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There is increasing evidence that coronary artery wall shear stress (WSS)
measurement provides useful prognostic information that allows prediction of
adverse cardiovascular events. Computational Fluid Dynamics (CFD) has been
extensively used in research to measure vessel physiology and examine the role
of the local haemodynamic forces on the evolution of atherosclerosis.
Nonetheless, CFD modelling remains computationally expensive and time-
consuming, making its direct use in clinical practice inconvenient. A number
of studies have investigated the use of deep learning (DL) approaches for fast WSS
prediction. However, in these reports, patient data were limited andmost of them
used synthetic data generation methods for developing the training set. In this
paper, we implement 2 approaches for synthetic data generation and combine
their output with real patient data in order to train a DL model with a U-net
architecture for prediction of WSS in the coronary arteries. The model achieved
6.03% Normalised Mean Absolute Error (NMAE) with inference taking only 0.35 s;
making this solution time-efficient and clinically relevant.
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1 Introduction

Coronary Artery Disease (CAD) is the leading cause of death globally and is associated
with approximately 9 million deaths worldwide (Khan et al., 2020). Local hemodynamic
forces distribution and in particular wall shear stress (WSS) seems to play a pivotal role in
the initiation of the atherosclerotic process and its evolution. Measurement of WSS can
predict vulnerable plaques and adverse cardiovascular events (Stone et al., 2018). Blood
vessels with large diameters and low flow are exposed to low WSS, whereas vessels with a
small lumen and high flow are exposed to high WSS (Cecchi et al., 2011). As in vivo
experimental measurement of WSS is impractical, computational “measurement” using
computational fluid dynamics (CFD) has been broadly used to assess coronary physiology.
Whilst the efficiency of CFDmodelling has improved over the last decades, these models are
still computationally expensive and time-consuming, limiting their direct use in clinical
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practice (Ferdian et al., 2022). To address this challenge, several
studies have investigated the use of deep learning (DL) approaches
for fast WSS prediction.

DL has commonly been used in the medical imaging domain for
fast data analysis. An example in the field of flow modelling is in
image-based estimation of boundary conditions for blood flow
problems, assisted by DL (Arzani et al., 2022). DL has also been
used for biomedical problems in various stages of numerical
modelling; some of which include automatic generation and
quality assessment of meshes (Zhang et al., 2020).

Moreover, DL has also been used to predict numerical
simulation results. For instance, Gharleghi et al. (2022) applied a
DL solution to predict time-varying WSS in the left main coronary
bifurcation while Jordanski et al. (2018) used DL methods and in
particular multivariate linear regression, multilayer perceptron and
Gaussian conditional random fields in order to predict WSS
distribution at the carotid bifurcation. Furthermore, Suk et al.
(2022) utilised mesh convolutional neural networks in order to
predict WSS in a 3D coronary artery with and without bifurcation
using synthetically generated coronary arteries with stenosis.

These models are mostly inspired by fully convolutional
networks (FCN) in combination with autoencoders (encoder-
decoder models) that were initially developed for image
segmentation (Ronneberger et al., 2015). The architectures that
have become well known are U-net and V-net, with U-net being
the most adopted (Shen et al., 2017). Similar to autoencoders, a
U-net architecture consists of one part that contracts to capture
global context, followed by a second part to expand and therefore
enable localisation. In the study of Gharleghi the application of
U-net for DL- WSS prediction et al. enabled WSS estimation of
coronary left main stem bifurcation with a normalised mean
absolute error (Gharleghi et al., 2020) of 10.38% (with 0.56%
std.), based on 3,429 training data sets including patient-specific
(127) and synthetic data (3,302).

However, DL-based prediction of WSS in stenosed coronary
arteries using patient-specific geometries has not widely been
studied, despite the fact that these are potentially highly
clinically-relevant analyses. An earlier study used multi-layer
perceptrons, multivariate linear regression, and convolutional
neural networks to generate WSS values from 2,000 patient-based
but idealized coronary artery geometry (Su et al., 2020). In this
paper, for the first time, we apply a U-net-based DL prediction
method to extractWSS in real patients’ stenosed coronary arteries. It
is known that the training of a U-net, similar to other deep learning
models, relies on a large dataset. As such, the implementation of data
augmentation methods in advance can be used in order to learn
effectively from very few annotated data samples. As patient data for
training is limited in this study, we used simple methods to generate
synthetic data for training and evaluate method’s efficacy.

2 Materials and methods

2.1 Patient data

2.1.1 Data source and patient characteristics
Stenosed coronary artery geometry and centreline data derived

from X-ray angiograms and CFD simulation results were obtained

from our previous study (Tufaro et al., 2021). Fifty vessels from the
study cohort were randomly extracted for the present analysis and
their geometries are displayed in Supplementary Figure S7. The
original study included patients that had a coronary angiogram for
clinical purposes between January 2012 and June 2017 from three
cardiac centres in the United Kingdom: Barts Heart Centre
(London), Essex Cardiothoracic Centre (Basildon) and Royal
Free Hospital (London). The dataset consisted of patients who
underwent a coronary angiography and had at least one
intermediate atherosclerotic lesion with a fractional flow reserve
(FFR) of 0.81–0.85. Exclusion criteria included an ambiguous
culprit lesion in the context of an acute coronary syndrome
presentation, lesions at the edge of a stent ( <5 mm), lesions at
the ostium of the right coronary artery or the left main stem. Cases
with angiographic projections that were less than 25° apart were
also excluded, as adequate three-dimensional coronary
reconstruction from the angiographic data is not possible. The
local ethics committee advised that a formal ethical approval was
not required for the conduction of the present research. The
baseline demographics of the study patient are summarised in
Table 1 (Tufaro et al., 2021).

2.1.2 Computational fluid dynamics data
CFD simulations were conducted based on the 3D vessel

geometries reconstructed from 3D QCA. The corresponding
pressure and WSS were calculated over the lumen-wall interface of
each patient, using the patient-specific inflow condition, itself estimated
from the velocity of the contrast agent (derived from the length of the
model, the time required for the contrast to fill the vessel, and the cine
frame rate) and assuming steady state. Details of CFD modelling has
been presented elsewhere (Tufaro et al., 2021). The anatomical and
haemodynamic features of the vessels are summarised in Table 1.

The anatomical and CFD data were extracted over the lumen
wall surface, resampled on a rectangular grid that has 36 data points
circumferentially and segments at 1.5 mm increments longitudinally
(i.e., 24–77 segments). This was conducted using a custom-made
MATLAB code. The local anatomical feature map of each patient
can be used as input in training and prediction of a model, whilst the
CFD-derived variables (pressure and WSS) are the outputs. This
paper focuses on the prediction of WSS only, because pressure drop
prediction has not only been conducted more thoroughly using ML
(Farajtabar et al., 2021; Fossan et al., 2021; Pajaziti et al., 2023), but

TABLE 1 Patient and vessel characteristics (n = 50, one vessel per patient).

Age, yrs 62.04 ± 11.74

Male 38 (76%)

Vessel location LAD 35 (70%)

LCx 7 (14%)

RCA 8 (16%)

Vessel length 0.028 m ± 0.009 m

Proximal diameter 2.32 mm ± 0.4 mm

Degree of stenosis 47.0% ± 5.7%

Inflow velocity 0.13 m/s ± 0.02 m/s
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can also be calculated reliably using reduced-order 0D models
(Schrauwen et al., 2014).

We chose to use 7 input features from the original CFD data, as
outlined in Table 2. Centreline-based features were mapped to the
rectangular grid on the lumen border, i.e., points on the lumen
border on one cross-section have the same centreline-based features.
Going forward, we calculate additional morphological features and
standardised the data format as described in the Feature
Engineering section.

2.1.3 Feature engineering
In addition to the features available as part of the original

dataset, we calculated a variety of geometrical features that may
improve the predictive power of the model. These features include
the polar coordinates of the wall, centreline curvature, distance along
the centreline, tangential and inner curvature vectors of the
centreline. Each new feature is calculated as follows:

• Cylindrical coordinate: The polar coordinates include the radius
(rw) and angle from reference starting point (θw). All vessel
models have their centreline, and rw was calculated by subtracting
the xcyczc coordinates of the centreline points from the xwywzw
coordinates of each point on the lumen border. Based on this, we
obtain a reference unit vector vr̂ef and a corresponding vector for
each point vt̂mp. θw was calculated using Eq. 1:

θw � arccos vr̂ef · vt̂mp( )p360
2π

(1)

• Centreline Curvature: This is calculated using theMenger formula,
as shown by Eq. 2. TheMenger formula is applied to the centreline
data for a patient, where pi−1, pi, and pi+1 are 3 consecutive points
along the centreline,R is the radius of curvature, andA reflects the
area of the triangle that spans between pi−1, pi, and pi+1.

c pi( ) � 1
R
� 4A
|pi−1 − pi‖pi − pi+1‖pi+1 − pi−1| (2)

• Distance along centreline: This is calculated by taking the
cumulative distance between each xcyczc, centreline point and
the inlet.

• Tangential and inner curvature vectors: the tangential vector
of each point along the centreline was calculated by taking the
coordinate difference of adjacent centreline points. The
variation of normal vectors between adjacent centreline
points was then calculated as the inner curvature. This
adds 6 variables (3 components of 2 vectors).

The final set of input includes the original 7 features with
10 engineered features, 17 features in total.

2.1.4 Data normalisation and imputation
As the cardiac anatomy varies between individuals, the

various coronary arteries all of which have different contours
and shapes were analysed together. As their Cartesian
coordinates would not be expected to mapped onto each
other, a common feature space had to be created. To make the
data consistent, the proximal end of each vessel centreline was
first shifted onto the origin (0, 0, 0). The vessels were then rotated
to align the global centreline vector (i.e., the vector connecting
the first and last point of the centreline) with the global Z-axis.
This was applied onto its coordinates such that all geometries
ultimately align in the same plane.

Furthermore, the number of slices for each patient ranged from
24 to 77. The training data needs to conform to a consistent shape
for all patients. Accommodating the lowest common denominator
would lead to a truncation and therefore loss of critical patient data.
We therefore interpolate the patient data to the maximum number
of slices (77 slices). Nonetheless, a U-net shaped architecture with
pooling requires an even number for this dimension, thus we use
76 slices per patient. The increments at which the coronaries are
sliced comprises in the range of 0.24–0.66 mm.

The structure of the data that will be used for the DL model
becomes an array in the shape (n, 76, 36, 17) where n is the number
of patients. Initially n is the set of the 50 patients; these will later be
augmented with synthetic data. As for the remaining array
dimensions: 76 is the number of slices, 36 is the number of
points along the circumference of each slice (every 10 degrees),
and 17 is the number of features for each point. As the output is a
prediction of the WSS for each point, our output is in the following
format: (n, 76, 36, 1). Figure 1 depicts the structure of the data along
with the direction of travel more clearly.

TABLE 2 Patient data features considered in DL model. Centreline-based features are mapped to corresponding locations on the lumen border.

Feature Description

Input (from original CFD data) xw, yw, zw XYZ coordinates of point on lumen border

xc, yc, zc XYZ coordinates of centreline point

v inflow velocity

Input (added) rw, θw Polar coordinates of points on lumen border

c Centreline curvature (Eq. 2)

dc Distance along centreline

tcx
�→

, tcy
�→

, tcz
�→ Tangential vector of centreline

ncx
��→, ncy

��→, ncz
�→ Inward curvature vector of centreline

Output τwss WSS magnitude on lumen border, calculated from CFD
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2.2 Synthetic data generation

Deep learning models typically need many samples for training.
This is because a model will need to learn the weights for numerous
parameters and uses gradient-based optimization to converge to a
global optimum. When the model attempts to fit data patterns, it
may learn random noise if a dataset is small. This causes what is
known as overfitting and has as a consequence the inability of the
model to generalise well. We have conducted a practical experiment
to show that as the training data size increases, model loss decreases
(refer to Supplementary Figure S9).The need for larger realistic
datasets, and particularly those that are more private/secure
(obfuscate real patient data), have driven studies into the
generation of synthetic data. It is important that the synthetic
data follows the underlying distribution of the real data and
captures correlations between features in order to be plausible.
As yet, there are no public datasets of arterial CFD that can be
used for training. Since in our study we have only 50 patients in
scope, it is essential to augment the training set by generating
synthetic data.

In machine learning, and particularly in the case of images, there
are many simple approaches that can be utilised to create a larger
sample. These methods are referred to as data augmentation and
involve transforming an image via shifting (horizontally or
vertically), flipping (horizontally or vertically), rotating (clockwise
or anti-clockwise), zooming in or out, and changing the brightness
(Chlap et al., 2021). These methods can create more variation in the
data and artificially expand the dataset.

The use of flipping as an approach of data augmentation is
commonly seen in medical image processing (Cossio, 2023; Perez
and Wang, 2017). Nishio et al. applied random 10° rotations,
translations, and horizontal flipping to chest X-ray radiography
(CXR) images in order to improve the accuracy of their CNNmodel
for COVID-19 diagnosis (Nishio et al., 2020). Schmid et al. (2023)
propose the use of statistical shape and intensity models (SSIM) to
generate augmented CT images of hip bones including flipping,
shifting and rotation. Although the reversal of inlet and outlet may
not be physiologically representative, we examined the ratio of inlet
and outlet radii, which is 0.86 ± 0.12 and suggesting the tapering is
not substantial. Flipping remains a crucial step to avoid overfitting
and creating a more general model.

Inspired by these approaches, we modified the geometry of the
coronary artery and running the CFD analysis in ANSYS. In that
way, we were able to create realistic synthetic data by making
3 modifications to the original patient data. After implementing
the following modifications listed, 550 synthetic patients were
created that were used for training.

• Reverse inlet and outlet boundaries: The inlet and outlet
boundaries were reversed (i.e., flipping was applied) for the
original patient data whilst maintaining the original patient
inlet velocity. Thus, this created 1 new dataset per patient and
overall 50 synthetic datasets.

• Modify inlet velocity: The velocity was modified for each
patient to range from 0.05 to 0.25 m/s at 0.05 increments,
aligning with ranges observed in literature (Marcus et al., 1999;
Zafar et al., 2014). This resulted in 5 new datasets per patient
and therefore 250 synthetic datasets.

• Combination: By combining the methods above and
simultaneously changing both the inlet velocities while
reversing the inlet and outlet boundaries, we were able to
generate another 5 datasets per patient and therefore an
additional 250 synthetic datasets.

2.3 Deep learning model and training

In order to train the model, we split the synthetic dataset
generated. Of the total 600 patient dataset (50 real +
550 synthetic), 80% was used for training (40 real +
440 synthetic generated from those) and 20% was used as a test
set (10 real patients). The validation set, still used as part of the
training process for hyperparameter tuning, is automatically created
once the training begins and comprises 20% of the training set
(96 real/synthetic data mixture). It is important to note that the
train/test split is completed at the real patient level, such that only
synthetic data associated with the 40 real patients (440 patients) can
be used for training. This is done in order to prevent leakage of
information from the training set into the test set. In other words,
the model has not seen any information similar to the test patients,
not even their synthetic data. Once all data creation and pre-
processing was complete, the neural network architecture
was designed.

We adopted and modified the neural network architecture used
in Gharleghi et al. (2020) by removing the concatenation with global
features such as bifurcation angle, which is not relevant for our use
case. We also added a spatial dropout layer in order to reduce
overfitting of the model. The final neural network can be categorised
as a U-Net and had an architecture shown in Figure 2. This network
uses average pooling to scale the input data down to half of its
resolution. This is done twice, leading to a quarter representation of
the original dataset. The data is then passed through 2 convolutional
layers where a 3 × 3 convolution was applied, followed by up-
sampling and concatenation with the higher resolution data. Adam
optimizer was then used in addition to a 10% spatial dropout as a
regularization technique. The activation function selected was ReLU
such that the output is constrained to a positive value.

As the loss function, we selected the mean squared error (MSE)
although other similar studies in the literature, including Gharleghi
et al. (2020) and Jordanski et al. (2018), typically adopt the mean
absolute error (MAE). The MSE was calculated as per Eq. 3, where n
represents the number of vessels, τi represents the observed values
(i.e., CFD-based WSS), and τ̂i represents the predicted values
(i.e., DL-based WSS).

MSE � 1
n
∑
n

i�1
τi − τ̂ i( )2 (3)

In the case of our patient dataset, we are investigating patients
with stenosis whereWSS is significantly elevated. Our choice of MSE
is to better predict the peak WSS, as it incurs a higher penalty when
mismatched. To highlight the importance of this, we also trained the
model using MAE for comparison. The model was trained for
1,000 epochs. The computational resource utilised was an
NVIDIA T4 Tensore Core GPU with 52GB RAM. Training time
is approximately 40 min on average. Increasing infrastructure
resources can lead to faster model training and inference.
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2.4 Model evaluation and investigation

The deep learning model was assessed for WSS prediction
accuracy. We implement k-fold cross-validation with 5 folds,
where the DL-based prediction of WSS for the 10 patient data
left aside in Section 2.3 are compared against their original CFD-
based WSS, over 5 repeated training~validation steps.

DLmodels are typically considered as a black box models, and the
associations between particular inputs and outputs have not been
formally investigated. However, as our work also aims to understand
the mechanistic insight behind WSS profiles, explainability (xAI)
techniques were used to quantitatively assess feature importance
on a trained model. Many techniques exist that have been used in
DL models such as Shapley values (Lundberg et al., 2017), however as
this approach is computationally expensive, and the model internals
are available, we opted for the integrated gradients approach.

Integrated Gradients is a common technique for explaining
differentiable models such as neural networks. It is based on two
key properties: implementation invariance and sensitivity. It works
by creating a straight path between a reference point (typically zeros)
and the inputs to the model. By partitioning and interpolating the
path, the model can compute predictions at the different partition
points. The gradient information at the points of this path are
calculated, making it computationally efficient (Holzinger et al.,
2022). The intuition is that the gradient in the points where a
model’s predictions have flattened out are zero and therefore do not
contain information that contributes to the explanation. With this
process, the significance of each input feature in the prediction of
output (i.e., WSS) can be estimated. In order to apply this method on
our deep learning model, we utilise the Innvestigate library1 (Alber
et al., 2018).

3 Results

3.1 Overall model assessment

The results of the MSE on the test set are shown in Table 3. The
mean absolute error (MAE) is also displayed to show how different

the absolute value of the prediction is from the gold-standard, CFD-
based WSS for the same patients. In the literature, the normalised
mean absolute error (NMAE) is typically reported, thus we include
this metric in order to provide comparison with the other state-of-
the-art methods. The NMAE can be calculated by either dividing the
MAE by the mean or by the difference between the maximum and
minimum WSS. For this paper, we divided by max-min, where the
difference in WSS is 33.33 Pa.

As previously mentioned, the model training with our data took
on average 40 min. This means that it took less than 2.5 s per epoch;
not impractically long in the current form, yet it can be accelerated
even further in the future with additional infrastructure resources.
Model training results are presented in the Supplementary Table S4.
Prediction time was approximately 35 milliseconds, which is many
orders of magnitude faster than the CFD processing time, which
ranges from 20 min to approximately 3 h in our cases. Furthermore,
the model was able to predict the WSS on the test set to a NMAE of
6.03% with a standard deviation of 0.47% when normalised by the
difference between the maximum and the minimum WSS.

In order to show correlation between the CFD-based WSS and
the DL model prediction, a Bland-Altman plot was generated for the
test set and shown in Figure 3. Here, the minimum, maximum, and
mean predominant WSS in every 3-mm vascular segments were
used. Briefly, predominant WSS is defined as a moving average of
WSS within a window around a point of interest, which has a size of
90° circumferentially and 3 mm longitudinally. These metrics were
originally proposed to compensate image data uncertainty,
associated with motion of an intravascular imaging catheter
during a heartbeat, in the creation of a 3D vascular model. They
have been used in previous studies examining the value of WSS in
predicting adverse clinical events (Stone et al., 2018), including ours
(Tufaro et al., 2021), and shown to be practical and effective. The
means and differences are calculated between the CFD-based and
DL-predicted WSS and plotted along with the ± 1.96 SD lines.
Figure 3 shows the values for all the patients. The majority of points
lie between 95% CI, demonstrating a correlation between the CFD-
based and DL-based WSS values, with the bias of maximum 0.38 Pa.

3.2 Patient-level WSS prediction

By scanning along the slices of data in the direction depicted by
Figure 1, we can plot the WSS profile for a particular patient. Figure 4
illustrates theWSS profile for a patient in more detail, the DL-predicted
WSS values are plotted over the wall surface from proximal (left) to
distal (right) and across the circumference of each cross-section.

The plotted data display the output of the model trained
with MAE as the loss (red) and the MSE as the loss (green),
along with the ground truth CFD-based WSS that are displayed
in blue. It is clear that the model trained by MSE predicts WSS
that fits better to the ground truth. Although the MAE result
had a low overall error, it did not capture the local variations of
WSS as much as the MSE-based training, especially in the areas
of stenosis. This justifies the choice of MSE loss for
model training.

Among the 10 test cases, we performed a qualitative
assessment using 3D WSS surface plot in order to illustrate in
more detail the patient-level WSS prediction results. Two of those

FIGURE 1
Data structure showing the data scanning direction: Starting
point at θ � 0 travels clockwise for each slice and along vessel from left
to right.

1 https://github.com/albermax/innvestigate
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vessels with the most accurate and inaccurate WSS predictions are
presented in Figure 5, and similar plots for the full 10 test cases are
presented in the Supplementary Figure S10. It is apparent that in
both cases the WSS patterns are generally captured by the DL
model, but there are differences after looking the data in detail,

e.g., in the distal region of Patient 7 where the vessel is more
tortuous. This trend is observed in the other models shown in the
Supplementary Material. Patient 7 appears to be the most curved/
tortuous and having multiple stenosis sites, which could have
given the difficulty in the prediction of WSS by the DL model.

TABLE 3 Global model error evaluated for 10 test patients. The two groups of error values are based on different loss functions (MSE and MAE) used in
training, and the error is also assessed based on both MSE and MAE. Summary statistics are provided for training patients for comparison (Meantr and SDtr ).
Full error statistics of training can be found in Supplementary Table S4.

Fold Models trained on MSE loss Models trained on MAE loss

MSE (Pa2) MAE [Pa] NMAE [%] MSE (Pa2) MAE [Pa] NMAE [%]

1 9.3 2.08 6.24 8.4 1.91 5.73

2 8.9 2.09 6.27 8.6 1.91 5.73

3 6.3 1.77 5.31 12.6 2.44 7.32

4 7.1 1.90 5.70 8.1 1.87 5.61

5 11.5 2.21 6.63 12.0 2.37 7.11

Mean 8.6 2.01 6.03 10.0 2.10 6.30

SD 2.01 0.18 0.47 2.17 0.28 0.75

Meantr 7.3 0.88 2.65 11.7 1.23 3.68

SDtr 2.01 0.12 0.37 07.5 0.61 1.83

FIGURE 2
Neural network architecture for prediction of WSS in coronary artery.
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Additionally, we observed that the prediction by the DL model
underestimates WSS in the stenosis region and tends to
overestimate otherwise.

3.3 Feature importance

Figure 6 shows the value of the 17 features based on the
integrated gradients estimations. The integrated gradients are

calculated per each data point on the vascular wall surface and
give an evaluation on how the input features contribute to the
prediction. In order to conduct an overall assessment of the model,
the samples need to be aggregated; the mean feature importance
across all points along a vessel surface, and the mean across all test
patients are summed to have the final results. Our findings indicate
that the radius and inlet velocity are the most important features
while the circumferential coordinate θ, the components of centreline
tangential and normal vectors tx and ny were found to be the less

FIGURE 3
Bland-Altman plot for min (left), mean (centre) and max (right) predominant WSS in 3-mm segments along the vessels.

FIGURE 4
WSS profile for one patient with predictions from MAE (red) vs. MSE (green) trained models.

FIGURE 5
Example 3Dmaps of predicted WSS, in comparison with original CFD-basedWSS: Patient 3 with small prediction error (left) and Patient 7 with larger
error (right). WSS maps of all 10 patients are shown in Supplementary Figure S10.
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contributing features. The positive and negative signs indicate
whether the relationship between the input feature and the
output feature (WSS) is positively correlated or inversely
proportional.

The top six important features were then selected (velocity,
radius, theta, curvature, tangential vector in Y direction and normal
vector in Z direction) and the model was retrained with MSE as the
loss function. This resulted in an MSE of 8.89 Pa2, an MAE of
2.28 Pa, NMAE of 6.84%. As expected, the results are comparable to
using the full set of features available. This is because the model is
placing a low weight on the remaining features, as such they do not
have a strong impact on the final prediction. Nonetheless, utilizing
the full feature set (with MSE loss) results in an average MSE of
8.6 Pa2, an MAE of 2.01 Pa, and NMAE of 6.03%; thus still
outperforming the experiment with the subset of features.

4 Discussion

In this study, we conducted DL-based WSS prediction of
stenosed arteries based on CFD-based WSS calculations of
50 patients’ and 550 synthetic vessels. The results showed, that
despite the relatively limited number of training data, DL-based
WSS prediction is feasible in stenosed patient-specific geometries.
WSS prediction of diseased coronary arteries is a challenging
problem as the range of WSS that needs to be predicted is much
larger than that of a vessel without a stenosis including bifurcations.
Dolan et al. (2012) reported that the WSS of the arterial system
ranges from 1 to 7 Pa while in straight arteries, the time-averaged
WSS physiological range is between 1.5 and 2.5 Pa. In the areas of
bifurcation, WSS is raised because of flow impingement on
bifurcation carina and range from 11 to 34 Pa (Lindekleiv et al.,
2010). However, in the areas of stenosis this can even be > 30 Pa
(Teng et al., 2010; Torii et al., 2009), observed both in our CFD
models (e.g., in Figure 4) and others.

4.1 Synthetic data

As mentioned earlier, training of DL models tend to require
large data sets. For example, Cho et al. (2016) investigated the

impact of increasing the number of training samples of axial
Computed Tomography (CT) images for classification into six
anatomical classes. The results showed that an increase in the
number of samples from 5 to 200 improved model accuracy
from 8% to 95% (Cho et al., 2016). Similar findings have been
also reported in other studies that highlighted the relationship
between a larger data set and improved model performance, not
only for machine learning but especially for deep learning (Sarker,
2021; Halevy et al., 2009; Zhang et al., 2019).

Gharleghi et al. (2020) generate a synthetic dataset out of
127 patients by modifying the bifurcation angle geometry and, as
a result, obtain 3,302 synthetic patients. In our paper, to augment
our dataset, we took a simple approach by flipping the geometry in
combination with changing the input velocity. This results in
550 synthetic patients that were then used to train a DL model
that can predict WSS with an accuracy that is similar to previous
reports. An advantage of the proposed method is that it does not
require creation of vessel geometry and computational mesh
generation. These are time-consuming processes requiring up to
3 h to estimate the WSS patterns of a single new synthetic “model.”

The training dataset size in this study, is deemed effective in
terms of the trade-off between accuracy and training time, based on
our preliminary investigation using idealised curved tubes with a
stenosis (Supplementary Material). However, it is likely that a larger
training datasets would provide more accurate estimation of WSS
patterns as real coronary anatomy varies between patients and
vessels and this critically determines WSS. To mitigate this,
acquisition of real patient data is ideal, but considering the
largest number of patients reported in a CFD analysis is
approximately 500 (Stone et al., 2012), synthetic data will still be
necessary. Additionally, patients’ data are often associated with
confidentiality concerns, which may prevent the dataset from
being shared with the research community. Thus, future studies
should try to combine the inclusion of larger clinical datasets and the
creation of synthetic data from these data.

A common method for synthetic data generation of geometries
in biomedical engineering is statistical shape modelling (SSM).
Three-dimensional (3D) SSM facilitates the study of shape
variability and allow the creation of new geometries with a wide
range of variability (Alemany et al., 2019). Such statistically varied
models offer an opportunity for experiments by exploring how

FIGURE 6
Feature importance for deep learning model inputs, aggregated over 10 test patients’ data. Positive and negative scores represent positive and
negative correlations, similarly to statistical correlation coefficients.
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changes to the shape geometry impact other factors (Sarker, 2021),
which has been utilised in combination with CFD (Lamecker and
Zachow, 2016). For example, Bruse et al. (2017) show that SSMs can
aid to improve cardiac device development by modelling
hemodynamic and geometric boundary conditions in cardiac
anatomy. These models have been shown to improve both the
efficiency robustness and value of synthetic patient data (King
et al., 2019).

4.2 Model results

As previously noted, the MSE was used as a loss function as it
facilitates a better fitting of the model prediction to WSS peaks due
to the larger penalty in these areas. This is ideal for our vessels as
there are sharp increases of WSS in the areas of a tight stenosis,
reaching up to 70 Pa, whereas normal WSS range is reported to be
1–7 Pa (Malek, 1999). The WSS prediction error from the model
trained on MAE turned out to be 2.10± 0.28 Pa, with a NMAE of
2.51±0.33% (Table 3). This value on average is comparable to that
calculated when MSE is the loss (2.01±0.18 Pa MAE, p = 0.60 vs.
MAE of the models trained on MAE loss). Therefore, as far as global
error metrics are used to evaluate model accuracy, a difference is not
evident and that may be the reason why most of the previous works
utilised the MAE for simplicity. Additionally, when models are
trained on MAE, the standard deviation of error (MAE) tends to be
larger than MSE-based training (0.28 Pa vs. 0.18 Pa) though that is
not statistically significant (p = 0.19 for F-test of training outcome
MAE variances in Table 3).

Bland-Altman plots were generated for the minimum,
maximum and mean predominant WSS to assess the difference
between the CFD-based and DL-predicted estimations (refer to
Figure 2). The limits of agreement range from −3.59 to 3.37 Pa.
These ranges may have implications when WSS is low, but in the
case of prediction of WSS in stenotic vessels where WSS in our
dataset reached over 70 Pa, this result shows that the DL performed
well andmay have a value for real time computation of theWSS. The
heterogeneous distribution of the WSS data in the test set
underscores the challenge of the prediction task. Of note at the
lesion site, which is the most clinically relevant segment, the range of
difference between DL and reference standard was −4.04–3.96 Pa
and this is comparable to that reported by Tufaro et al. (2022)
(−4.1–5.7 Pa) who compared the estimations of two CFD-based
approaches (one conventional CFD analysis performed using the
ANSYS software a CFD analysis performed by a dedicated software
CAASWorkstationWWS) in models reconstructed by two different
software (Medis vs. Pie Medical).

An example of patient-level WSS prediction in Figure 4 shows
that the error values are comparable for both the MAE trained and
MSE trained models (2.85 Pa vs. 2.55 Pa respectively) however the
WSS profile of the MSE approached better the reference standard in
areas of stenosis. Nonetheless, in order to identify the areas that may
be more difficult for prediction, a difference 3D plot is generated in
addition to 3D visualization for DL-predicted and CFD-based
coronaries (refer to Figure 5). Although the DL prediction is able
to capture the overall WSS distribution, it can be seen that in
diseased segments, the prediction is typically lower than the
CFD-based results and the error is higher. Nevertheless, our

prediction accuracy is similar to other existing models that range
from 1.6% to 10.1% NMAE (normalised by the maximum) (Su et al.,
2020; Suk et al., 2022), despite the fact that we included
distinct stenoses.

4.3 Feature importance

Explainability is one of the current key advancements in
machine learning models, moving forward from the use of
black-box models (Belle and Papantonis, 2020). It is important
to explain why a model has made a particular prediction before
applying this in clinical practice. In typical supervised learning,
e.g., linear regression models, model coefficients associating the
input features to prediction output can be used to explain the
importance of a specific input feature. However, this is more
challenging with DL approaches, as they are typically black-
boxes. In this paper, we introduced engineered features based
on domain knowledge in order to improve model prediction.
Feature engineering plays a key role in model prediction
(Heaton, 2016). Previous works have demonstrated a
relationship between key features and WSS, such as curvature
and velocity (van Oijen, 2005).

Our results indeed indicate that velocity carries significant
importance, following the vessel radius. This makes a
mechanistic sense since WSS on a tube wall is theoretically
determined by the flow rate and radius assuming Newtonian
fluid and parabolic velocity profile (τ � 4μQ

πR3). Curvature as
Menger curvature is not shown as significant, but the
components of centreline tangential and curvature vectors tx

→
and

nY
�→ were found to be relatively significant features, along with the
circumferential position θ, indicating that the curved vascular
geometry and relative location of the wall play a role in WSS
distributions. Further research is needed towards this direction
and better understand WSS distribution. For instance, different
features may play a different role in disease-free and
stenotic segments.

4.4 Limitations

This study was an initial attempt to predict WSS in patient-
specific stenotic vessel geometries, hence it has limitations. First, the
number of patient-specific vessels was limited to 50, of which only
40 were used for training. This also limited the range of stenosis
degree and inflow velocity as presented in Table 1. Although the
results indicated comparable predictive capability to the literature,
this can be improved by taking advantage of the full set of patients
(n � 293) included in our previous study (Tufaro et al., 2021). A
larger number of patients with clinical outcome data will facilitate
further assessment of DL-based WSS prediction more towards its
clinical utility. Furthermore, the current output of the model is the
magnitude of the WSS; not a WSS vector which is of high interest in
hemodynamics modeling in combination with their transient
behaviour. Steady-state flow is also an assumption that was
made; by extending the work to unsteady flow, time-resolved
WSS behaviour can be learned. Addressing these points will
allow the study to include multidirectional WSS metrics, such as

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Alamir et al. 10.3389/fbioe.2024.1360330

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1360330


Oscillatory Shear Index, transverse WSS and WSS topology, etc.
(Morbiducci et al., 2020; Hoogendoorn et al., 2019; Kok et al., 2019).

Future work is also needed to improve model performance and
optimise DL architecture. The U-net approach used in this study is a
well established approach, but it has been developed in 2015
(Ronneberger et al., 2015) and since then several other DL
approaches have been introduced in cardiovascular research such
as physics-informed neural networks (PINNs) (Raissi et al., 2019)
and graph-neural networks (GNNs) (Scarselli et al., 2009). These DL
architectures may enhance model performance.

Improvements to data augmentation in terms of quality and
quantity can also be introduced. For instance, additional features
may be engineered such as torsion in order to enrich the data set
and, as a result, the data quality. Moreover, a finer level of
granularity such as more slices per patient may be beneficial for
achieving more realistic results, in addition to generating a larger
cohort of synthetic data. Finally, a further deep dive into
explainability should be considered, in particular in the areas of
stenosis compared to the rest of the artery.

5 Conclusion

This paper demonstrated for the first time that DL-based prediction
of WSS is feasible and has overall high performance that is comparable
with previously-reported studies based on idealised stenotic vessels. The
model used for prediction is inspired by a U-net architecture and
achieves state-of-the-art performance at 6.03%NMAE. Training time is
under 2.5 s per epoch and inference is at the order of milliseconds,
making this a fast solution and an attractive alterative to current CFD
analysis. Furthermore, we demonstrate the impact of utilising the MSE
rather than the MAE as a loss function for training. Finally, model
performance is explained via ranked feature importance calculated
using the integrated gradients method. Although the model
currently provides inaccurate predictions for some patients and may
not yet be applicable for clinical application, it appears that it has the
potential to replace the CFD-based WSS computation in clinical
practice, as it is computationally inexpensive and able to operate
in real time.
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