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In recent years, lower limb exoskeletons have achieved satisfactory clinical
curative effects in rehabilitating stroke patients. Furthermore, generating
individualized trajectories for each patient and avoiding secondary injury in
rehabilitation training are important issues. This paper explores the utilization
of series elastic actuator (SEA) to deliver compliant force and enhance impact
resistance in human-robot interaction, and we present the design of novel knee
exoskeleton driven by SEA. Subsequently, the novel gait trajectory prediction
method and compliant control method are proposed. The attention-based CNN-
LSTM model is established to generate personalized gait trajectories for affected
limbs, in which the spatial-temporal attention mechanism is adopted to improve
the prediction accuracy. The compliant control strategy is proposed to
nonlinearly and adaptively tune impedance parameters based on artificial
potential field (APF) method, and active rehabilitation training is carried out in
the coordination space to guarantee patient safety. The experimental results
based on four healthy subjects demonstrated that synergetic gait prediction
model could satisfactorily characterize the coordination movement with higher
accuracy. The compliant control could limit the patient’s movement in the safe
coordination tunnel while considering personalization and flexibility.
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1 Introduction

According to the Global Burden of Disease Study, stroke remains the primary cause of
the second-highest mortality rate and the third-highest disability rate in the world (Feigin
et al., 2022). Patients with lower extremity motor dysfunction after stroke usually show
weakened lower extremity muscle strength, limited range of motion, and unstable shift of
center of gravity, often accompanied by foot drop and varus deformity (Wang et al., 2017).
Knee joint is the most complex joint of human body in structure, which can not only
support basic locomotion such as walking, running, and standing, but also effectively
dampen the impact force generated during walking. Knee dysfunction caused by
neurological diseases is the most common factor leading to gait abnormalities, which
severely affects patients’ activities of daily living. Therefore, it is necessary to carry out
rehabilitation training and develop the knee exoskeleton to improve mobility (Yan et al.,
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2022). Research shows that rehabilitation training for patients at the
early stage of the stroke has a significantly positive effect (Ballester
et al., 2022).

The traditional rehabilitation therapy is time-consuming and
laborious, and rehabilitation outcome is limited (Zhang et al., 2021).
The lower limb rehabilitation robots can not only reduce the burden
of rehabilitation therapists, but also customize the gait trajectory and
training intensity (Kim et al., 2019; Cao et al., 2023; Yang et al.,
2023). However, traditional knee exoskeletons mostly adopt rigid
actuators, which can achieve accurate position control, but lack
compliance (Chen et al., 2017). Exoskeletons driven by pneumatic
muscles possess high compliance, but how to provide power
conveniently is a challenge (Sridar et al., 2018). Series elastic
actuator (SEA) intentionally introduces an elastic element
between the actuator and output, which has many advantages,
including lower reflection coefficient, impact resistance, and more
accurate stability control in unconstrained environment (Yu and
Lan, 2019). Recently, knee exoskeletons driven by SEA have received
increasing attention (Kong et al., 2012; Song et al., 2023). Kong et al.
designed the knee exoskeleton with compact rotary series elastic
actuator (cRSEA), in which worm gears made no noise and were
used to amplify the torque produced by the motor (Kong et al.,
2012). Song et al. studied a crank-slider series elastic actuator (CS-
SEA), in which crank-slider mechanism could improve the torque
effect and the level of transparency, and the experimental results
showed the precise force control performance of CS-SEA (Song
et al., 2023). However, the weight of the knee exoskeleton can be the
burden for patients, and patients vary in body shapes, so the knee
exoskeleton should be adjustable to accommodate patients with
different physical parameters to improve the adaptability of device
and limit the range of motion of the knee exoskeleton to prevent
secondary injury.

The predefined gait trajectory is suitable for patients who lack
the ability to walk independently in the early stage of rehabilitation.
However, in the middle and late stages of rehabilitation, the
predefined trajectory may conflict with the patient’s active
intention (Zhu et al., 2022; Na et al., 2023). The continuous
estimation of human motion intention through gait prediction
method exhibits potential for compliant human-robot interaction
(Xiong et al., 2021). Gait prediction is mainly based on motion
information and physiological information. Motion information
mainly includes joint angle, angular acceleration, and plantar
pressure (Liu et al., 2017; Mounir Boudali et al., 2019; Sivakumar
et al., 2019), and physiological information includes surface
electromyography (sEMG) and electroencephalogram (EEG)
(Gautam et al., 2020; Morbidoni et al., 2021; Liu et al., 2022).
Meanwhile, multi-sensor fusion and multi-feature fusion can
realize better prediction accuracy in gait prediction (Mazumder
et al., 2016; Arami et al., 2019). Zou et al. proposed a gait prediction
model to generate personalized gait trajectory for different subjects,
which took the current joint angle of healthy lower limb and the
observed historical joint angle of both lower limbs as input, and
predicted the future joint angle of the paralyzed leg (Zou et al., 2021).

Human-robot interaction has requirements for control accuracy
and safety, but the two criteria are conflict. Compliant control can
provide a compromise between control accuracy and safety
(Schumacher et al., 2019). Compliant control can control the
position and force simultaneously and purposefully, including

impedance/admittance control (Kim et al., 2021), hybrid force/
position control (Yang et al., 2020), and parallel force/position
control (Wang et al., 2011). Compared to hybrid and parallel
force/position control, impedance control focuses more on
achieving the target relationship between force and position, but
does not necessarily track the expected trajectories (Perez-Ibarra
et al., 2019; Chen et al., 2020; Sun et al., 2020). Admittance control,
also known as position-based impedance control, adjusts the desired
trajectory according to force deviation (Almaghout et al., 2022;
Huang et al., 2022). Impedance control with adjustable parameters
can respond to changes in the external environment (Liu et al., 2020;
Wang et al., 2021). Li et al. proposed an iterative learning impedance
control method, in which the control objective was the impedance
model. This method achieved the desired control accuracy through
iteration, which was suitable for the rehabilitation tasks with
repeatability (Li et al., 2018). Spyrakos et al. introduced a variable
impedance control scheme performing stable trajectory tracking,
which ensured the stability of impedance control for flexible-joint
robots (Spyrakos-Papastavridis and Dai, 2021).

Currently, AAN algorithm modifies the intervention of the robot
according to the patient’s behavior, while adopting virtual walls to
guarantee patient safety (Banala et al., 2009; Perez-Ibarra et al., 2019; Asl
et al., 2020). Banala et al. developed the force-field controller which
applied tangential and normal forces to the ankle, in which the
tangential forces moved the ankle along the trajectory, and the
normal forces produced virtual tunnel around the desired ankle
trajectory (Banala et al., 2009). Asl et al. adopted the force field
control term in the velocity field controllers, which acted as the
virtual tunnel around the desired trajectory. The forces were applied
to the desired trajectory whenever the position of the device deviated
more than the safety threshold (Asl et al., 2020). However, the desired
trajectory is not individualized for each patient, and the actual trajectory
should be modified according to the patient’s motion intentions.

In this paper, the flexible knee exoskeleton driven by SEA is
designed, and compliant control scheme is proposed for the
rehabilitation of stroke patients. The main contributions of this
article can be listed as follows.

1) The ball screw drive system, adjustable design, safety
mechanism, dual-purpose interface, and support module are
adopted in the knee exoskeleton driven by SEA to improve the
safety, compatibility, and utilization rate of the device.

2) The attention-based CNN-LSTM network combined with
inter-limb synergy is proposed to generate individualized
gait trajectory, in which the spatial-temporal attention
mechanism is adopted to improve the prediction accuracy.

3) The compliant control scheme based on artificial potential
field (APF) method is proposed to nonlinearly and adaptively
modify the impedance parameters according to actual
conditions, improving the safety and compliance of
individualized gait rehabilitation.

The rest of this paper is organized as follows: Section II
demonstrates the detailed information of the knee exoskeleton
driven by SEA. Section III introduces the proposed individualized
gait trajectory prediction model. Section IV shows the compliant
control scheme. Experiments and results are conducted in Section V.
Section VI is discussion. Conclusion are presented in Section VII.
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2 Mechanical design

To enable normal walking, the output torque and angle of the
knee exoskeleton in the flexion/extension direction should meet the
standards of the human body. The knee angle ranges from −4–66°,
and the knee torque ranges from −5–66 N · m (Chen et al., 2019).
Meanwhile, the exoskeleton should be designed with an adjustable
mechanism to adapt to patients with varying physical parameters.

The knee exoskeleton driven by SEA designed in this paper is
used for unilateral lower limb. The main structure of the knee
exoskeleton driven by SEA is shown in Figure 1, which mainly
includes six modules, namely, thigh module, calf module, knee
module, actuator module, support module, and protection
module. The length of the thigh module and the calf module can
be adjusted to accommodate patients with different physical
parameters, which improves the utilization and adaptability of
equipment. The inner calf rod and the drive support can also be
adjusted, allowing different force arms to be realized to satisfy
different rehabilitation needs.

There is a dual-purpose interface at the end of the actuator
module, which can realize the normal rotation of the knee joint or
calibrate the spring coefficient. The knee module is equipped with
safety mechanism to ensure the safety of rehabilitation training. The
safety latch can be inserted into the limit hole, and the range of
motion of the knee angle can be adjusted by changing the position of
the safety latch. The protection module is manufactured through 3D
printing technology, and the flexible material enables the protection
module to adapt perfectly to the human body. The support module
can alleviate the burden on patient, and the patients can wear the
knee exoskeleton to achieve gait rehabilitation on the treadmill, as
shown in Figure 2A. The support module can also adjust the

position of the exoskeleton in three directions. The end of the
support module is connected with a bearing, thus promoting
unrestricted movement of the hip joint.

The knee exoskeleton adopts SEA as the actuator, as shown in
Figure 2B. The SEA is isolated from the load through flexible
elements. When the system is impacted, the spring can provide a
buffer and absorb energy, which plays a protective role and improve
the flexibility of SEA. The angle and displacement sensors are
installed at the bottom of the knee module, which can monitor
the patient’s motion in real time, providing a hardware basis for
compliant and intelligent control. When SEA works, the motor
drives the ball screw to rotate, and the nut of the ball screw moves
linearly, which compresses or stretches the spring. The force of
spring makes the push rod of SEA generate thrust or tension, which
can realize the flexion or extension movement of the knee joint. At
the same time, the actuator module rotates relatively with the thigh
and calf driver support module in a small range. The displacement
sensor records the deformation of the spring, and the angle sensor
records the flexion and extension angle of the knee joint, and the two
signal feeds it back to the control system.

3 Individualized gait prediction model

3.1 TASK design and data acquisition

Human motor coordination refers to the ability of the
neurobiological motor system to generate complex movements
involving multiple limbs or joints. Various types of coordinated
movements can be executed by the lower limb, including sitting/
standing, squatting/jumping. The most common coordinated

FIGURE 1
Detailed display of knee exoskeleton driven by SEA (Dong et al., 2022).
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movement is walking, which is a fundamental athletic skill for other
activities.

In this paper, a variety of lower limb coordinated movement
tasks using the knee joint are designed. The subjects walked on
treadmills at different speeds and slopes. The speeds included
0.5 km/h, 1.5 km/h, and 3.0 km/h, and the slopes included 0°, 4°,
and 8°. The slope 0° represent that the human walks on flat ground.
The subjects initiated a gait cycle with the right heel touching the
ground and end the gait cycle with the next right heel touching the
ground. The gait trajectory is the knee joint position trajectory
during walking in this paper (Tanghe et al., 2020; Challa et al., 2022;
Song et al., 2023).

The coordinated movement data of the subjects are collected
and recorded by the Delsys sEMG signal acquisition system. The

position of the sEMG and angle sensors is displayed in Figure 3. The
sEMG sensors are attached with special double-sided adhesive tape
to the three muscles closely associated with the movement of knee
joint, namely, rectus femoris, vastus lateralis, and biceps femoris.
Two angle sensors are attached to the knee joints with ordinary
double-sided tape.

Four healthy subjects were invited to participate in the data
collection. This trial has been approved by Human Participants
Ethics Committee from Wuhan University of Technology, and
written informed consent was obtained from each participant.
Participants walked while imitating patients with left lower limb
injuries, with a reduction in force produced by the left lower limb
muscles and an increase in force mainly produced by the right lower
limb muscles. The data collected in the experiment were the sEMG

FIGURE 2
The mechanism of knee exoskeleton. (A) Knee exoskeleton with support module. (B) Knee exoskeleton in rehabilitation training.

FIGURE 3
Position of the sEMG and angle sensor.
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of the three muscles and knee angle signal of the healthy lower limb,
as well as knee angle signal of the affected lower limb.

3.2 Attention-based CNN-LSTM model

Synergy mechanism is adopted in statistical regression to extract
couplings between limbs in healthy synergetic motion. The
synergetic gait prediction model can generate the individualized
gait trajectory of the affected lower limb based on the sEMG signal
and the knee joint angle of the healthy lower limb. Convolutional
neural network (CNN) and long short-termmemory (LSTM) neural
network are widely applied in gait prediction. Standard CNN model
is well suited for handling spatially autocorrelated data, which is
unsuitable for dealing with complex and long-term dependencies. In
contrast, LSTM model is more suitable in handling temporal
autocorrelated data. Therefore, the hybrid CNN-LSTM model
can effectively improve forecasting performance. Furthermore,
the attention model can assign weights to important features,
thus enhancing the prediction accuracy (Thakur and Biswas,
2022; Xu et al., 2022). Individualized gait prediction typically
involves the collection and analysis of the data specific to an
individual, such as motion capture data, the ground reaction
forces, and sEMG data. Machine learning algorithms are adopted
to analyze the data and develop personalized models that can
accurately predict the individual’s gait characteristics.

The structure of attention-based CNN-LSTM model mainly
includes four modules, namely, CNN module, spatial attention
module, temporal attention module, LSTM module, as shown in
Figure 4. The spatial attention module is as shown in Figure 5A,
which refers to the Convolutional Block Attention Module (CBAM)
(Woo et al., 2018). The input features are respectively subjected to
maximum pooling and average pooling to obtain pooled features
Fsavg ∈ R1×H and Fsmax ∈ R1×H. H represent the number of features.
Then, the features pass through a 1D convolutional layer with a filter
size of 7, and performs a sigmoid function operation to generate a
spatial attention weight vector. The attention weight is multiplied
element-by-element with the original feature to output the feature
vector Ms ∈ R1×H, as shown in Eq. 1.

Ms F( ) � σ f7 AvgPool F( );MaxPool F( )[ ]( )( )
� σ f7 Fs

avg; F
s
max[ ]( )( ) (1)

where f7 indicating that the filter size of the convolutional layer is 7,
Fsavg, F

s
max represent pooled features after maximum pooling and

average pooling operation, respectively.

k � ψ C( ) � log2 C( )
γ

+ b

γ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣odd (2)

where the size of the kernel k describes the size of the temporal
neighborhood, and γ, b are constants.

The temporal attention module is as shown in Figure 5B, which
refers to Squeeze-and-Excitation Network (SENet) (Wang et al.,
2020). Firstly, global average pooling is performed on the input
features F ∈ RC×H, and the dimensions of the input features are
mapped from C ×H to C × 1. C represents the number of time steps.
Then, 1D convolution is performed on the features, and the sigmoid
function operation is performed to generate a temporal attention
weight vector. The attention weight is multiplied element-wise with
the original feature to output the feature vector Mt ∈ RC×1. k is
adaptive to the number of time steps C, determined by Eq. 2, where
γ = 2, b = 1. Longer time steps mean longer distance interactions
through mapping ψ(C).

4 Adaptive compliant control strategy

4.1 PATH planning

The coordinated gait trajectory of the affected lower limb can be
generated based on the information of patient’s healthy lower limb,
and the data is collected and inputted into the pre-trained synergetic
gait prediction model in actual rehabilitation training. However, it is
also necessary to consider the safety problems caused by excessive
human-robot interaction force on the affected lower limb. The
impedance control can modify the expected trajectory of the
exoskeleton through the deviation between expected and actual
human-robot interaction force, which can realize that the
exoskeleton can move under the guidance of the coordinated gait

FIGURE 4
Structure of attention-based CNN-LSTM model.
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trajectory as much as possible, while maintaining compliance and
reducing the risk of injury.

As shown in Figure 6, the optimal coordinated gait trajectory is
defined as the individualized gait of the affected lower limb generated
through synergetic gait prediction model in the specific task or scene.
Coordination space is defined as the space that extends outwards with
the optimal coordinated gait trajectory as the center, and themovements
in the coordination space are all in accordance with normal gait pattern.
The robot shows the strong compliance near the optimal coordinated
trajectory, and the patient’s motion intention can correct the expected
trajectory. When deviating from the optimal coordinated trajectory, the
compliance of the robot gradually decreases, but it still follows the
optimal coordinated trajectory and ensures that it always cannot exceed
the boundary of the coordination space. Meanwhile, the stiffness
coefficient needs to be increased. The trajectory is closer to the
boundary of coordination space, the faster the impedance parameter
increases, and the inertia coefficient and damping coefficient also need to
be increased synchronously to ensure the stability of system.

The APF method is widely adopted in obstacle avoidance in path
planning, which can make the robot bypass the obstacle and gradually
approach the target by controlling the gravitational field and the repulsive
field. Similarly, the optimal coordinated gait trajectory is defined as the

target, which is generated by synergetic gait prediction model, and the
upper and lower boundaries of coordinated space are defined as the
obstacles. The gravitational force near the target increases, and the
repulsive force near the obstacle increases. The resultant force at the
current position serves as the impedance control parameter, enabling
small position corrections near the optimal coordinated gait trajectory and
extensive position corrections near the boundary of coordination space.

Define the potential function U(p) of an object at the point p,
which is the sum of the gravitational potential function U1(p) and
the repulsive potential function U2(p), as shown in Eq. 3.

U p( ) � U1 p( ) + U2 p( ) (3)
U1 p( ) � 1

2
ςρ2 p, ptarget( ) (4)

where ς is the gravitational gain factor, and ρ(p, pobstacle) represents
the Euclidean distance between the object and the target.

U2 p( ) � 1
2
η

1
ρ p, pobstacle( ) −

1
ρ0

( )2

(5)

where η is the repulsion gain factor. ρ(p, pobstacle) represents the
Euclidean distance between the object and the obstacle. ρ0 represents

FIGURE 5
Structure of attention module. (A) Structure of spatial attention module. (B) Structure of temporal attention module.

FIGURE 6
Diagram of coordination space.
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the maximum distance of the repulsion field generated by the
obstacle, and 0 ≤ ρ(p, pobstacle) ≤ ρ0. When ρ(p, pobstacle) > ρ0,
U2(p) = 0, and the repulsion field does not work.

When the object is close to the target, the potential function is
small and changes slowly, otherwise the potential function is large
and changes quickly. When approaching the boundary, the repulsive
potential function approaches infinity, which prevents the object
from crossing the boundary of coordination space. The potential
safety concerns can be raised by infinite impedance. The compliant
control gradually increases the impedance as the knee joint
approaches the boundary and stops increasing the impedance
once the safety threshold has been reached. Therefore, the
adaptive impedance control based on the APF is designed as Eq. 6.

Md � Md0 + ω1U t( )
Bd � Bd0 + ω2U t( )
Kd � Kd0 + ω3U t( )

⎧⎪⎨⎪⎩ (6)

where Md0, Bd0, and Kd0 represent the initial values set by inertia
coefficient Md, damping coefficient Bd, and stiffness coefficient Kd,
respectively. U(t) represents the potential function at the time t. ω1,
ω2 and ω3 represent the positive weights on the potential function.

4.2 Compliant control

The paper employs a single-input single-output model-free
adaptive controller (SISO-MFAC) as the position controller to
achieve trajectory tracking. SISO-MFAC only adopts the input

and output of the controlled system to automatically modify the
control signal, which can overcome uncertainty interference and
obtain strong robustness against disturbances and unknown model
dynamics, as shown in Eq. 7.

u k( ) � u k − 1( ) + ρϕC k( ) θd k + 1( ) − θ k( )( )
λ + ϕC

2 k( )
ϕ
h

C
k( ) � ϕ

h

C
k − 1( )

+
η Δθ k( ) − ϕ

h

C

T

k − 1( )Δu k − 1( )( )Δu k − 1( )
μ + Δu k − 1( )| |2

ϕ
h

C
k( ) � ϕ

h

C
1( ), if ϕ

h

C
k( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣< bor Δu k − 1( )| |< b

orsign ϕ
h

C
k( )( ) ≠ sign ϕ

h

C
1( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where u(k) and θ(k) represent the input and output of the system at
time k, respectively. ϕC(k) ∈ Rm is the pseudo-gradient of the
system. ϕhC (k) is an estimate of ϕC(k) λ and μ are weighting
factors. ρ and η are step factors. ϕhC (1) is the initial value of ϕhC (k).

0< 1 − ηΔu2 k − 1( )
μ + Δu k − 1( )| |2 ≤d1 < 1

0< 1 −
ρϕC k( )ϕh

C
k( )

λ + ϕ
h

C

2

k( )
≤ d2 < 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where d1 and d2 are constants.

FIGURE 7
Diagram of the proposed compliant controller.
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The diagram of the proposed compliant controller is shown in
Figure 7. The compliant controller of knee exoskeleton consists of
synergetic gait prediction model, adaptive impedance controller,
position controller, and knee exoskeleton. The synergetic gait
prediction model is used to generate individualized gait trajectories,
and the coordinated gait trajectory of the affected lower limb is
generated according to the knee joint angle and sEMG signals of the
healthy lower limb. The adaptive impedance controller corrects the
expected trajectory in the coordination space according to the
deviation between the expected and actual human-robot interaction
force. The SISO-MFAC controller can realize the actual trajectory of
the exoskeleton to accurately track the expected trajectory. The knee
exoskeletondriven by SEA is used as the control object to assist the patient
to perform rehabilitation training. Furthermore, the human-robot
interaction force between the patient and the exoskeleton is measured
by the spring compression at the end of SEA, and the displacement sensor
with the range of 50 mm is installed on the spring, which avoids

inaccurate measurement due to the relative displacement between the
sensor and the human body or the robot. When the actual human-robot
interaction force is not equal to the expected human-robot interaction
force, the compliant controller generates the correction of expected
trajectory, and the position controller controls the exoskeleton to
move according to the corrected trajectory. The APF method can
ensure that the gait trajectory does not exceed the boundary of
coordination space, and the actual trajectory can be guaranteed to be
located in the coordination space.

5 Experiments and results

5.1 Individualized gait trajectory prediction

The sampling frequency of the signal acquisition system is
200 Hz, and the time step is 5 ms, and each sample is 50 s. The

FIGURE 8
Gait prediction results of subject S1.
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knee joint data of the affected lower limb at the current moment is
influenced by the healthy lower limb at the previous moment, and
there is the delay in actual application from gait prediction to data
transmission. After comprehensive considerations, the time step is
set to 10, and the knee joint angle of the affected lower limb is

predicted based on the information of the healthy lower limb in the
previous 100 ms. The dimension of dataset under each task is 8980 ×
4. The dataset is split into training (60%), validation (20%) and test
(20%) subsets. The input dimension of each dataset is 20 × 4 and the
output dimension is 1 × 1. The model is trained based on intra-

FIGURE 9
Gait prediction results of different subjects.
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subjects, and the data is obtained from the trained subject with
varying speeds and inclines.

Figure 8 shows gait prediction performance of the subject
S1 when walking at different speeds on different slopes, in
which the red curve represents actual trajectory, and the blue

curve represents predicted trajectory. The prediction error is
lowest when the speed is 3 km/h, and the prediction
performance is worst at the speed of 0.5 km/h. The
prediction error at the speed of 0.5 km/h is 42.79% higher
than that at the speed of 3 km/h and 12.67% higher than that

TABLE 1 Performance of gait trajectory prediction using different networks (slope 4°).

Subject Speed MAE (°) CC(%)

0.5 1.5 3 Mean 0.5 1.5 3 Mean

S1 Net1 4.081 3.479 2.910 3.490 96.64 94.66 97.08 96.13

Net2 3.685 3.364 2.757 3.269 96.10 95.96 97.26 96.44

CNN 4.019 3.624 3.253 3.632 92.36 95.18 95.21 94.25

LSTM 4.617 3.973 3.408 3.999 91.01 94.44 96.37 93.94

Net 3.574 3.172 2.503 3.083 96.22 95.64 97.80 96.55

S2 Net1 7.327 4.749 4.178 5.418 86.75 97.07 95.53 93.12

Net2 6.403 5.403 3.679 5.162 88.18 96.97 96.67 93.94

CNN 8.434 5.448 4.344 6.075 80.22 96.37 95.53 90.71

LSTM 9.194 6.005 4.124 6.441 77.39 95.16 95.94 89.49

Net 5.855 4.429 3.395 4.600 90.44 96.92 96.90 94.75

S3 Net1 10.766 9.400 6.006 8.724 67.94 76.65 93.51 79.37

Net2 10.054 8.070 6.794 8.306 75.42 81.52 93.18 83.37

CNN 12.001 11.462 6.549 10.004 65.76 79.01 92.49 79.08

LSTM 12.840 12.485 6.933 10.752 60.80 64.34 92.03 72.39

Net 9.508 7.838 5.598 7.648 73.78 82.52 94.34 83.55

S4 Net1 4.272 3.673 2.854 3.600 90.00 96.54 98.20 94.91

Net2 4.080 3.571 3.158 3.603 91.66 96.18 98.24 95.36

CNN 5.960 4.608 3.438 4.668 85.62 96.44 97.25 93.10

LSTM 4.916 4.040 3.452 4.136 88.07 95.83 97.17 93.69

Net 3.823 3.489 2.675 3.329 92.30 95.74 98.46 95.50

The bold values represent the optimal performance of the model for each subject on the metric.

TABLE 2 Performance of gait trajectory prediction using different input (slope 4°).

Subject Speed MAE (°) CC(%)

0.5 1.5 3 Mean 0.5 1.5 3 Mean

S1 Net3 3.861 3.932 3.349 3.714 95.72 92.72 96.08 94.84

Net 3.574 3.172 2.503 3.083 96.22 95.64 97.80 96.55

S2 Net3 8.911 6.518 5.976 7.135 77.18 91.48 92.02 86.89

Net 5.855 4.429 3.395 4.560 90.44 96.92 96.90 94.75

S3 Net3 10.710 9.183 5.347 8.413 69.83 78.41 95.70 81.31

Net 9.508 7.838 5.598 7.648 73.78 82.52 94.34 83.55

S4 Net3 5.138 4.823 3.248 4.403 85.12 90.82 97.34 91.09

Net 3.823 3.489 2.675 3.329 92.30 95.74 98.46 95.50

The bold values represent the optimal performance of the model for each subject on the metric.
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at the speed of 1.5 km/h. The muscle activity of the subjects is
low when walking at low speed, and the periodicity and
amplitude of EMG signals is weaker, so the performance of
gait prediction at the speed of 0.5 km/h is worst. Similarly, the

prediction performance is best when the slope is 8°, and the
prediction error is highest on the slope of 0°. Moreover,
although the prediction performance is worst at low speed
and flat slope, the trend of angle can still be reflected.

FIGURE 10
Results of different methods for different subjects at different speeds (slope 4°).
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To test the applicability of the synergetic gait prediction model,
the performance of gait prediction of four subjects at different
speeds is analyzed, as shown in Figure 9. The prediction error of
S3 is 123.65% higher than that of S1, 64.89% higher than that of S2,
and 109.27% higher than that of S4. We have selected five metrics
in the time and frequency domains to analyze the sEMG signal,
including root mean square (RMS), mean absolute value (MAV),
median frequency (MF), mean power frequency (MPF), and
signal-to-noise ratio (SNR), and the RMS, MAV, MF, MPF, and
SNR metrics show positive correlation with the prediction
performance. However, the above metrics are not a dependable
basis of prediction performance and can only be adopted as the
preliminary reference.

To further quantitatively evaluate the performance, this paper
adopts the mean absolute error (MAE) and Pearson correlation
coefficient (CC) as the metric. Net1 represents the CNN-LSTM
network without attention mechanism, and Net2 refers to the CNN-
LSTM network with attention mechanism used in paper (Zhu et al.,
2021), and Net is the proposed networks in this paper. The attention

mechanism in the Net2 model is the weighted average sum of the
output vectors of the LSTM layer. Taking the scene with a slope of 4°

as an example, the prediction performance using different model are
shown in Table 1. To evaluate the performance of model adopting
multi-sensors fusion, the results are shown in Table 2. The Net
model adopts the information of the knee joint angle and EMG
signal in healthy lower limb as the network input, while the
Net3 model only employs the information of the knee joint angle
in healthy lower limb.

As shown in Table 1, taking the subject S1 as an example,
compared with Net1, the MAE of the model proposed in this paper
decrease by 12.42%, 8.82% and 13.99% at 0.5 km/h, 1.5 km/h and
3 km/h, and the CC increase by −0.42% and 0.99%, and 0.72%.
Compared with Net2, the MAE of the model proposed in this paper
decrease by 3.01%, 5.71% and 9.21%, and the CC increase by
0.12%, −0.32% and 0.18%. The above trend is also reflected in
the prediction results of subjects S2, S3 and S4. In summary, the
prediction performance of proposed model in this paper is better
than Net1 and Net2.

FIGURE 11
Results of compliant control.
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As shown in Table 2, taking the subject S1 as an example,
compared with Net3, the MAE of the model adopting multi-
sensors input decrease by 7.43%, 19.33%, and 25.26% at 0.5 km/h,
1.5 km/h, and 3 km/h, and CC increase by 0.5%, 2.92% and
1.72%. It is worth noting that although the CC of the model
using single input is higher, and the MAE is lower when the
subject S3 is at 3 km/h, the mean of CC and MAE at three speeds
are still better than Net3. Furthermore, the results of the subjects
S1, S2, and S4 are consistent, which shows that multi-sensor
fusion can further improve the accuracy of gait prediction.
Figure 10 visually shows the prediction results of different
methods for different subjects at different speeds on slope 4°.
The model using multi-sensors information has smaller MAE
and higher CC compared with the model adopting single input.
Meanwhile, the mean of MAE at three speeds is smaller than that
of the other network, and the mean of CC is higher than that of
the other network, which shows that the model proposed in this
paper has smaller prediction error and better applicability to
different individuals.

5.2 Adaptive compliant control

Experiments are carried out on a SEA-driven knee exoskeleton
to assess the effectiveness of the proposed compliant control
method. Considering the site conditions and safety factors, the
experimental scenes are divided into two types, namely, walking
on the slope 0° and 4° at the speed of 0.5 km/h, respectively. The
boundary range of the coordination space is set to a constant value
Δd = 5°, and the distance between the upper and lower boundaries of
the coordination space is 10°. To guarantee participant safety, the
knee exoskeleton’s motion angle has been limited to −5°–65° degrees
via the software.

The results of compliant control of the subjects S1 and S2 in
different scenes are shown in Figure 11, in which the red curve
represents the optimal coordinated trajectory, and the blue curve
represents the corrected trajectory, and the green curve represents
the actual trajectory of the exoskeleton. The original trajectory is
defined as the gait trajectory generated by the prediction model and
filtered to comply with the normal human gait pattern. The

FIGURE 12
Results of human-robot interaction force.
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corrected trajectory represents the trajectory modified by the
compliant controller when the actual human-robot interaction
force is not equal to the expected human-robot interaction force.
The actual trajectory is defined as the angle signal collected by the
angle sensor on the knee exoskeleton. Furthermore, the optimal
coordinated gait trajectory, the corrected trajectory, and the actual
trajectory are all in the coordination space, which proves that the
compliant control method can adaptively and nonlinearly modify
the impedance parameters according to the actual conditions, and
ensure the safety and coordination of rehabilitation training.

The results of the human-robot interaction force is shown in
Figure 12, in which the blue curve represents the expected human-
robot interaction force, and the red curve represents the actual
human-robot interaction force, and the green curve represents the
deviation between the expected and actual human-robot interaction
force. The expected force is defined as the human-robot interaction
force of healthy subjects collected by the force sensor in advance.
The actual force is defined as the human-robot interaction force of
patients during rehabilitation training. Combining Figures 11, 12, it

is evident that the trajectory correction is not proportional to the
force deviation. The deviation of force is positive, which indicates
that the motion intention of the subject is consistent with the
direction of the robot.

The experiment with fixed impedance parameters on the
subject S1 are conducted, and the experimental results are
shown in Figure 13. When the actual human-robot interaction
force deviates from the expected human-robot interaction force,
the impedance controller with fixed parameters can also correct
the trajectory. However, if the deviation of force is large, the
corrected trajectory may exceed the boundary of the coordination
space. Consequently, the impedance control system with fixed
impedance parameters cannot completely guarantee the safety
and coordination of rehabilitation training. The adaptive
impedance control proposed in this paper can not only
nonlinearly and adaptively modify the expected trajectory
according to the human-robot interaction force, but also
restrict the actual trajectory to always be in the
coordination space.

FIGURE 13
Results of Compliant control with fixed impedance parameters.
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6 Discussion

As an emerging rehabilitation equipment, exoskeleton can
reduce the burden on physicians while ensuring the efficacy of
rehabilitation, which has gradually become a research hotspot in the
field of rehabilitation. However, the current trajectories for
rehabilitation are mostly predefined trajectories, which cannot
adapt to speed and slope changes during rehabilitation training
in the middle and late stages of rehabilitation. Based on the
attention-based CNN-LSTM model, the individualized
coordinated trajectory of the affected lower limb under different
tasks is obtained. The performance of synergetic gait prediction
model of different individuals varied widely. Attention mechanism
has been proven to effectively improve the performance of the neural
network model. Spatial attention and temporal attention modules
can assign attention weights to important features. The combined
attention mechanism is introduced into synergetic gait prediction
model to further improve the prediction accuracy of
individualized gait.

Compliant controller is designed based on the guidance of
synergetic gait prediction model. The predicted individualized
gait trajectory is inputted into the compliant controller as the
expected trajectory. The compliant controller can adaptively and
nonlinearly modify the impedance parameters according to the
distance from the boundary. The correction of trajectory is larger
near the expected trajectory, which shows strong compliance.
The APF method can ensure that the actual trajectory does not
cross the boundary of coordination space while realizing
compliant control. There is no clear evidence that compliant
control is superior to pure torque/force control or pure position
control for stroke rehabilitation. However, patient-dominated
training can enhance rehabilitation outcomes, and compliant
control can improve patient participation while ensuring patient
safety. In addition, the proposed compliant control is mainly
used in the middle and late stages of rehabilitation when the
patient obtains some motor abilities. Position control is used to
assist patients with repetitive passive training, which is mainly
used in the early stages of rehabilitation. The advantage of
compliant control compared to pure torque/force control lies
in the personalized assistance, including the generation of the
personalized trajectory and the adaptive modification of
impedance parameters in response to actual conditions (Shi
et al., 2022; Cao et al., 2024).

The knee exoskeleton driven by SEA designed in this paper
has the function of limit protection and size adjustment, which
improves the safety and applicability of the equipment. However,
the knee exoskeleton is not lightweight, and it is a little
cumbersome and inconvenient for patients to use. We aim to
decrease the weight and volume of the knee exoskeleton through
optimizing the power transmission mode, selecting lightweight
high-strength materials such as carbon fiber as the main
materials of knee exoskeleton, and combining 3D printing
technology. In addition, the application of inter-limb
coordination in knee joint rehabilitation is controversial
(Vallery et al., 2009; Liang et al., 2018), because the
abnormalities in knee joint may alter the features of other
joints, ultimately resulting in the deficient desired trajectory of
knee joint. Our proposed method can customize the

rehabilitation according to the patient’s range of motion and
body parameters. Now, we have been actively collaborating with
Tongji Hospital, Wuhan, China, to identify eligible patients for
the experimental study. Meanwhile, we plan to consider more
sensors for multi-level and multi-spatial information
complementarity to improve the prediction performance of
the subjects with substandard signal quality.

7 Conclusion

In this paper, a synergetic gait prediction model based on
attention-based CNN-LSTM network and compliant control
method based on APF method are proposed. The experimental
results show that the proposed synergetic gait prediction model
can generate the coordinated gait trajectory, which can achieve
lower MAE and higher CC. The subjects move in the
coordination space but never cross the coordination boundary.
Coordination, compliance, and safety are simultaneously
considered in the rehabilitation. In the future, we will design
knee exoskeletons that are more lightweight and patient-friendly,
test individualized gait prediction model under more scenes, and
further verify the effectiveness of the proposed method
on patients.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by the Human
Participants Ethics Committee of Wuhan University of
Technology. The studies were conducted in accordance with the
local legislation and institutional requirements. The participants
provided their written informed consent to participate in
this study.

Author contributions

HL: Writing–original draft. CZ: Writing–original draft. ZZ:
Writing–review and editing. YD: Writing–original draft. WM:
Writing–review and editing. QL: Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported in part by the Key Research and Development
Program of Hubei Province under Grant 2022BAA066 and in
part by the National Natural Science Foundation of China under
Grant 52075398 and Grant 52275029.

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Liu et al. 10.3389/fbioe.2024.1358022

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1358022


Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbioe.2024.1358022/
full#supplementary-material

References

Almaghout, K., Tarvirdizadeh, B., Alipour, K., and Hadi, A. (2022). Rbf neural
network-based admittance pd control for knee rehabilitation robot. Robotica 40,
4512–4534. doi:10.1017/S0263574722001084

Arami, A., Poulakakis-Daktylidis, A., Tai, Y. F., and Burdet, E. (2019). Prediction of
gait freezing in parkinsonian patients: a binary classification augmented with time series
prediction. IEEE Trans. Neural Syst. Rehabilitation Eng. 27, 1909–1919. doi:10.1109/
TNSRE.2019.2933626

Asl, H. J., Yamashita, M., Narikiyo, T., and Kawanishi, M. (2020). Field-based assist-
as-needed control schemes for rehabilitation robots. IEEE Trans. Mechatronics 25,
2100–2111. doi:10.1109/tmech.2020.2992090

Ballester, B. R., Ward, N. S., Brander, F., Maier, M., Kelly, K., and Verschure, P.
(2022). Relationship between intensity and recovery in post-stroke rehabilitation: a
retrospective analysis. J. Neurology Neurosurg. Psychiatry 93, 226–228. doi:10.1136/
jnnp-2021-326948

Banala, S. K., Kim, S. H., Agrawal, S. K., and Scholz, J. P. (2009). Robot assisted gait
training with active leg exoskeleton (alex). IEEE Trans. Neural Syst. Rehabilitation Eng.
17, 2–8. doi:10.1109/tnsre.2008.2008280

Cao, W., Shang, D., Yin, M., Li, X., Xu, T., Zhang, L., et al. (2023). Development and
evaluation of a hip exoskeleton for lateral resistance walk exercise. IEEE Trans.
Mechatronics 28, 1966–1974. doi:10.1109/TMECH.2023.3273717

Cao, Y., Chen, X., Zhang, M., and Huang, J. (2024). Adaptive position constrained
assist-as-needed control for rehabilitation robots. IEEE Trans. Industrial Electron. 71,
4059–4068. doi:10.1109/tie.2023.3273270

Challa, S. K., Kumar, A., Semwal, V. B., and Dua, N. (2022). An optimized-lstm and
rgb-d sensor-based human gait trajectory generator for bipedal robot walking. IEEE
Sensors J. 22, 24352–24363. doi:10.1109/jsen.2022.3222412

Chen, B., Zhong, C. H., Zhao, X., Ma, H., Guan, X., Li, X., et al. (2017). A wearable
exoskeleton suit for motion assistance to paralysed patients. J. Orthop. Transl. 11, 7–18.
doi:10.1016/j.jot.2017.02.007

Chen, B., Zi, B., Wang, Z., Qin, L., and Liao, W.-H. (2019). Knee exoskeletons for gait
rehabilitation and human performance augmentation: a state-of-the-art. Mech. Mach.
Theory 134, 499–511. doi:10.1016/j.mechmachtheory.2019.01.016

Chen, L., Wang, C., Song, X., Wang, J., Zhang, T., and Li, X. (2020). Dynamic
trajectory adjustment of lower limb exoskeleton in swing phase based on impedance
control strategy. Proc. Institution Mech. Eng. Part I J. Syst. Control Eng. 234, 1120–1132.
doi:10.1177/0959651820932026

Dong, Y., Ai, Q., Liu, H., Meng, W., and Cheng, W. (2022). “Design and control of a
sea driven knee exoskeleton for walking assistance,” in 2022 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), Hokkaido, Japan, July 11th-
15th, 2022, 1243. doi:10.1109/aim52237.2022.9863380

Feigin, V. L., Brainin, M., Norrving, B., Martins, S., Sacco, R. L., Hacke, W., et al.
(2022). World stroke organization (wso): global stroke fact sheet 2022. Int. J. Stroke 17,
18–29. doi:10.1177/17474930211065917

Gautam, A., Panwar, M., Biswas, D., and Acharyya, A. (2020). Myonet: a transfer-
learning-based lrcn for lower limb movement recognition and knee joint angle
prediction for remote monitoring of rehabilitation progress from semg. IEEE
J. Transl. Eng. Health Med. 8, 1–10. doi:10.1109/JTEHM.2020.2972523

Huang, P., Li, Z., Zhou, M., Li, X., and Cheng, M. (2022). Fuzzy enhanced adaptive
admittance control of a wearable walking exoskeleton with step trajectory shaping. IEEE
Trans. Fuzzy Syst. 30, 1541–1552. doi:10.1109/tfuzz.2022.3162700

Kim, J., Lee, G., Heimgartner, R., Revi, D. A., Karavas, N., Nathanson, D., et al. (2019).
Reducing the metabolic rate of walking and running with a versatile, portable exosuit.
Sci. Robotics 365, 668–672. doi:10.1126/science.aav7536

Kim, J., Moon, J. H., and Kim, J. (2021). Impedance control of human ankle joint with
electrically stimulated antagonistic muscle co-contraction. IEEE Trans. Neural Syst.
Rehabilitation Eng. 29, 1593–1603. doi:10.1109/TNSRE.2021.3104091

Kong, K., Bae, J., and Tomizuka, M. (2012). A compact rotary series elastic actuator
for human assistive systems. IEEE Trans. Mechatronics 17, 288–297. doi:10.1109/tmech.
2010.2100046

Li, X., Liu, Y.-H., and Yu, H. (2018). Iterative learning impedance control for
rehabilitation robots driven by series elastic actuators. Automatica 90, 1–7. doi:10.
1016/j.automatica.2017.12.031

Liang, F.-Y., Zhong, C.-H., Zhao, X., Castro, D. L., Chen, B., Gao, F., et al. (2018).
“Online adaptive and lstm-based trajectory generation of lower limb exoskeletons for
stroke rehabilitation,” in IEEE International Conference on Robotics and Biomimetics,
Kuala Lumpur, Malaysia, December 12-15, 2018, 27–32. doi:10.1109/ROBIO.2018.
8664778

Liu, D.-X., Wu, X., Du, W., Wang, C., Chen, C., and Xu, T. (2017). Deep spatial-
temporal model for rehabilitation gait: optimal trajectory generation for knee joint of
lower-limb exoskeleton. Assem. Autom. 37, 369–378. doi:10.1108/aa-11-2016-155

Liu, J., Wang, C., He, B., Li, P., and Wu, X. (2022). Metric learning for robust gait
phase recognition for a lower limb exoskeleton robot based on semg. IEEE Trans. Med.
Robotics Bionics 4, 472–479. doi:10.1109/tmrb.2022.3166543

Liu, L., Leonhardt, S., Ngo, C., and Misgeld, B. J. E. (2020). Impedance-controlled
variable stiffness actuator for lower limb robot applications. IEEE Trans. Automation
Sci. Eng. 17, 991–1004. doi:10.1109/tase.2019.2954769

Mazumder, O., Kundu, A. S., Lenka, P. K., and Bhaumik, S. (2016). Multi-channel
fusion based adaptive gait trajectory generation using wearable sensors. J. Intelligent
Robotic Syst. 86, 335–351. doi:10.1007/s10846-016-0436-y

Morbidoni, C., Cucchiarelli, A., Agostini, V., Knaflitz, M., Fioretti, S., and Di Nardo, F.
(2021). Machine-learning-based prediction of gait events from emg in cerebral palsy
children. IEEE Trans. Neural Syst. Rehabilitation Eng. 29, 819–830. doi:10.1109/TNSRE.
2021.3076366

Mounir Boudali, A., Sinclair, P. J., and Manchester, I. R. (2019). Predicting
transitioning walking gaits: hip and knee joint trajectories from the motion of
walking canes. IEEE Trans. Neural Syst. Rehabilitation Eng. 27, 1791–1800. doi:10.
1109/TNSRE.2019.2933896

Na, J., Kim, H., Lee, G., and Nam, W. (2023). Deep domain adaptation, pseudo-
labeling, and shallow network for accurate and fast gait prediction of unlabeled datasets.
IEEE Trans. Neural Syst. Rehabilitation Eng. 31, 2448–2456. doi:10.1109/TNSRE.2023.
3272887

Perez-Ibarra, J. C., Siqueira, A. A. G., Silva-Couto, M. A., de Russo, T. L., and Krebs,
H. I. (2019). Adaptive impedance control applied to robot-aided neuro-rehabilitation of
the ankle. IEEE Robotics Automation Lett. 4, 185–192. doi:10.1109/lra.2018.2885165

Schumacher, M., Wojtusch, J., Beckerle, P., and von Stryk, O. (2019). An introductory
review of active compliant control. Robotics Aut. Syst. 119, 185–200. doi:10.1016/j.robot.
2019.06.009

Shi, D., Li, L., Zhang, W., and Ding, X. (2022). Field-based human-centred control on
so(3) for assist-as-needed robotic rehabilitation. IEEE Trans. Med. Robotics Bionics 4,
785–795. doi:10.1109/tmrb.2022.3194372

Sivakumar, S., Gopalai, A. A., Lim, K. H., and Gouwanda, D. (2019). Artificial neural
network based ankle joint angle estimation using instrumented foot insoles. Biomed.
Signal Process. Control 54, 101614. doi:10.1016/j.bspc.2019.101614

Song, J., Zhu, A., Tu, Y., Zhang, X., and Cao, G. (2023a). Novel design and control of a
crank-slider series elastic actuated knee exoskeleton for compliant human–robot
interaction. IEEE Trans. Mechatronics 28, 531–542. doi:10.1109/tmech.2022.3204921

Song,W., Zhao, P., Li, X., Deng, X., and Zi, B. (2023b). Data-driven design of a six-bar
lower-limb rehabilitation mechanism based on gait trajectory prediction. IEEE Trans.
Neural Syst. Rehabilitation Eng. 31, 109–118. doi:10.1109/TNSRE.2022.3217448

Spyrakos-Papastavridis, E., and Dai, J. S. (2021). Minimally model-based trajectory
tracking and variable impedance control of flexible-joint robots. IEEE Trans. Industrial
Electron. 68, 6031–6041. doi:10.1109/tie.2020.2994886

Frontiers in Bioengineering and Biotechnology frontiersin.org16

Liu et al. 10.3389/fbioe.2024.1358022

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1358022/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1358022/full#supplementary-material
https://doi.org/10.1017/S0263574722001084
https://doi.org/10.1109/TNSRE.2019.2933626
https://doi.org/10.1109/TNSRE.2019.2933626
https://doi.org/10.1109/tmech.2020.2992090
https://doi.org/10.1136/jnnp-2021-326948
https://doi.org/10.1136/jnnp-2021-326948
https://doi.org/10.1109/tnsre.2008.2008280
https://doi.org/10.1109/TMECH.2023.3273717
https://doi.org/10.1109/tie.2023.3273270
https://doi.org/10.1109/jsen.2022.3222412
https://doi.org/10.1016/j.jot.2017.02.007
https://doi.org/10.1016/j.mechmachtheory.2019.01.016
https://doi.org/10.1177/0959651820932026
https://doi.org/10.1109/aim52237.2022.9863380
https://doi.org/10.1177/17474930211065917
https://doi.org/10.1109/JTEHM.2020.2972523
https://doi.org/10.1109/tfuzz.2022.3162700
https://doi.org/10.1126/science.aav7536
https://doi.org/10.1109/TNSRE.2021.3104091
https://doi.org/10.1109/tmech.2010.2100046
https://doi.org/10.1109/tmech.2010.2100046
https://doi.org/10.1016/j.automatica.2017.12.031
https://doi.org/10.1016/j.automatica.2017.12.031
https://doi.org/10.1109/ROBIO.2018.8664778
https://doi.org/10.1109/ROBIO.2018.8664778
https://doi.org/10.1108/aa-11-2016-155
https://doi.org/10.1109/tmrb.2022.3166543
https://doi.org/10.1109/tase.2019.2954769
https://doi.org/10.1007/s10846-016-0436-y
https://doi.org/10.1109/TNSRE.2021.3076366
https://doi.org/10.1109/TNSRE.2021.3076366
https://doi.org/10.1109/TNSRE.2019.2933896
https://doi.org/10.1109/TNSRE.2019.2933896
https://doi.org/10.1109/TNSRE.2023.3272887
https://doi.org/10.1109/TNSRE.2023.3272887
https://doi.org/10.1109/lra.2018.2885165
https://doi.org/10.1016/j.robot.2019.06.009
https://doi.org/10.1016/j.robot.2019.06.009
https://doi.org/10.1109/tmrb.2022.3194372
https://doi.org/10.1016/j.bspc.2019.101614
https://doi.org/10.1109/tmech.2022.3204921
https://doi.org/10.1109/TNSRE.2022.3217448
https://doi.org/10.1109/tie.2020.2994886
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1358022


Sridar, S., Qiao, Z., Muthukrishnan, N., Zhang, W., and Polygerinos, P. (2018). A soft-
inflatable exosuit for knee rehabilitation: assisting swing phase during walking. Front.
Robotics AI 5, 44. doi:10.3389/frobt.2018.00044

Sun, T., Peng, L., Cheng, L., Hou, Z. G., and Pan, Y. (2020). Composite learning
enhanced robot impedance control. IEEE Trans. Neural Netw. Learn. Syst. 31,
1052–1059. doi:10.1109/TNNLS.2019.2912212

Tanghe, K., De Groote, F., Lefeber, D., De Schutter, J., and Aertbelien, E. (2020). Gait
trajectory and event prediction from state estimation for exoskeletons during gait. IEEE
Trans. Neural Syst. Rehabilitation Eng. 28, 211–220. doi:10.1109/TNSRE.2019.2950309

Thakur, D., and Biswas, S. (2022). Attention-based deep learning framework for
hemiplegic gait prediction with smartphone sensors. IEEE Sensors J. 22, 11979–11988.
doi:10.1109/jsen.2022.3172603

Vallery, H., van Asseldonk, E. H., Buss, M., and van der Kooij, H. (2009). Reference
trajectory generation for rehabilitation robots: complementary limb motion estimation.
IEEE Trans. Neural Syst. Rehabilitation Eng. 17, 23–30. doi:10.1109/TNSRE.2008.
2008278

Wang, K. Y., Ma, F. C., Hao, M., Zhang, L. X., and Liu, P. (2011). Experimental
research on force/position control of a wire-driven parallel rehabilitative robot. Appl.
Mech. Mater. 138-139, 68–73. doi:10.4028/www.scientific.net/AMM.138-139.68

Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. (2020). “Eca-net: efficient
channel attention for deep convolutional neural networks,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, June 13 2020 to June 19 2020. doi:10.1109/cvpr42600.2020.01155

Wang, Y., Yang, Y., Zhao, B., Qi, X., Hu, Y., Li, B., et al. (2021). Variable admittance
control based on trajectory prediction of human handmotion for physical human-robot
interaction. Appl. Sci. 11, 5651. doi:10.3390/app11125651

Wang, Z., Zhu, M., Su, Z., Guan, B., Wang, A., Wang, Y., et al. (2017). Post-stroke
depression: different characteristics based on follow-up stage and gender-a cohort
perspective study from mainland China. Neurological Res. 39, 996–1005. doi:10.1080/
01616412.2017.1364514

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). “Cbam: convolutional block
attention module,” in European conference on computer vision (ECCV), Munich,
Germany, September 8-14, 2018. doi:10.1007/978-3-030-01234-2_1

Xiong, D., Zhang, D., Zhao, X., and Zhao, Y. (2021). Deep learning for emg-based
human-machine interaction: a review. IEEE/CAA J. Automatica Sinica 8, 512–533.
doi:10.1109/jas.2021.1003865

Xu, Y., Yang, W., Chen, M., Chen, S., and Huang, L. (2022). Attention-based gait
recognition and walking direction estimation in wi-fi networks. IEEE Trans. Mob.
Comput. 21, 465–479. doi:10.1109/tmc.2020.3012784

Yan, Y., Liu, G., Zhang, L., Gong, R., Fu, P., Han, B., et al. (2022). Biomechanical effect
of valgus knee braces on the treatment of medial gonarthrosis: a systematic review. Appl.
Bionics Biomechanics 2022, 1–15. doi:10.1155/2022/4194472

Yang, L., Xiang, K., Pang, M., Yin, M., Wu, X., and Cao,W. (2023). Inertial sensing for
lateral walking gait detection and application in lateral resistance exoskeleton. IEEE
Trans. Instrum. Meas. 72, 1–14. doi:10.1109/TIM.2023.3265105

Yang, Q., Xie, C., Tang, R., Liu, H., and Song, R. (2020). Hybrid active control with
human intention detection of an upper-limb cable-driven rehabilitation robot. IEEE
Access 8, 195206–195215. doi:10.1109/access.2020.3033301

Yu, Y.-L., and Lan, C.-C. (2019). Design of a miniature series elastic actuator for
bilateral teleoperations requiring accurate torque sensing and control. IEEE Robotics
Automation Lett. 4, 500–507. doi:10.1109/lra.2019.2891287

Zhang, C., Huang, M. Z., Kehs, G. J., Braun, R. G., Cole, J. W., and Zhang, L. Q. (2021).
Intensive in-bed sensorimotor rehabilitation of early subacute stroke survivors with
severe hemiplegia using a wearable robot. IEEE Trans. Neural Syst. Rehabilitation Eng.
29, 2252–2259. doi:10.1109/TNSRE.2021.3121204

Zhu, C., Liu, Q., Meng, W., Ai, Q., and Xie, S. (2021). “An attentionbased cnn-lstm
model with limb synergy for joint angles prediction,” in 2021 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), Delft, Netherlands, 12-
16 July 2021, 747–752. doi:10.1109/aim46487.2021.9517544

Zhu, C., Luo, L., Mai, J., and Wang, Q. (2022). Recognizing continuous multiple
degrees of freedom foot movements with inertial sensors. IEEE Trans. Neural Syst.
Rehabilitation Eng. 30, 431–440. doi:10.1109/TNSRE.2022.3149793

Zou, C., Huang, R., Peng, Z., Qiu, J., and Cheng, H. (2021). “Synergetic gait prediction
for stroke rehabilitation with varying walking speeds,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
September 27 - Oct. 1, 2021, 7231. doi:10.1109/iros51168.2021.9635860

Frontiers in Bioengineering and Biotechnology frontiersin.org17

Liu et al. 10.3389/fbioe.2024.1358022

https://doi.org/10.3389/frobt.2018.00044
https://doi.org/10.1109/TNNLS.2019.2912212
https://doi.org/10.1109/TNSRE.2019.2950309
https://doi.org/10.1109/jsen.2022.3172603
https://doi.org/10.1109/TNSRE.2008.2008278
https://doi.org/10.1109/TNSRE.2008.2008278
https://doi.org/10.4028/www.scientific.net/AMM.138-139.68
https://doi.org/10.1109/cvpr42600.2020.01155
https://doi.org/10.3390/app11125651
https://doi.org/10.1080/01616412.2017.1364514
https://doi.org/10.1080/01616412.2017.1364514
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/jas.2021.1003865
https://doi.org/10.1109/tmc.2020.3012784
https://doi.org/10.1155/2022/4194472
https://doi.org/10.1109/TIM.2023.3265105
https://doi.org/10.1109/access.2020.3033301
https://doi.org/10.1109/lra.2019.2891287
https://doi.org/10.1109/TNSRE.2021.3121204
https://doi.org/10.1109/aim46487.2021.9517544
https://doi.org/10.1109/TNSRE.2022.3149793
https://doi.org/10.1109/iros51168.2021.9635860
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1358022

	Synergetic gait prediction and compliant control of SEA-driven knee exoskeleton for gait rehabilitation
	1 Introduction
	2 Mechanical design
	3 Individualized gait prediction model
	3.1 TASK design and data acquisition
	3.2 Attention-based CNN-LSTM model

	4 Adaptive compliant control strategy
	4.1 PATH planning
	4.2 Compliant control

	5 Experiments and results
	5.1 Individualized gait trajectory prediction
	5.2 Adaptive compliant control

	6 Discussion
	7 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


