum conservation atom ratio (CAR) was set to 0.34.
The pathways were ranked according to the length and the average
CAR. ShikiAtlas Retrotoolbox is linked with the computational
method and online tool BridgIT (Hadadi et al., 2019), which
allows to search and attribute an EC number for each
biotransformation constituting the enumerated pathways. The
tool Selenzyme (http://selenzyme.synbiochem.co.uk/) (Carbonell
et al., 2018) was also used for the same purpose to complement
the information obtained from BridgIT. Both tools also provide a
first indication of appropriate gene sequences for the desired
transformations.

2.2 Gene selection: gene discovery and
enzyme engineering (GDEE) pipeline

The in silico search for enzymes capable of catalyzing the
production of L-DOPA, dopamine and tyramine was conducted
by an in-house structure-based automated pipeline, called Gene
Discovery and Enzyme Engineering (GDEE). Briefly, this pipeline
uses an existing 3D structure of a given enzyme, or a predicted 3D
model in case the structure does not exist, in order to infer the
binding affinity of a given ligand (substrate, intermediate or
product), representing the reaction we aim to probe or optimize.
As a necessary simplification in this high-throughput approach,
binding is considered a proxy for catalytic efficiency. The platform
can perform enzyme optimization, where selected positions of a
given active site can be mutated (up to hundreds of thousands of
enzyme variants) to optimize the enzyme for a transformation, or
gene discovery, where natural enzymes are scanned in order to find
the ones most prone to catalyze the transformation.

In this work, the gene discovery pipeline was employed.We used
the 3D structure of an enzyme, homologous to the candidate
enzymes, that is known to catalyze the target or a similar
reaction as a starting template to model all enzymes (sequences)
that we want to test. The list of candidate enzymes to perform the
target reaction comes from a BLASTp search, against the Swiss-Prot
database, of all enzyme sequences that are at least 20% identical
(minimum coverage of 80%) to the template. In this case,
15 homology-based models are built with Modeller (Šali and
Blundell, 1993) for each sequence found in the previous step. To
rank all candidate enzymes based on their ability to perform the

desired reaction, the five best models (as ranked by the objective
function of Modeller) of each candidate enzyme are used to dock a
ligand, using AutoDock Vina (Trott and Olson, 2010; Eberhardt
et al., 2021), that represents the reaction limiting step. To ensure that
ligands exhibit catalytically relevant orientations, distance
constraints between atoms from the ligand and the candidate
enzyme were used to filter the docking results. After the filtering
step, the computed binding affinity is used as a proxy for catalytic
efficiency and, thus, utilized to rank the candidate enzymes.

In the case of the reaction catalyzed by Tyrosinase, a compound
derived from tyrosine, with another deprotonated oxygen attached
to the ring (to mimic a reaction intermediate) was used in the
docking calculations to focus the results on the ability of the
candidate enzymes to add another hydroxyl group to the phenol
ring in an ortho position. The box size for docking with AutoDock
Vina was set to 18 Å × 15 Å × 16 Å and the exhaustiveness to 100.
Docking results were filtered to only allow conformations where the
deprotonated oxygen of the phenol is at a distance lower or equal
than 3.3 Å from the copper ions present in the active site, and that
the ortho carbons from the L-tyrosine substrate are at a distance
higher than 6.7 Å from the alpha carbon of the E223 residue.

For the DDC reaction, L-DOPA was used as the ligand in the
docking calculations to select enzymes that could accommodate the
substrate with its amino group in contact with the carbon C4′ of the
LLP residue Lys319 linked to the pyridoxal phosphate (PLP)
coenzyme in its ζ-amino group, which is crucial for the
mechanism of these enzymes. The box size was set to 13 Å ×
13 Å × 13 Å and the exhaustiveness to 200. Docking results were
filtered to only allow conformations where the nitrogen atom of the
L-DOPA substrate was not more than 4 Å away from the C4′ of LLP,
and that the C14 of L-DOPA is at a distance lower or equal than
7.5 Å from the alpha carbon of the K295 residue, to guarantee that
the aromatic ring was buried in the active site and that the acid group
was exposed to the solvent.

For the tyrosine decarboxylase, L-tyrosine was used as the
ligand in the docking calculations to find enzymes that could
accommodate the substrate with its amino group in contact
with the oxygen from the carbonyl functional group of the PLP
coenzyme, which is pivotal in the mechanism of these enzymes.
The box size was set to 19 Å × 20 Å × 20 Å and the
exhaustiveness to 200. Docking results were filtered to only
allow conformations where the nitrogen atom of L-tyrosine was
not more than 4 Å away from the oxygen of the carbonyl group
of PLP, and that the hydroxyl group of L-tyrosine is at a distance
lower or equal than 4.2 Å from the alpha carbon of the
N100 residue, to ensure that the aromatic ring was buried
into the active site and the acid group was exposed to
the solvent.

2.3 Design of DNA parts

2.3.1 L-DOPA
The gene tyr from Ralstonia solanacearum (GenBank accession

number: AL646052) and respective mutant sequence tyr* (Y119F
V153A D137Y L330V) encoding the candidate enzymes to convert
L-tyrosine into L-DOPA were cloned in the same fashion into the
second multiple cloning site (MCS) of the pETDuet-1 (Novagen)
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plasmid. The mutant sequence was created by site-directed
mutagenesis with the appropriate primers (Supplementary Table
S1) containing the desired mutations using the wild-type construct
as template.

2.3.2 Dopamine
For the known pathway, the gene encoding L-DOPA

decarboxylase (ddc) from Pseudomonas putida KT2440
(GenBank: BK006920.1) was cloned in the first MCS of the
previously constructed plasmids for L-DOPA production.

Regarding the novel pathway for dopamine, the gene
encoding the enzyme that catalyzes the first step–tyrosine
decarboxylase (tdc) from Levilactobacillus brevis (GenBank
accession number: WP_011668784.1) or the mutant sequence
S587A (tdc*) – were cloned in the first MCS of pETDuet-1. Both

selected ppo genes (one from Agaricus bisporus and another from
Mucuna pruriens; GenBank Accession numbers: AJ223816 and
MK140603, respectively) were individually introduced in
the second MCS.

2.4 Molecular biology protocols

Codon-optimized genes for expression in Escherichia coli and
primers were purchased from IDT (Iowa, USA). The genes used
in this study were amplified by polymerase chain reaction (PCR)
using Phusion High-Fidelity DNA Polymerase (Thermo
Scientific, Waltham, United States) in a LifeECO Thermal
Cycler (Bioer Technology, Zhejiang, China). The commercial
plasmid pETDuet-1 from the Novagen pET System (Merck

FIGURE 1
Workflow of the (A) computational analysis of various biosynthetic pathways to yield aromatic compounds, including the generation of pathways
through retrosynthesis and enumeration algorithms favoring maximum Conserved Atom Ratio (CAR) and minimal size. For the different reactions
constituting the generated pathways, the enzyme selection tools Selenzyme and BrigIT were utilized to attribute an Enzyme Commission (EC) number.
This step aided in the selection of the template enzyme for performing Molecular Docking using the in-house Gene Discovery and Enzyme
Engineering (GDEE) pipeline. The enzymes were ranked based on their binding affinity score, and databases and literature were reviewed to finalize the
selection of gene sequences. For the in vivo implementation (B), various host strains andmolecular biology designs were tested. The cells were cultivated
considering different media formulations, and the target compounds were quantified using Ultra Performance Liquid Chromatography (UPLC) and
confirmed by 1H-NMR.
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Millipore, Massachusetts, United States) was used to clone
heterologous genes. DNA fragments were purified using the
DNA Clean and Concentrator DNA Kit (Zymo Research,
Irvine, United States). Plasmids were extracted using the ZR
Plasmid Miniprep-Classic Kit (Zymo Research).

2.4.1 Assembly of DNA constructs
The assembly of DNA constructs was performed by

FastCloning (Li et al., 2011), and compatible primers were
designed using the NEBuilder® v2.7.1 Assembly Tool (New
England Biolabs, NEB). The resulting assembled parts were
transformed by heat-shock into chemically competent E. coli
DH5α cells (NEB). The size of the final sequence of the DNA
constructs was validated by colony PCR using DreamTaq
polymerase (Thermo Scientific) and further confirmed by
Sanger sequencing (StabVida, Lisbon, Portugal). Cloning
was performed in accordance with the manufacturer’s
instructions.

2.4.2 Site-directed mutagenesis by PCR
Gene sequences for mutant enzymes were obtained with site-

directed mutagenesis by performing two PCR steps using Phusion
polymerase (Thermo Scientific) and primers that included the
desired mutation. All primers were designed using the
QuickChange® Primer Design tool from Agilent (Novoradovsky
et al., 2005).

Site-directed mutagenesis was performed in two PCR steps
following a protocol adapted from (Reikofski and Tao, 1992) and
using the primers listed in Supplementary Table S1 for each target
mutation. In the first step, two single-primer reactions were
performed following the manufacturer’s instructions but limiting
the cycles of amplification to 5. In the second step, 25 μL of each
completed reaction was mixed with 1 U of Phusion polymerase in a
new PCR tube and amplified for 30 cycles. Finally, the PCR mix was
digested with 1 μL of DpnI (ThermoScientific) for 3 h at 37°C, purified
and transformed into DH5α chemically competent cells. The
constructs containing the desired mutations were identified by

TABLE 1 List of plasmids used or developed in this study.

Name Feature Source Pathway

pCas repA101(Ts) kan Pcas-cas9 ParaB-Red lacIq Ptrc-sgRNA-pMB1 Addgene Jiang et al.
(2015)

-

pTargetF Constitutive expression of sgRNA without donor editing template DNA Addgene Jiang et al.
(2015)

-

pETDuet-1 ColE1(pBR322) ori, lacI, double T7lac, AmpR Novagen -

pETDuet_Ptrcs pETDuet-1 with trc promoters instead of T7 in both MCS This study -

pETDuet_tyr pETDuet-1 carrying tyr gene from Ralstonia solanacearum This study LD

pETDuet_tyr* pETDuet-1 carrying tyr gene from R. solanacearum encoding the mutations
Y119F_V153A_D137Y_L330V

This study LD

pETDuet_Ptrc2_tyr pETDuet_tyr with the second T7 promoter exchanged by the trc promoter This study LD

pETDuet_Ptrc2_tyr* pETDuet_tyr* with the second T7 promoter exchanged by the trc promoter This study LD

pETDuet _ddc pETDuet-1 carrying ddc gene from Pseudomonas putida This study DPM

pETDuet_tyr_ddc pETDuet_tyr carrying ddc gene from P. putida This study DPM

pETDuet_tyr*_ddc pETDuet_tyr* carrying ddc gene from P. putida This study DPM

pETDuet_Ptrcs_tyr_ddc pETDuet_Ptrcs carrying tyr from R. solanacearum and ddc from P. putida This study DPM

pETDuet_Ptrcs_tyr*_ddc pETDuet_Ptrcs carrying tyr* (mutations Y119F_V153A_D137Y_L330V) from R. solanacearum
and ddc from P. putida

This study DPM

pETDuet_tdc pETDuet-1 carrying tdc from Levilactobacillus brevis This study DPA

pETDuet_tdc* pETDuet-1 carrying tdc from L. brevis encoding the mutation S587A This study DPA

pETDuet_Ptrcs_tdc pETDuet_Ptrcs carrying tdc from L. brevis This study DPA

pETDuet_tdc_ppoAB pETDuet_tdc carrying ppoAB from Agaricus bisporus This study DPA

pETDuet_Ptrcs _tdc_ppoAB pETDuet_Ptrcs carrying tdc from L. brevis and ppoAB from A. bisporus This study DPA

pETDuet_tdc_ppoMP pETDuet_tdc carrying ppoMP from Mucuna pruriens This study DPA

pETDuet_Ptrcs_tdc_ppoMP pETDuet_Ptrcs carrying tdc from L. brevis and ppoMP from M. pruriens This study DPA

pETDuet_tdc*_ppoMP pETDuet-1 carrying tdc from L. brevis encoding the mutation S587A and ppoMP fromM. pruriens This study DPA

pETDuet_ppoMP pETDuet-1 carrying ppoMP from Mucuna pruriens This study DPA

MCS, Multiple Cloning Site; LD, L-DOPA; DPM, Dopamine known pathway; DPA, Dopamine novel pathway.
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TABLE 2 List of strains used in this study.

Strain Host Relevant genotype Source

Escherichia coli DH5α - fhuA2Δ(argF-lacZ)U169 phoA glnV44 Φ80Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 NEB

Escherichia coli BL21 (DE3) - F�ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 *lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) Nzytech

Escherichia coli JM109 (DE3) - endA1, recA1, gyrA96, thi, hsdR17 (rk–, mk+), relA1, supE44, λ–, Δ(lac-proAB), [F′, traD36, proAB, lacIqZΔM15], lDE3 Promega

TYR1 Escherichia coli BL21 (DE3) ΔpheLA ΔtyrR This study

TYR2 Escherichia coli JM109 (DE3) ΔpheLA ΔtyrR This study

LD1 E. coli BL21 (DE3) pETDuet_tyr This study

LD2 E. coli JM109 (DE3) pETDuet_tyr This study

LD3 E. coli BL21 (DE3) pETDuet_tyr* This study

LD4 E. coli JM109 (DE3) pETDuet_tyr* This study

LD5 E. coli MG1655 pETDuet_tyr This study

LD6 E. coli MG1655 pETDuet_tyr* This study

LD7 E. coli BL21 (DE3) pETDuet_Ptrc2_tyr* This study

LD8 E. coli JM109 (DE3) pETDuet_Ptrc2_tyr* This study

LD9 TYR1 pETDuet_tyr* This study

LD10 TYR2 pETDuet_tyr* This study

LD11 TYR1 pETDuet_Ptrc2_tyr* This study

LD12 TYR2 pETDuet_Ptrc2_tyr* This study

DPM1 E. coli BL21 (DE3) pETDuet_tyr_ddc This study

DPM2 E. coli JM109 (DE3) pETDuet_tyr_ddc This study

DPM3 E. coli BL21 (DE3) pETDuet_tyr*_ddc This study

DPM4 E. coli JM109 (DE3) pETDuet_tyr*_ddc This study

DPM5 E. coli BL21 (DE3) pETDuet_ddc This study

DPM6 E. coli JM109 (DE3) pETDuet_ddc This study

DPM7 E. coli K12 MG1655 pETDuet_tyr_ddc This study

DPM8 E. coli K12 MG1655 pETDuet_tyr*_ddc This study

DPM9 E. coli BL21 (DE3) pETDuet_Ptrcs_tyr_ddc This study

DPM10 E. coli JM109 (DE3) pETDuet_Ptrcs_tyr_ddc This study

DPM11 E. coli BL21 (DE3) pETDuet_Ptrcs_tyr*_ddc This study

DPM12 E. coli JM109 (DE3) pETDuet_Ptrcs_tyr*_ddc This study

DPM13 TYR1 pETDuet_tyr*_ddc This study

DPM14 TYR2 pETDuet_tyr*_ddc This study

DPM15 TYR1 pETDuet_Ptrcs_tyr*_ddc This study

DPM16 TYR2 pETDuet_Ptrcs_tyr*_ddc This study

DPA1 E. coli BL21 (DE3) pETDuet_tdc_ppoAB This study

DPA2 E. coli BL21 (DE3) pETDuet_tdc_ppoMP This study

DPA3 E. coli JM109 (DE3) pETDuet_tdc_ppoAB This study

DPA4 E. coli JM109 (DE3) pETDuet_tdc_ppoMP This study

DPA5 E. coli BL21 (DE3) pETDuet_Ptrcs_tdc_ppoAB This study

DPA6 E. coli BL21 (DE3) pETDuet_Ptrcs_tdc_ppoMP This study

DPA7 E. coli JM109 (DE3) pETDuet_Ptrcs_tdc_ppoAB This study

DPA8 E. coli JM109 (DE3) pETDuet_Ptrcs_tdc_ppoMP This study

(Continued on following page)
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Sanger sequencing (StabVida) and used as template for the following
round in the case of multiple mutations.

2.4.3 Replacement of promoters
The replacement of T7 promoters in the pETDuet-1 plasmid by

trc promoters was performed using FastCloning (Li et al., 2011).
Chimeric primers were designed to linearize the plasmid excluding
the T7 promoter and lacO operator. These primers also contained
the new trc+lacO region, with an overlap of 20 bp between each end,
allowing further recircularization in vitro (Supplementary Table S1).
The final amplified fragments were digested with DpnI (Thermo
Scientific) for 3 h, purified and transformed into DH5α chemically
competent cells. The constructs with the new promoter were
identified by Sanger sequencing.

The success of the plasmid constructions was confirmed by
sequencing the regions of interest with the appropriate primers. All
plasmids used or constructed in this study, as well as the respective
major features are described in Table 1.

2.5 Bacterial strains

After confirmation of the constructs by sequencing, the plasmids
were transformed into E. coli BL21 (DE3), JM109 (DE3) and
K12 MG1655 (DE3) strains for gene expression under control of
the T7 or trc promotors. All strains used or engineered in this study
are summarized in Table 2.

E. coli K12 (MG1655 and JM109) and B (BL21) strains were
selected for heterologous protein expression, given their
widespread use in industrial-scale applications (Marisch
et al., 2013). These strains possess distinct metabolic
characteristics, particularly in the glyoxylate shunt and
acetate metabolism, highlighting the importance of testing
different biosynthetic pathways in diverse metabolic
environments to identify the most suitable one for a certain
compound. Specifically, the JM109 strain, characterized by its
recA– and endA– traits, was included to enhance plasmid
stability (Yang et al., 2022). Additionally, BL21 cells were
used in our study considering their efficient plasmid and

soluble protein expression (Marisch et al., 2013). This
efficiency is attributed to the lack of Lon and OmpT
proteases in BL21 cells (Marisch et al., 2013).

The strains used in this study were obtained by transforming
electrocompetent strains with the indicated plasmids by
electroporation using 0.1 cm-gap electroporation cuvettes at a voltage
of 1.8 kV. Electrocompetent cells were prepared using the protocol
developed by Dower et al. (1988). Positive transformants were
isolated on Luria-Bertani (LB) agar plates, containing ampicillin and
incubated overnight at 37°C. To confirm the success of the
transformation, selected transformant colonies were cultivated
overnight in LB liquid medium with antibiotic. Subsequently,
plasmids were extracted and digested with appropriate restriction
enzymes. The correct fragment lengths were confirmed by agarose gel
electrophoresis.

LB medium contained 10 g/L peptone, 5 g/L yeast extract and
5 g/L NaCl. For preparation of solid media 15 g/L agar was added.
The medium was supplemented with ampicillin at a concentration
of 50 μg/mL, when required.

2.5.1 Gene knockouts
Gene knockouts (ΔpheLA and ΔtyrR) were introduced

in E. coli BL21 (DE3) and JM109 (DE3) to increase the
metabolic flux towards tyrosine. TyrR is involved in the
transcriptional repression of the biosynthesis and transport of
Aromatic Amino Acids (AAA) (Das et al., 2018). Since
prephenate is a precursor for both tyrosine and phenylalanine,
to prevent the loss of prephenate in the production of
phenylalanine, the gene encoding prephenate dehydratase and
its leader peptide (pheLA) were deleted, increasing the flux of
prephenate towards tyrosine (Wei et al., 2016). The gene deletion
was performed using Streptococcus pyogenes type II CRISPR-
Cas9 following the protocol developed by Jiang et al. (2015).
The selection of the 20-bp region complementary to the targeting
region (N20) of the guide RNA (gRNA) to each gene was
performed with the CRISPR gRNA Design Tool in Benchling
[“Benchling” (Biology software). 2021]. The primers used to
perform the gene knockouts are listed in
Supplementary Table S1.

TABLE 2 (Continued) List of strains used in this study.

Strain Host Relevant genotype Source

DPA9 E. coli BL21 (DE3) pETDuet_tdc*_ppoMP This study

DPA10 E. coli JM109 (DE3) pETDuet_tdc*_ppoMP This study

DPA11 E. coli BL21 (DE3) pETDuet_Ptrcs_tdc*_ppoMP This study

DPA12 E. coli JM109 (DE3) pETDuet_Ptrcs_tdc*_ppoMP This study

DPA13 TYR1 pETDuet_tdc*_ppoMP This study

DPA14 TYR2 pETDuet_tdc*_ppoMP This study

DPA15 TYR1 pETDuet_Ptrcs_tdc*_ppoMP This study

DPA16 TYR2 pETDuet_Ptrcs_tdc*_ppoMP This study

DPA17 E. coli BL21 (DE3) pETDuet_tdc This study

DPA18 E. coli BL21 (DE3) pETDuet_ppoMP This study
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2.6 Shake flask experiments

L-DOPA and dopamine production experiments were
performed in M9 medium, containing (per liter): 1 g of NH4Cl,
0.5 g of NaCl, 3 g of KH2PO4, 12.8 g of Na2HPO4 · 7H2O, 11 mg of
CaCl2 and 240 mg of MgSO4. The pH of this medium was adjusted
to 7.2 ± 0.2 at 25°C with NaOH.

A single colony was picked from LB plates and inoculated in
10 mL of liquid LBmediumwith the appropriate antibiotic. The pre-
cultures were grown aerobically on a rotary shaker at 37°C and
180 rpm, overnight. An appropriate volume of cells was harvested
from the pre-culture by centrifugation (10 min at 3,000×ɡ), washed
and then transferred to 250-mL shake flasks with 50 mL of
M9 medium supplemented with 10 g/L of glucose and the
appropriate antibiotic concentration, yielding an initial optical
density at λ 600 nm (OD600) of 0.1. These cultures were also
cultivated on a rotary shaker at 180 rpm at 37°C. The expression
of heterologous genes was induced with 0.1–0.5 mM IPTG at an
OD600 of 0.4–0.5. At induction point, the culture was supplemented
with 1 g/L of tyrosine. Considering the cofactor requirements of the
enzymes, 50 μM vitamin B6 was supplemented in dopamine
production experiments, while 0.45 g/L L-ascorbic acid was
added to the medium in the L-DOPA and dopamine known
pathway experiments. Lastly, 25 μM of CuSO4 was only
supplemented when expressing the novel pathway for dopamine.
After IPTG induction, the temperature was reduced to 28°C and the
stirring speed to 150 rpm, and cells were cultivated for 144 h.
Samples were taken every 24 h for OD600 measurements and
UPLC analysis of the supernatant. All experiments were
performed with three biological replicates. All titers are expressed
as the mean ± standard deviation.

2.7 Quantitative analysis

The target compounds were quantified by Ultra Performance
Liquid Chromatography (UPLC) using a Waters (Massachusetts,
United States) ACQUITY UPLC system equipped with a
Photodiode Array (PDA) detector and a Symmetry C18 reverse
phase column (5 μm × 4.6 mm × 250 mm) of pore size 100 Å. For
the analysis, 1 mL of cell culture was collected and centrifuged at
maximum speed for 5 min, then the cell-free supernatant was
collected and used for further analysis. 50 μL of sample were
injected using a gradient solution with two solvents: (A) ultra-
pure water with 1% (v/v) of trifluoroacetic acid (TFA) and (B) a
buffer containing 70% of methanol and 30% of acetonitrile with
0.05% (v/v) of TFA. The fraction of B increased linearly from 5% to
70% from 3 to 10 min after injection. Then the fraction of B
decreased back to 5% between 10 and 12 min, and remained
constant until 20 min. The column temperature was maintained
at 35°C. L-tyrosine, tyramine, L-DOPA and dopamine were analyzed
at 220 nm.

For NMR analysis, 1 mL of cell culture was collected and
centrifuged at maximum speed for 5 min. Subsequently, 540 µL of
the cell-free supernatant were transferred to a 5 mm NMR tube with
subsequent addition of 60 μL of D2O with 3.2 mM of 3-(trimethylsilyl)
propionic-2,2,3,3-d4 acid (TSP), an internal standard that was used as
chemical shift reference and concentration standard.

1H-NMR spectra were obtained at 25°C in an Ultrashield Avance
500 Plus spectrometer (Bruker) equipped with a TCI-Z probe, using a
noesypr1d pulse program (time domain 48K, number of scans 64,
relaxation time 1 s, mixing time 0.1 s, sweep width 12 ppm). Spectra
were acquired and processed using TopSpin 4.1 software (Bruker) and
the compound quantification was done on ChenomxNMR Suite 8.11.

3 Results

Utilizing the pipeline depicted in Figure 1, different pathways
to produce L-DOPA and dopamine were selected, as illustrated in
Figure 2. A pathway composed of a single catalytic step was
selected for L-DOPA. In the case of dopamine, two different
pathways were chosen for in vivo implementation: one using
L-DOPA as the intermediate compound (Figure 2A) and an
alternative one using tyramine instead (Figure 2B), which, to
the best of our knowledge, has not been reported yet. In the
following sections, we will provide a detailed analysis of the
pathway design and gene candidate selection.

3.1 3,4-Dihydroxy-
L-phenylalanine (L-DOPA)

L-DOPA – also known as levodopa and L-3,4-
dihydroxyphenylalanine – is an alpha amino acid and the precursor
of the neurotransmitter dopamine. Essentially, three different enzymatic
mechanisms can yield L-DOPA as illustrated in Figure 3: tyrosine
phenol-lyase (Tpl) converts catechol, pyruvate, and ammonia into
L-DOPA (Figure 3A). Additionally, L-DOPA can be produced from
L-tyrosine by two different types of enzymes: tyrosinase (Tyr)
(Figure 3B) and p-hydroxyphenylacetate 3-hydroxylase (PHAH)
(Figure 3C; Min et al., 2015).

The initial biotechnological efforts to produce L-DOPA involved
leveraging native enzyme activities within organisms. Ajinomoto
Co. Ltd pioneered a fermentation process in 1993 using Erwinia
herbicola, exploiting its native Tpl activity to produce L-DOPA from
catechol (Iizumi et al., 1991; Figure 3A). Subsequent research
investigated expressing the tpl gene from E. herbicola in
established industrial microorganisms like E. coli (Foor et al.,
1993). Alternative approaches have since emerged, such as
exploring the PHAH mechanism depicted in Figure 3C by
expressing hpaBC in E. coli (Fordjour et al., 2019). Nakagawa
et al. developed a bacterial platform to produce plant alkaloids,
including L-DOPA and dopamine, by exploring the expression of
different tyrosinases (Tyr) (Figure 3B) in E. coli, achieving the
highest titers with Tyr from R. solanacearum (Nakagawa
et al., 2011).

3.1.1 Pathway design
Considering the abundance of enzymes catalyzing tyrosine into

L-DOPA and respective gene candidates available, we have
implemented a computational workflow to support the search for
the most efficient pathways. On one hand, this workflow allows us to
leverage the accumulated knowledge reported in databases, aiming
to select the most suitable pathways and their respective gene
sequences for expression in E. coli. On the other hand, it also has
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the advantage of potentially unveiling new routes, either by
incorporating orphan reactions (i.e., reactions without enzyme
assignment) (Hadadi et al., 2019) or by enumerating new
combinations of catalytic steps that are different from those
already described in the literature. Lastly, by focusing solely on
the best gene candidates, it is easier to conduct a more
comprehensive analysis of the studies related to the selected
genes, even for different purposes.

As anticipated, given the simplicity of this particular conversion,
the highest ranked pathways listed in ShikiAtlas consisted of already
known single catalytic steps originating from tyrosine. When
considering pathways that employed orphan reactions, they
ranked much lower due to the involvement of multiple steps and
complex intermediates. The single-reaction pathways featured two
distinct mechanisms: one mediated by tyrosinase (Figure 3B) and
the other by PHAH (Figure 3C). To identify the most promising
candidate enzyme for each enzymatic mechanism, BridgIT and
Selenzyme were employed to assign the respective EC numbers
and suggest preliminary gene candidates (Supplementary Table S2).
The attributed EC numbers with a reaction similarity score equal to
1 for tyrosinase were 1.10.3.1 and 1.14.18.1, while EC 1.14.14 and
1.14.16.2 were assigned for PHAH (Supplementary Table S2).
Notably, in the case of PHAH, the E. coli sequence (hpaBC)
received a significantly higher score compared to other enzymes
(Supplementary Table S3). Due to the limited sequence diversity
available for this mechanism, the need for biochemical reducing
power, and the prior extensive exploration of this enzyme and its
mutant sequences, we chose to focus our efforts on the tyrosinase
mechanism and test PHAH only in control strains. Conversely, for

the tyrosinase reaction, enzyme selection tools proposed multiple
enzymes with identical scores. However, this list failed to include
successfully reported sequences for catalyzing the conversion of
tyrosine into L-DOPA. Therefore, we implemented the GDEE
pipeline to assist in gene candidate selection by conducting a
more in-depth analysis of the reaction mechanism to choose the
most likely enzyme with the highest activity.

3.1.2 Gene sequence selection
Considering the EC number attributed by BridgIT and

Selenzyme and the data retrieved from literature and databases, a
tyrosinase from R. solanacearum was used as the template for the in
silico search of other sequences, due to its validated expression and
high activity in E. coli (Hernández-Romero et al., 2006). A
homology-based model was created for this enzyme with
Modeller, using the X-ray structure of the holo-form of a
polyphenol oxidase from Solanum lycopersicum (PDB code
6HQI) (Kampatsikas et al., 2019), which has a protein sequence
24% identical to the tyrosinase from R. solanacearum. Additionally,
we also used in the comparative modelling method a model of
tyrosinase from R. solanacearum generated using AlphaFold2
(Jumper et al., 2021; Varadi et al., 2022). The list of candidate
enzymes was obtained by a BLASTp search against the SwissProt
database using the protein sequence of the polyphenol oxidase from
R. solanacearum.

A total of 24 candidate enzymes were chosen after filtering the
BLAST results (the complete list can be found in Supplementary
Table S4). These enzymes originate from a wide range of organisms.
Interestingly, eukaryotic enzymes exhibited a higher capability for

FIGURE 2
(A) Known and (B) Novel biosynthetic pathways to produce L-DOPA and dopamine from L-tyrosine including the different molecular biology
designs and enzyme variants. *: mutant sequence. Created with BioRender.com.
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performing the transformation according to the pipeline (the top
five enzymes exhibited binding affinities ranging
between −6.4 and −6.7 kcal/mol). However, expressing eukaryotic
enzymes in E. coli can be challenging due to post-translational
modifications and solubility issues and, therefore, these results
should be evaluated in vivo using eukaryotic hosts in future
work. Consequently, since it is the top prokaryotic enzyme
returned by the pipeline (Table 3), the above-mentioned
tyrosinase from R. solanacearum was selected for in vivo
implementation. It is worth noting that this enzyme has been
reported to exhibit an abnormally high tyrosine hydroxylase:dopa
oxidase ratio in comparison to other tyrosinases, which is in
accordance with the outcomes obtained through the pipeline
(Hernández-Romero et al., 2006). We also found that specific
mutations (Y119F; V153A; D317Y; L330V) in this enzyme have
been reported to increase the catalytic efficiency towards D-tyrosine,
also leading to a 1.4-fold higher L-tyrosine:L-DOPA activity ratio
compared to the wild-type (WT) in kinetic experiments (Molloy
et al., 2013). This mutant sequence was never tested in a biosynthetic
pathway. Therefore, bothWT and mutant variants of tyr were tested
to produce L-DOPA.

3.1.3 In vivo results
The main in vivo results are shown in Figure 4. After our

computational analysis, we chose tyrosinase as the primary
enzyme for converting L-tyrosine into L-DOPA. As mentioned,
hpaBC from E. coli was initially meant to be used in control strains
in this study. However, despite testing different conditions and
molecular biology designs – including the expression of the two
subunits (hpaB and hpaC) under the control of individual

promoters – we were unable to detect any L-DOPA production
in strains expressing hpaBC (data not shown). SDS-PAGE gels
were run to confirm the solubility of the expressed enzymes
(Supplementary Figure S1). Unlike the mineral media used in
our experiments, previous studies used either complex medium
such as Terrific Broth or mineral media supplemented with yeast
extract and tryptone (Das et al., 2017; Fordjour et al., 2019). Other
reports claim that glycerol supplementation increases the
availability of NADH, which is an essential cofactor in this
reaction (Fordjour et al., 2019). Hence, it is possible that the
absence of specific components or cofactors in our media, or an
insufficient NADH pool, could explain the lack of L-DOPA
production in our study.

In terms of cells expressing Tyr, introducing four mutations in
the tyr gene from R. solanacearum led to a 2.8-fold increase in titer
from 0.19 g/L (LD2) to 0.54 g/L (LD4). Although these mutations
were previously studied in vitro, their implementation for in vivo
L-DOPA production had not been reported until now. Replacing the
T7 promoter in the pETDuet_tyr* plasmid with a weaker promoter
(trc) improved the L-DOPA titer from 0.54 g/L (LD4) to 0.74 g/L
(LD8) in JM109 cells, which was the highest titer achieved. This
improvement was also observed in BL21 strains, with an increase
from 0.16 to 0.22 g/L (strains LD3 and LD7).

We also observed that L-DOPA production appeared to be more
favorable in K-based cells as host strains, especially JM109 strains,
which achieved higher titers using the same molecular biology
designs. Inactivating the regulatory protein (TyrR) and the genes
encoding prephenate dehydratase and its leader peptide (pheLA) in
the tyrosine competing pathway did not lead to higher L-DOPA
titers (strains LD9–12).

FIGURE 3
Different enzyme activities to yield L-DOPA. (A) Tpl: tyrosine phenol-lyase; (B) Tyr: tyrosinase; (C) PHAH: p-hydroxyphenylacetate 3-hydroxylase.
Created with BioRender.com.
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The NMR spectra for LD strains validated L-DOPA production
in selected strains (Supplementary Figure S2).

3.2 Dopamine

Dopamine is a catecholamine neurotransmitter synthesized by
dopaminergic neurons mostly in three specific regions of the brain
(substantia nigra, ventral tegmental area and hypothalamus),
acting as a precursor of noradrenaline and adrenaline (Juárez
Olguín et al., 2016). Dopamine has innumerous applications in
health including the treatment of hypotension, heart failure and
occasionally septic shock (Juárez Olguín et al., 2016). The lack of
comprehensive reports on dopamine production in the literature
highlights the need for our computational workflow. Previous
studies have achieved moderate dopamine yields, such as
27 mg/L in LB broth by expressing hpaBC (to yield L-DOPA)
in conjunction with an engineered dopa decarboxylase (ddc) from
pig kidney (Das et al.). This enzyme requires iron supplementation
and was modified to facilitate soluble expression in E. coli (Das
et al., 2017).

In another study with the primary aim of producing reticuline,
the authors developed a dopamine-producing pathway that was able
to produce 1.05 g/L of dopamine in a tyrosine chassis strain
accumulating 4.37 g/L of tyrosine. This achievement resulted
from combining the expression of the tyrosinase from R.
solanacearum with the ddc gene from P. putida (Nakagawa
et al., 2011).

We employed ShikiAtlas to analyze pathways for producing
dopamine from tyrosine. After filtering and ranking the results, we
selected two pathways for implementation: the known pathway
utilizing L-DOPA as the intermediate compound (Figure 2A) and
a novel pathway comprising two steps, with tyramine serving as the
intermediate compound (Figure 2B).

3.2.1 Dopamine known pathway–design and gene
sequence selection

Since we have already validated the conversion of tyrosine into
L-DOPA, we have focused here on selecting the best enzyme to
catalyze the decarboxylation of L-DOPA into dopamine. Two
different EC numbers were attributed by BridgIT and Selenzyme
for this reaction as having activity towards L-DOPA yielding
dopamine with a reaction similarity score equal to 1: 4.1.1.25 and
4.1.1.28 (Supplementary Table S2). Among those, several aromatic

amino acid decarboxylases (AADCs) from various sources were
identified Further consideration of other factors, such as
phylogenetic distance, UniProt protein evidence and sequence
conservation, led to the identification of top-ranked enzymes
(Supplementary Table S3) originated from nematode or plants,
potentially presenting possible solubility issues when expressed in
E. coli, while the prokaryotic sequences presented similar scores
among themselves, complicating the selection process. To address
this concern, we utilized our in-house GDEE pipeline to identify
gene candidates derived from prokaryotic organisms that potentially
exhibit higher activity towards dopamine.

In the tool, the DOPA decarboxylase from P. putida was chosen
as the template, since it was described in the literature as a promising
candidate to carry out this reaction (Koyanagi et al., 2012). A
homology-based model was created for this enzyme with
Modeller using the X-ray structure of the aromatic-L-amino-acid
decarboxylase from Catharanthus roseus (PDB code 6EEW)
(Torrens-Spence et al., 2020), which has a protein sequence 40%
identical to the DOPA decarboxylase from P. putida and catalyzes a
reaction mechanistically similar to the L-DOPA-dopamine
conversion. The list of candidate sequences was obtained by a
BLASTp search of the protein sequence of the DOPA
decarboxylase from P. putida against the SwissProt database.
Since the BLAST search resulted in only few enzymes sharing
similarity with the target, the coverage on the filter was reduced
to 60% and the sequence identity was raised to 40% to compensate.

A total of 64 enzymes were selected after filtering the BLAST
results (Supplementary Table S5). Only five candidate enzymes
originated from prokaryotic sources. The DOPA decarboxylase
from P. putida (UniProt ID: Q88JU5) and the aspartate 1-
decarboxylase from Aliivibrio fischeri (UniProt ID: Q5E6F9) were
the highest-ranking candidates, although the pipeline was unable to
distinguish which one was better (both have a binding affinity
of −5.4 kcal/mol), as shown in Table 4. For in vivo testing, we
selected the ddc gene from P. putida due to its prior experimental
validation in producing dopamine from L-DOPA (Koyanagi et al.,
2012), while panP from A. fischeri has only been validated for
converting aspartate into β-alanine.

3.2.2 Dopamine novel pathway–design and gene
sequence selection

Alternative pathways to produce dopamine were analyzed using
the ShikiAtlas platform by selecting tyrosine as the starting
compound. A promising pathway of the same size as the known

TABLE 3 Top six enzyme candidates obtained for tyrosinase activity using the gene-discovery pipeline, organized by their binding affinity score (obtained by
Autodock Vina), along with their corresponding UniProt ID.

Rank Uniprot ID ΔG (kcal/mol) Organism

1 Q9MB14 −6.7 Ipomoea batatas

2 Q08296 −6.6 Solanum lycopersicum

3 Q08305 −6.4 Solanum lycopersicum

4 Q08303 −6.4 Solanum lycopersicum

5 Q06355 −6.4 Solanum tuberosum

6 Q8Y2J8* −6.1 Ralstonia solanacearum

Enzymes from prokaryotic sources are highlighted. The Uniprot ID of the enzyme used as a template is marked with an asterisk. The complete list can be found in Supplementary Table S4.
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pathway (consisting of 2 reactions) was discovered (Figure 2B). In
this pathway, tyrosine is initially converted into tyramine, which, in
turn, yields dopamine. To the best of our knowledge, this pathway
has never been described with this combination of enzymes or
implemented in vivo and offers an alternative to the
traditional pathway.

For this pathway, BridgIT and Selenzyme were utilized to
identify candidate genes for each reaction. In the initial step
involving the decarboxylation of tyrosine into tyramine, two EC
numbers were attributed (EC 4.1.1.25 and EC 4.1.1.28) with a
Reaction Similarity Score equal to 1 (see Supplementary Table
S2). The first corresponds to tyrosine decarboxylase, while the
latter refers to DOPA decarboxylase (which also exhibits affinity
to other substrates, including tyrosine). As the first reaction is
specific to this particular conversion, we proceeded with this EC
number. The top-ranked enzyme sequences originate from
extremophiles as shown in Supplementary Table S3. Therefore,
the mild cultivation conditions of E. coli may be unsuitable for
obtaining maximum enzymatic activity when expressing those genes
(Kruglikov et al., 2022). By revising the literature and databases, we
found that L-tyrosine decarboxylase from Levilactobacillus brevis
has validated kinetic data for converting L-tyrosine into tyramine
(Zhang and Ni, 2014). Consequently, the X-ray structure of this
enzyme, identified with the PDB code 5HSJ, served as the template
for the GDEE pipeline. A BLASTp search against the SwissProt
database was applied, again with the sequence coverage filter
reduced to 60% (and the protein sequence identity raised to
40%). After refining the BLAST outcomes, 3 candidate enzymes
were chosen and subsequently ranked utilizing the automated
pipeline (Table 5). The L-tyrosine decarboxylase from
Levilactobacillus brevis (tdc), UniProt ID: J7GQ1, was the best

enzyme candidate with a binding affinity of −5.7 kcal/mol.
Moreover, this enzyme had already validated soluble expression
in E. coli (Zhang and Ni, 2014) and therefore was chosen for further
experimental validation. A mutant variant of this enzyme (S586A)
has demonstrated higher affinity towards tyrosine (Zhu et al., 2016)
and, consequently, was also implemented in this study.

The next step in the pathway involves converting tyramine into
dopamine. However, this reaction lacks an attributed EC number
with Reaction Similarity Score equal to 1 in BridgIT and Selenzyme
(Supplementary Table S2), leading to the unavailability of templates
for the GDEE platform to search the optimal gene candidate to
catalyze this reaction. Through literature search, we have found a
reference to cytochrome CYP2D6 capable of catalyzing this reaction
(Hiroi et al., 1998). However, expressing functionally active
cytochromes in E. coli, while possible, is not a trivial task. It
typically involves N-terminal sequence modifications, the use of
chaperones and specific plasmids (Yun et al., 2006; Pan and Amini,
2011), which may not be favorable in the context of expressing a
biosynthetic pathway. Nevertheless, an identifier (ID:
MNXR130692) was obtained from MetaNetX via ShikiAtlas,
specifically for the biotransformation associated with reaction ID
1569943850 in the internal Laboratory of Computational Systems
Biotechnology (LCSB) database. Further exploration of this entry in
MetaNetX directed to the external link ID sabiorkR:11664 in the
SABIO-RK database. SABIO-RK is a curated database that houses
information about biochemical reactions, their kinetic rate
equations, parameters, and experimental conditions (Wittig et al.,
2018). Within this database, two polyphenol oxidases (PPOs) were
identified with validated kinetic parameters for catalyzing this
reaction: one sourced from Agaricus bisporus (O42713) and
another from Mucuna pruriens var. pruriens (Table 6).

FIGURE 4
L-DOPA production in the different engineered strains. KO = ΔpheLA ΔtyrR; *- mutant sequence.
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Consequently, we decided to experimentally test both gene
candidates.

Nevertheless, for the latter organism, no gene sequence was
available. Bolstered by a literature search, we were able to find a
hypothetical gene sequence to test (Saranya et al., 2020). This
sequence has been deposited in GenBank with the accession
number MK140603. The authors describe this enzyme as a
PPO, although they only inferred monophenolase activity with
tyrosine. We hypothesized that this enzyme may also exhibit
activity towards tyramine and could be the enzyme initially
described as tyrosine hydroxylase (TH) (Luthra and Singh,
2010a). In this last study, the authors conducted kinetic
experiments and confirmed that the enzyme described as TH
accepts tyramine as a substrate.

3.2.3 Dopamine production via the known pathway
Results from the in vivo implementation of the known dopamine

producing pathway can be seen in Figure 5. These results align with
the findings from the L-DOPA experiments. Strains expressing tyr
were able to accumulate L-DOPA, and when coupled with the
expression of ddc, these strains also produced dopamine. It
should be mentioned that almost all strains investigated in this
study accumulated both compounds, which indicates potentially
that the second step is the limiting one.

When comparing different host strains, it is noteworthy that
JM109-based strains expressing the heterologous genes under the
control of T7 promoters generally exhibited higher L-DOPA titers
compared to BL21-based strains, which is consistent with the
L-DOPA results. However, despite the higher L-DOPA titers in
JM109-based strains, there were no significant differences in
dopamine production among the different strains. This suggests
that the second reaction of the pathway, leading to dopamine
synthesis, may be favored in BL21-based cells or that there is a
kinetic constraint in the second reaction which is not solved by
increasing the availability of L-DOPA levels in the ranges
observed here.

Interestingly, the use of trc promoters led to lower L-DOPA
titers in BL21-based strains (DPM9 and DPM11) but higher
dopamine titers compared to the JM109 hosts (DPM10 and
DPM12). In fact, the maximum dopamine titer achieved in
this study was 0.29 g/L in strain DPM15, which was a BL21-
based strain. It is worth noting that L-DOPA was not detected

in the growth medium of this strain, indicating that the
produced L-DOPA was either converted into dopamine or
oxidized into dopaquinone. The addition of ascorbic acid to
the medium mostly inhibited this spontaneous reaction,
although some residual brown coloration was still observed
(Supplementary Figure S5).

In terms of pathway designs, the expression of mutant tyr and
ddc under the control of trc promoters favored dopamine
accumulation in the studied strains, and a similar performance
was observed for L-DOPA producing strains.

Regarding the host strains with increased flux towards tyrosine
(DPM13-16), no significant differences in dopamine titers were
observed compared to their respective wild-type strains.
Nevertheless, it is worth noting that the maximum dopamine
titer in this study was obtained with strain DPM15 (0.29 g/L),
having the genes pheLA and tyrR deleted, and showing a slight
but not statistically significant improvement compared to the wild-
type equivalent DPM11 (0.24 g/L).

The NMR spectra for DPM strains validated the L-DOPA and
dopamine production (Supplementary Figure S2).

3.2.4 Dopamine production via the novel pathway
Among the tested strains for the novel pathway shown in

Figure 6, those expressing ppo from M. pruriens (DPA2, DPA4,
DPA6, DPA8) successfully produced dopamine, with titers ranging
from 0.02 to 0.21 g/L. In contrast, strains expressing ppo from A.
bisporus (DPA1, DPA3, DPA5, DPA7) did not yield detectable levels
of dopamine.

In our experiments, BL21-based strains showed higher
dopamine titers compared to JM109-based strains expressing
ppoMP as depicted in Figure 6. This suggests that the choice of
the host strain influenced dopamine production under the tested

TABLE 4 Gene discovery pipeline top 3 results for the L-DOPA decarboxylase reaction for both eukaryotes and prokaryotes, along with their respective
UniProt IDs, organized by their binding affinity score (obtained by Autodock Vina).

Rank Uniprot ID ΔG (kcal/mol) Organism

1 P54769 −7.2 Papaver somniferum

2 Q9M0G4 −7.0 Arabidopsis thaliana

3 Q05733 −6.7 Drosophila melanogaster

. . . . . . . . . . . .

38 Q88JU5* −5.4 Pseudomonas putida

39 Q5E6F9 −5.4 Aliivibrio fischeri

41 A7B1V0 −4.8 Ruminococcus gnavus

Enzymes from prokaryotic sources are highlighted. The Uniprot ID of the enzyme used as a template is marked with an asterisk. The complete list can be found in Supplementary Table S5.

TABLE 5 Gene discovery pipeline ranked results for the decarboxylation of
tyrosine into tyramine with the respective UniProt ID. The Uniprot ID of the
enzyme used as a template is marked with an asterisk.

Rank Uniprot ID ΔG (kcal/mol) Organism

1 J7GQ11* −65.7 Levilactobacillus brevis

2 A0A481NV25 −5.6 Enterococcus faecium

3 P0DTQ4 −5.2 Enterococcus faecalis

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Ferreira et al. 10.3389/fbioe.2024.1360740

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1360740


conditions, which was consistent with the findings observed in
the dopamine known pathway. However, the expression of the
mutant tdc, which was reported to have increased activity
towards tyrosine (Zhu et al., 2016), did not result in higher
dopamine titers. Notably, tyramine was detected in all
samples, surpassing the limit of detection (results not shown),
We also tested the individual expression of the two pathway
enzymes – tdc and ppoMP (strains DPA17 and DPA18,
respectively). The tdc-expressing strains accumulated 0.78 g/L
tyramine (Supplementary Figure S4), but dopamine was not
detected in either experiment (data not shown), indicating
that the expression of both enzymes is required to
yield dopamine.

The influence of different promoters on dopamine accumulation
remains unclear. In some cases, T7 promoters seemed favorable
(DPA2 vs. DPA6), while the use of trc promoters resulted in higher
dopamine titers when expressing the mutant TDC.

The knock-out strains (ΔpheLA ΔtyrR) did not yield higher
dopamine titers (strains DPA13-16). In fact, the titers were lower
than those achieved with the WT counterparts. Notably, for the

knockout strains expressing the genes under the control of trc
promoters (DPA15 and DPA16), dopamine was not
even detected.

The NMR spectra for DPA strains validated the Tyramine and
Dopamine production (Supplementary Figure S3).

4 Discussion

The selection of suitable biosynthetic pathways to produce target
compounds is often a challenging and time-consuming task, given
the vast amount of information available in databases and literature.
Manual curation alone can be prone to errors and may not fully
leverage the accumulated knowledge. The integration of
computational tools, such as enumeration/retrosynthesis
algorithms and enzyme selection tools, can significantly expedite
and enhance the rational design process.

Additionally, the presence of promiscuous enzymes that exhibit
activity towards multiple substrates presents a challenge, potentially
diminishing pathway efficiency for the desired compound. Even

TABLE 6 List of enzymes suggested by SABIO-RK (Biochemical Reaction Kinetics Database) for catalyzing the conversion of tyramine into dopamine, along
with respective references to experimental data.

Gene EC number Protein ID Reaction Organism Reference

ppoAB 1.14.18.1 O42713 O2 + tyramine = H2O + dopamine Agaricus bisporus Espín et al. (2000)

ppoMP 1.14.16.2 - O2 + tyramine = H2O + dopamine Mucuna pruriens var. utilis Luthra and Singh (2010b)

FIGURE 5
Dopamine and L-DOPA accumulation for the different engineered strains developed for dopamine production via the known pathway. KO =
ΔpheLA ΔtyrR; *- mutant enzyme.
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after an enzyme is selected, the task of identifying the optimal gene
source to optimize the intended function remains complex. Another
difficulty arises from orphan reactions, which lack protein or gene
sequences associated, hindering the establishment of complete
biosynthetic routes (Wu et al., 2011; Delépine et al., 2018;
Hadadi et al., 2019; Sveshnikova et al., 2022b).

To tackle these challenges and enhance the rational design
process, we developed a computational workflow that integrates
various tools, including enumeration/retrosynthesis algorithms, a
toolbox for pathway analysis, enzyme selection tools, and a gene
discovery pipeline (Figure 1A). This integrated approach
significantly accelerates pathway design, allowing us to leverage
accumulated knowledge while exploring novel pathways. This is
achieved by enumerating new combinations of enzymatic steps and
potentially incorporating orphan reactions.

In this study, we successfully validated the computational
workflow for designing biosynthetic pathways to produce
tyrosine-derived compounds in E. coli – specifically L-DOPA
and dopamine – which hold significant applications in health
and nutrition. Although prior studies have reported the
production of these compounds in E. coli (Muñoz et al., 2011;
Nakagawa et al., 2011; Wei et al., 2016; Das et al., 2017; Fordjour
et al., 2019), our approach employed computational methods to
enhance pathway design by searching for the most active enzyme
candidate for each step and potentially discover novel pathways.
Notably, besides focusing in a known pathway for L-DOPA and
dopamine, we were able to find and validate a novel dopamine
biosynthetic pathway by expressing a combination of gene

sequences that, to the best of our knowledge, has never been
reported before.

L-DOPA was selected as a target product since it has become the
most widely used medication for treating Parkinson’s disease (PD),
as it effectively increases the dopamine levels in the brain (Min et al.,
2013). Unlike dopamine, L-DOPA can cross the blood–brain barrier
(BBB), where it is converted into dopamine by the action of aromatic
L-amino acid decarboxylase. Currently, most of the commercially
available L-DOPA is chemically synthetized by Monsanto using the
asymmetric synthesis method (Min et al., 2015). The primary
drawbacks of converting tyrosine into L-DOPA are the formation
of the by-product L-dopaquinone and the consequent requirement
for expensive reducing agents (such as ascorbic acid) or electrical
reducing power (Min et al., 2015). These challenges, coupled with
the increasing demand for L-DOPA in response to the growing
elderly population, have prompted the development of
biotechnological alternatives. In fact, PD is estimated to affect
almost 8.5 million individuals by the World Health Organization
(WHO) in 2019 (WHO, 2022). In recent years, alternative methods
using enzymes and/or microorganisms have been explored to obtain
this dopaminergic drug. For L-DOPA production, our strategy
involved implementing a pathway that incorporates a known
reaction and introduces a mutant tyr enzyme with enhanced
activity, which had not been previously tested in vivo, to yield
L-DOPA (Molloy et al., 2013). This approach resulted in a
maximum titer of 0.71 g/L, achieved using the mutant enzyme
(Figure 4). The highest reported titer to date was 0.691 g/L when
expressing a mutant version of hpaBC (PHAH activity) (Figure 2C)

FIGURE 6
Dopamine production for the different engineered strains for dopamine production via the novel pathway. KO= ΔpheLA ΔtyrR; *-mutant sequence.
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in a tyrosine chassis strain (Fordjour et al., 2019). However, while in
the referenced study a rich medium was used, we obtained our
product titers in mineral media. Robinson et al. have explored the
wild-type sequence of the same enzyme we used to yield L-DOPA
(tyr from R. solanacearum), resulting in the production of L-DOPA
with a maximum titer of around 20 mg/L (Robinson et al., 2020).
Nakagawa et al. developed a bacterial platform to produce plant
alkaloids, including L-DOPA as intermediate compound. They
explored the expression of different tyrosinases (Figure 3B) in
E. coli, originating from Homo sapiens, Pholiota nameko and
Streptomyces castaneoglobisporus achieving a maximum L-DOPA
titer of 293 mg/L using Tyr from S. castaneoglobisporus. These
authors mentioned a notable 7-fold increase in the final product
(reticuline) when substituting the tyrosinase from S.
castaneoglobisporus with the sequence from R. solanacearum
(Nakagawa et al., 2011). Direct comparisons between the titers
we achieved and those reported in the literature are challenging
due to disparities in experimental conditions, such as the use of
tyrosine-chassis strains versus direct tyrosine supplementation and
the use of complex medium versus mineral media. Nevertheless, the
maximum titer we achieved represents a promising milestone,
slightly surpassing the maximum titer obtained with the PHAH
mechanism. Additionally, this marks the first instance of the mutant
tyrosinase being utilized for the production of L-DOPA within a
biosynthetic pathway.

Our second target compound, dopamine, is involved in several
physiological functions like reward, motivation, learning and
memory and its dysfunction can lead to various nervous system
diseases. Dopamine imbalances in the brain, either by excess or
deficit, have been associated with several conditions including
depression, schizophrenia, insomnia, attention deficit
hyperactivity disorder, and PD. As mentioned before, since
dopamine is unable to cross the BBB, L-DOPA has been used to
treat PD by increasing dopamine levels (Min et al., 2013).
Nevertheless, dopamine has innumerous applications in health
including as a therapeutic agent for acute circulation disorders
and cardiovascular stimulation (Juárez Olguín et al., 2016).
Recently, it has garnered attention in the field of advanced
carbon materials, as dopamine-based N-doped carbon is vital for
future carbon electrodes (Dong et al., 2023). With the global
dopamine market revenue surpassing $320 million in 2022 and
an expected 8.2% annual growth (Dopamine Market Report 2023;
Global Edition, Cognitive Market Research), the demand for
sustainable processes intensifies.

We explored two distinct biosynthetic pathways for dopamine
production: the established pathway reported in the literature
(Figure 2A), with the aim of optimizing and implementing the
most suitable sequences possible, and a novel pathway (Figure 2B)
generated through enumeration and retrobiosynthesis algorithms.
The known pathway achieved a maximum titer of 0.29 g/L, while
the novel pathway demonstrated equivalent efficacy with a titer of
0.21 g/L Both production strains were cultivated under identical
conditions to ensure fair comparison. The comparable efficacy of
the novel pathway, achieving 72% of the titer obtained with the
known pathway, underscores its potential as a viable alternative for
dopamine production Previous reports in the literature state a
dopamine titer of 26 mg/L when combining hpaBC with an
engineered ddc from pig kidney (Fordjour et al., 2019) and the

accumulation of 1.05 g/L when expressing tyr from R.
solanacearum and ddc from P. putida (Nakagawa et al., 2011).
The authors chose this decarboxylase because it has been identified
as a eukaryotic-type aromatic amino acid decarboxylase with a
unique substrate specificity that sets it apart from previously
characterized prokaryotic AADCs (Koyanagi et al., 2012). In
this last work, the authors expressed these enzymes in a
tyrosine-chassis strain, which was able to accumulate 4.37 g/L
of this aromatic amino acid. This means that the product yield
on substrate (g/g) was 24% at maximum, as the cells were grown in
a complex medium that also contains tyrosine. The titer achieved
with the known pathway in our work corresponds to a 29%
conversion yield of tyrosine into dopamine, which represents a
slight improvement over what has been reported previously. The
novel pathway demonstrated a 21% conversion yield of tyrosine
into dopamine. To the best of our knowledge, this marks the first
successful implementation of an alternative pathway for dopamine
production in E. coli. Like the known pathway, this novel route also
consists of two catalytic steps. However, it circumvents the use of
L-DOPA as the intermediate compound, using tyramine instead. It
is worth noting that by the action of tyrosinase, L-DOPA has a
propensity to oxidize into o-dopaquinone, a structurally similar
compound, which then undergoes a series of spontaneous
oxidative reactions to yield melanin (Molloy et al., 2013). The
initial oxidation step carried out by tyrosinase reduces overall
process efficiency by degrading dopamine’s precursor and
simultaneously occupying tyrosinase active centers with
L-DOPA instead of tyrosine. Ascorbic acid can reduce the
oxidation reaction, but it has the drawback of being a costly
supplement that can increase overall bioprocess costs.
Additionally, it acts as an inhibitor in the conversion of
tyrosine into L-DOPA (Min et al., 2013; Nokinsee et al., 2015).
Consequently, the enumerated pathway mitigates the issue of
L-DOPA degradation into melanin-like products and
eliminates the need for ascorbic acid supplementation (Min
et al., 2015).

Notably, in this novel dopamine strain, an active form of a
polyphenol oxidases (PPO) was employed within the context of a
biosynthetic pathway for the first time. PPOs are part of the type
III copper family of metalloenzymes. These enzymes are widely
distributed and exhibit both monophenolase and diphenolase
activities (Panis et al., 2020; Saranya et al., 2023). In our
investigation, we focused on the first activity, in which the
enzyme transforms tyramine into dopamine. One peculiarity of
this class of enzymes lies in the fact that the sequence encodes a
latent pro-enzyme containing the catalytically active domain and
a C-terminal domain that blocks the entrance to the catalytic
pocket, and it must be removed to obtain an active enzyme (Panis and
Rompel, 2020). The activation from the latent form in plants is
unknown; nevertheless, some studies speculate that the presence of
proteases, acidic environments, fatty acids, and detergents could trigger
the latent state of PPO. Another possibility is the presence of
endogenous substrates (Saranya et al., 2023). In this work, we have
expressed the full sequence of ppoMP comprising the active and the
C-terminal domains. To the best of our knowledge, this is the first
instance of a PPO being expressed in vivo in E. coli in its active form as
previous studies focused on the expression of PPOs for purification and
subsequent activation in vitro (Panis et al., 2020; Saranya et al., 2023). In
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our study, the enzyme is active under the conditions tested as indicated
by the accumulation of dopamine, although the activation mechanism
remains unknown. On the contrary, the other PPO tested from A.
bisporus might be in its latent form since no dopamine was detected
when co-expressing this enzyme with tdc. In contrast to the
observations made with the top-performing dopamine producer
employing the known pathway (DPM15), where the intermediate
compound L-DOPA was not detected, it is noteworthy that 0.7 g/L
of tyramine were detected in the case of DPA2, the most effective
dopamine-producing strain expressing the novel pathway
(Supplementary Figure S4). This indicates a potentially significant
inefficiency in enzymatic steps and suggests room for further
optimization. Considering this, alongside the fact that the maximum
titers achieved with the two pathways are in the same order of
magnitude, underscores the promising potential of further exploring
this novel dopamine production pathway. Specifically, we believe that a
better understanding of PPOs function and activation as discussed
above can lead to an improvement in the catalytic activity of this step.

In our production experiments, the choice of host strain and the
use of specific promoters were observed to influence the production
of L-DOPA and dopamine. JM109-based strains generally exhibited
higher L-DOPA titers, while the decarboxylation of L-DOPA into
dopamine seemed to be favored in BL21 cells. This trend was also
evident in the expression of enzymes constituting the novel
dopamine pathway, particularly in the initial decarboxylation of
tyrosine into tyramine. Hence, it appears that decarboxylation
reactions are more active in BL21-based strains compared to
K12 cells. One plausible explanation could be that these strains
preferentially promote the metabolism of CO2, potentially creating a
driving force for biosynthetic pathways requiring a decarboxylation
step. However, this hypothesis necessitates further investigation.

Generally, the inactivation of the regulator involved in aromatic
amino acidmetabolism and enzymes involved in a tyrosine competing
pathway did not lead to higher titers, except for the DPM15 strain,
which achieved the maximum dopamine titer expressing the known
pathway in BL21 cells having the genes pheLA and tyrR deleted. The
shikimate pathway, especially the tyrosine biosynthetic pathway, is
highly regulated. Thus, developing a tyrosine chassis strain is a
laborious task including multiple genetic modifications such as
gene knock-outs, overexpression, and replacement of feedback-
resistant protein motifs (Lütke-Eversloh et al., 2007; Fordjour et al.,
2019). We have selected the two-point genetic modifications (ΔpheLA
and ΔtyrR) to implement in our strains considering that these two
knockouts were the most common modification encountered in
tyrosine over-producing strains (Averesch and Krömer, 2018). The
deletion of tyrR aims to prevent transcriptional regulation, while the
deletion of pheLA aims to reduce the diversion of AAA pathway
intermediates towards competing reactions (Santos et al., 2012).
Muñoz et. al. have observed 1.9-fold increment in specific rate of
tyrosine production when inactivating TyrR (Muñoz et al., 2011),
while the knockout of pheLA led to an increment in L-DOPA
production from tyrosine in the study carried out by Wei et al.
(2016). However, the impact of these mutations on tyrosine
accumulation and, consequently, on the production of the target
compounds in our study was difficult to foresee since we are
supplementing tyrosine to our strains. Nevertheless, it seems that
these changes were insufficient to accumulate a high amount of
tyrosine for further conversion into the target products. Direct

supplementation of tyrosine aims to simulate the behavior of a
chassis strain, aiding in the identification of the most efficient
producer strains. However, as part of future work, it would be
crucial to evaluate the biosynthetic pathways for L-DOPA and
dopamine in industrial tyrosine-chassis strains.

Our findings highlight the complexity of the pathway and the
various factors influencing L-DOPA and dopamine production,
including the choice of genes, host strain, promoter, and
cofactor supplementation. Further optimization and detailed
characterization of the enzymes involved are necessary to
fully leverage these pathways for L-DOPA and dopamine
production. Not all implemented pathways resulted in the
accumulation of target compounds, in particular, the
expression of PPO from A. bisporus in the novel dopamine
pathway. This could be attributed to the lack of activation of
the enzyme, which is pivotal for these types of enzymes due to
the co-expression of a terminal blocking the active site. Unlike
the PPO from M. pruriens, the A. bisporus enzyme might exhibit
a low activity towards the substrate or other underlying
problems that require further investigation.

One approach to address metabolic bottlenecks and improve
pathway performance would be the use of protein engineering
methods combining protein structure prediction and molecular
docking (Trott and Olson, 2010) to introduce mutations that
enhance enzyme activity or affinity to the target substrate.
Specifically, the novel dopamine pathway could greatly benefit
from a more active second step, as tyramine accumulated at titers
of 0.7 g/L in the best dopamine producer (strain DPA2). Our
GDEE tool enables us to conduct experiments within the enzyme
engineering domain, and we are presently exploring this
prospect. Additionally, another potential strategy involves
initiating a new round of gene discovery by leveraging a
predicted structure for ppoMP, aiming to uncover new
potential gene sequences for this crucial step.

Despite the availability of enumeration tools for pathway design,
their utilization in previous studies has been limited, often being
employed in isolation. Although various pathway enumeration tools
have emerged (Hatzimanikatis et al., 2005; Liu et al., 2015; Koppolu
and Vasigala, 2016; Delépine et al., 2018; Shibukawa et al., 2020;
Hafner and Hatzimanikatis, 2021; Mohammadi-Peyhani et al., 2021;
Sveshnikova et al., 2022a; Sveshnikova et al., 2022b), it appears that
many synthetic biologists still predominantly rely on literature and
database reviews, in conjunction with accumulated knowledge, for
the pathway design process, as indicated by the limited citations of
experimental works (Fehér et al., 2014; Tokic et al., 2018; Ferreira
et al., 2019; Liu et al., 2021).

Our work demonstrates the successful integration of
computational tools for pathway, enzyme and gene candidate
selection, paving the way for more advanced applications,
including the integration of Artificial Intelligence (AI) tools (Jang
et al., 2022). Combining AI with automation of Design-Build-Test-
Learn (DBTL) principles holds great promise for the automatic and
robust design of microbial cell factories (Carbonell et al., 2018;
HamediRad et al., 2019; Radivojević et al., 2020; Sveshnikova et al.,
2022b; Liao et al., 2022; Gurdo et al., 2023). This approach is
particularly relevant for complex compounds and poorly
understood or inefficient metabolic pathways, as it allows for
systematic exploration and optimization.
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AI-guided enzyme and pathway design have the potential to
expand the portfolio of biosynthetic pathways, enabling the
production of both natural and synthetic compounds. The
computational workflow described in this study represents a
significant step forward, although it still requires manual
curation and analysis. The future integration of standardized
information, robotic handling platforms and machine learning
methods holds the promise of fully automated pipelines with
minimal human intervention. Such advancements would
facilitate the rapid and efficient design of microbial cell
factories, enabling the selection of the most effective variants
through iterative DBTL cycles (HamediRad et al., 2019; Liao
et al., 2022; Gurdo et al., 2023).

In conclusion, our study validates the use of computational
tools for the design of biosynthetic pathways, showcasing their
potential in the production of high-value compounds like
L-DOPA and dopamine. The integration of AI and
automation, along with further advancements in protein
engineering, will contribute to expanding our understanding
of metabolic pathways and revolutionize the field of microbial
cell factory design.
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