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Risk for rupture of the Achilles tendon, and other tendons increases with age.
Such injuries of tissues that function in high load environments generally are
believed to heal with variable outcome. However, inmany cases, the healing does
not lead to a good outcome and the patient cannot return to the previous level of
participation in active living activities, including sports. In the past few years, using
proteomic approaches and other biological techniques, reports have appeared
that identify biomarkers that are prognostic of good outcomes from healing, and
others that are destined for poor outcomes using validated criteria at 1-year post
injury. This review will discuss some of these recent findings and their potential
implications for improving outcomes following connective tissue injuries, as well
as implications for how clinical research and clinical trials may be conducted in
the future where the goal is to assess the impact of specific interventions on the
healing process, as well as focusing the emphasis on regeneration and not
just repair.
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Introduction

Tendons are complex tissues, consisting of a myotendinous junction, a mid-substance,
and an insertion into bone. They are also heterogenous, existing in a variety of
environments with differing mechanical requirements, differing fine structures,
functioning in collaboration with a sheath or not, and changing with age. Unlike many
ligaments which function in more in the toe region of the stress-strain curve, many tendons
function in high load environments.

Functioning in high load environments increases risks for developing chronic
conditions such as tendinopathies with accompanying pain and loss of function. The
high load environment lead to a great metabolic demand, which results in that tendons are
vulnerable to slight metabolic disorders (Ackermann and Hart, 2016). As humans age,

OPEN ACCESS

EDITED BY

Dai Fei Elmer Ker,
The Chinese University of Hong Kong, China

REVIEWED BY

Jayesh Dudhia,
Royal Veterinary College (RVC),
United Kingdom
Mohammad El Khatib,
University of Teramo, Italy

*CORRESPONDENCE

David A. Hart,
hartd@ucalgary.ca

RECEIVED 18 December 2023
ACCEPTED 02 February 2024
PUBLISHED 16 February 2024

CITATION

Hart DA, Ahmed AS, Chen J and Ackermann PW
(2024), Optimizing tendon repair and
regeneration: how does the in vivo environment
shape outcomes following rupture of a tendon
such as the Achilles tendon?
Front. Bioeng. Biotechnol. 12:1357871.
doi: 10.3389/fbioe.2024.1357871

COPYRIGHT

© 2024 Hart, Ahmed, Chen and Ackermann.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 16 February 2024
DOI 10.3389/fbioe.2024.1357871

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1357871/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1357871/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1357871/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1357871/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1357871/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1357871/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1357871&domain=pdf&date_stamp=2024-02-16
mailto:hartd@ucalgary.ca
mailto:hartd@ucalgary.ca
https://doi.org/10.3389/fbioe.2024.1357871
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1357871


many tendons become stiffer [reviewed in Kwan et al. (2023)], and
can lead to increased risk for tendon ruptures, such as for the
Achilles tendon (AT) which functions in a high load environment
and is an energy-returning tendon. Tendons, particularly the flexor
tendons of the hand are frequently damaged or severed due to
trauma. In both situations, the tissue often requires surgery to
reconnect the torn ends in order to facilitate repair [discussed in
Svedman et al. (2018)].

The outcomes of such repair surgery can be varied, in part,
depending on the location and environment, but also on other
factors such as genetics, epigenetics, co-morbidities (i.e., diabetes),
age, and expectations of future use, such as a return to sport
participation. Thus, repair of a tendon such as a flexor tendon of
the hand that functions in the context of a sheath, adhesions can
develop post-surgery leading to loss of function [discussed in
Kuroiwa and Amadio (2023)], a condition that can be influenced
by a variety of interventions (Wiig et al., 2014; Edsfeldt et al., 2017;
Jiang K. et al., 2023). In the case of the AT, some individuals heal
naturally after surgery with a long-term good outcome, while others
provided the same surgical procedure ± later versus early loading
experience a much less satisfactory outcome [(Addevico et al., 2019;
Chen et al., 2021; Saarensilta et al., 2023a); discussed in (Hart et al.,
2023)]. However, even with surgery the repaired tendon may still be
compromised at 2 years post-surgery (Geremia et al., 2015), and
thus functional repair likely does not yield regeneration.
Furthermore, the tendon-muscle unit may not return to normal
even after 10 years (Lantto et al., 2015).

While some aspects of outcomes may be related to “good genes”,
in addition the local environment after the initial injury could be
contributing to long-term outcomes. The local injury likely induces an
inflammatory response, and certainly a follow-up surgery to repair the
tissue would also be pro-inflammatory, and inflammation would need
to be regulated carefully to allow for successful healing. This of course
would be acute inflammation, and if it was prolonged and became
chronic inflammation, there could be adverse consequences to
outcomes. Relevant to this point are previous studies where
glucocorticoid (GC) treatment immediately post surgery in a
preclinical model of anterior cruciate injury inhibited or abolished
subsequent development of an osteoarthritis-like/joint damage
phenotype in the animals (Barton et al., 2018; Heard et al., 2019;
Heard et al., 2022). Similarly, in rat Achilles tendon healing
dexamethasone treatment at 7–11 days post-rupture lead to
improved material properties of the healing tendon (Dietrich-
Zagonel et al., 2018; Dietrich-Zagonel et al., 2022). Interestingly,
dexamethasone applied to human tendon cells alter the expression
of neuro-inflammatory mediators, i.e., substance P, through a
glucocorticoid receptor-dependent pathway (Mousavizadeh et al.,
2023). Earlier it has been demonstrated that the peripheral nervous
system including pro- and anti-inflammatory neuronal mediators
exert essential regulatory functions on tendon healing (Ackermann
et al., 2016). Thus, induction of an inflammatory response that is not
regulated in a tightly controlled manner, can lead to adverse
consequences, likely in the context of injury healing or injury to a
soft tissue. While GC treatment may influence the local environment
following a connective tissue injury, whether it would be useful in all
injury environments remains to be confirmed. Their use may depend
on timing, dose and the type of GC employed (Dietrich-Zagonel et al.,
2018; Dietrich-Zagonel et al., 2022).

Based on the discussion above, the response of humans to
rupture of a tendon such as the Achilles tendon leads to
heterogeneity in outcomes, ranging from poor to good. Some of
this heterogeneity may reside in the genetic make-up of the patient,
but also the environment of the wound site, and potentially whether
the rupture is initially repaired surgically or not. Thus, clinical trials
focused on assessing the value and impact of an intervention and
generated using unselected patient populations would contain both
those destined for a good outcome as well as those destined for a
poor outcome. This scenario would likely complicate the
interpretation of results and any statistical evaluations as an
intervention could improve those destined for a poor outcome
while not improving those destined for a good outcome.
Therefore, what is needed is tools to improve personalized
treatment options, and biomarkers that identify subsets of
patients could lead to more focused interventions and more
directed understanding of the variables contributing to good
versus poor outcomes. This review is thus focused on that premise.

Furthermore, as a rupture is an acute event, leading to tissue
damage and induction of inflammation, the healing process and
related events will likely be different from those associated with
chronic conditions such as tendinosis and tendinitis. In addition,
different tendons exist and function in different biomechanical
environments and thus, their biology may also be location-
specific and thus some molecular aspects of healing may be
unique. Therefore, this review will focus on the ruptured Achilles
tendon, but the approaches to identify biomarkers associated with
outcomes should be applicable to injuries to other tendons in the
future. While the healing of the AT is the major theme of this review,
this tendon is used as an example, and the applicability of the
approaches used to other tendons is discussed as to whether the
findings regarding the healing of mid-substance AT ruptures can be
extrapolated to injuries to the AT in other locations and whether the
findings can be extended to other tendon injuries is important for
the field of repair and regeneration of tendon injuries.

The wound healing environment after
an acute tendon injury

If one suffers a transection or complete rupture of a tendon such
as the AT or the flexor tendons of the hand, this injury often requires
surgical repair followed by a period of immobilization [discussed in
Ackermann et al. (2023); Hart et al. (2023)]. Furthermore, the faster
the patients can receive the surgery, the better the outcomes
(Svedman et al., 2018). However, in other locals, the leg is merely
immobilized for a period of time followed by physiotherapy, and
thus in this scenario, the injured tissue is left to its own devices in an
immobilized state. In either circumstance, there is initiation of a
healing response with a multitude of phases including the
inflammatory phase, proliferative phase, matrix deposition phase,
and then a prolonged matrix remodeling phase. Alternatively, these
phases of healing are labelled as the induction, production,
orchestration, and conduction phases of healing (Figure 1).

Even with a surgical intervention to join the torn ends of the AT
together, patients can experience a good to excellent outcome at 1-year
post-injury, or a poor outcome based on validated criteria [discussed
in Chen et al. (2022); Chen et al. (2023); Hart et al. (2023)]. Recently,
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Chen et al. (2022) andWu et al. (2023) reported that using proteomic
approaches and shards of tissue from the torn ends of ruptured AT
taken at the time of surgery led to the identification of biomarkers of
good versus poor outcomes at 1-year post-injury. Thus, within days of
injury, the local environment can predict whether a patient will have a
good versus poor outcome at 1-year! How such biomarkers translate
to good outcomes is currently not well described, but recent reports by
Chen et al. (2023a); Chen et al. (2023) indicate that a biomarker of
good outcomes, eukaryotic elongation factor-2 (eEF2) can directly
affect a number of cell processes and protein expression levels.
Whether all of the biomarkers identified directly influence healing
outcome or are surrogate markers of outcome remains to be
determined. However, the above-described findings indicate that
the local environment early after injury to the AT can predict
outcomes at 1-year and could help identify patients that may be in
need of targeted interventions to improve outcomes. Such targeted
interventions may need to be multifaceted, with one facet to enhance
the local environment and another to exert a positive influence on the
healing process. The reason for indicating a potential need for such an
approach is that in the poor outcome patients, one does not really
know of the outcome is poor due to a lack of some influence or due to
the presence of an inhibitor of a good outcome.

It should be noted that connective tissues such as tendons, and
nearly all other tissues of the musculoskeletal system, require
mechanical loading to maintain their integrity and subscribe to
the “use it or lose it” paradigm [discussed in Hart and Zernicke
(2020); Hart (2021); Hart et al. (2022)]. Therefore, if one
immobilizes a limb, the muscles and other connective tissues are
removed from loading and undergo atrophy. Interestingly, it has
been shown with menisci that removal from the knee of the animal
leads to the rapid (4 h) induction of a “cassette” of genes that could
contribute to catabolism of the tissue, including MMP-1, MMP-3,

iNOS, COX-2 and IL-1beta and IL-6, but not MMP-13, collagens,
biglycan or TIMP-4 (Natsu-ume et al., 2005). The induction of the
expression of this subset of genes could be prevented by in vitro
administration of intermittent cyclic hydrostatic compression
(1 min every 15 min at 1 MPa). Thus, there is a set of genes that
are repressed by loading. Whether a similar or different set of genes
are also affected by a loss of loading in tendons remains to be
determined, however, it is a likely scenario based on responses of
individuals with immobilized limbs, prolonged bedrest, or
astronauts [discussed in Hart et al. (2022)].

The above discussion is relevant to tendon repair as after
surgery, the affected limb is usually immobilized for various
periods of time and thus, subjected to conditions that foster
atrophy of muscle bone and the surgically repaired AT. This
may also affect the vascular system as such patients may incur a
deep vein thrombosis at a high rate [~50%; discussed in Saarensilta
et al. (2023b)]. However, this immobilization is occurring after
surgery and based on the proteomic studies (Chen et al., 2022; Chen
et al., 2023; Wu et al., 2023), biomarkers of good outcomes at 1-year
were already evident prior to surgery. It should be noted that the
torn AT was already unloaded after the rupture for 2–7 days before
surgery, so the torn ends were in fact not only subjected to
inflammation-associated with the injury, but also loss of
biomechanical loading for several days prior to surgery. And
then even after surgery, the limb was immobilized for a period
of time. While it is recognized that immobilization is not good for
connective tissue health, and the length of the immobilization
period should be kept to a minimum so as not to downregulate
tendon repair genes (Bring et al., 2009; Bring et al., 2010), with
gradual return to minimal loading initially and then increasing as
the healing tissue regains strength. Thus, loading is recognized as a
positive influence on the healing progression.

FIGURE 1
Tendon repair overview (Ackermann and Hart, 2016). (1) Induction (Kwan et al., 2023), (2) production (Svedman et al., 2018), (3) orchestration
(Kuroiwa and Amadio, 2023), (4) conduction, and (Wiig et al., 2014) (5) modification of the healing process (Reproduced with permission from Ackermann
[Ackermann PW. Healing and repair mechanisms. London: DJO Publications; 2014].
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While there is still much to understand about what contributes
to how the good outcomes are manifested in the early stages after
injury, there are at least two processes that are evident, inflammation
and loss of loading and its consequences. Early acute inflammation
may be very critical to the initial phases of healing and thus a positive
(although often viewed as a negative), while the possible catabolic
influence of unloading the tissue could be a negative influence on
outcomes. Therefore, a good outcome may require some innate
ability in the local environment to balance those contributions and
regulate their influence to contribute to a good outcome at 1 year.
This environment may also influence how effective cellular,
biochemical, and drug interventions are to enhance outcomes.
One might also expect that the incidence of a good outcome
would be associated with early surgery after AT rupture
[Svedman et al., 2018), and in those jurisdictions that do not use
surgery and only immobilization, there would be fewer good
outcomes and more adequate or poor outcomes that may need
specific interventions to enhance the quality of the healing process.
(Svedman et al., 2018) reported that surgery for an AT rupture
within 48 h post-injury led to more good outcomes at 1 year for
patients than did those patients receiving surgery >72 h post-injury,
although some patients receiving surgery >72 h post-injury still had
a good outcome. Therefore, there is some heterogeneity in the
response pattern.

Based on the above discussion, there are several options for how
the local environment early after a tendon injury may influence long
term outcomes at 1-year post-injury. These include: 1) extended
time for induction of catabolic atrophy genes before surgery
(negative); 2) extended time for development of an inflammatory
response with negative elements before surgery; and 3) extended
time for an inflammatory response to impact a non-loaded atrophy-
induced torn tissue before surgery. It should be noted that the
surgical procedure itself is actually a second inflammatory stimulus
and thus, can complicate the local environment. These are not
mutually exclusive options, and because of human heterogeneity,
genetic, epigenetic, and potentially sex-related differences could also
influence how the above options evolve in the injured tissue
environment and are implemented. However, future studies may
have to develop interventions to optimize the local environment to
enhance the success of other modalities to improve healing
outcomes (Hart and Nakamura, 2022), such as those discussed in
later sections of this review.

Surgical versus non-surgical treatment
of at ruptures: Outcomes

The options for treatment after an AT rupture are varied,
ranging from immediate surgery to merely casting the affected
lower limb in an immobilized state for a period of time, with
some variations in between. Immediate surgery will put some
tension on the sutured tissue while casting alone will provide a
prolonged period of immobilization where the healing process will
progress in an initial environment that has no load. Thus, in the
latter scenario one may expect that the outcomes at 1-year and
beyond would be inferior for such patients compared to those that
received immediate surgical repair. However, that is apparently not
the case based on the report of Keating and Will (Keating and Will,

2011), but a majority of surgeons prefer surgical treatment for
young, active patients (Parisien et al., 2021). In addition, some
reports indicate there is a lower rate of re-rupture with surgical
repair (Lynch, 2004), potentially indicating that surgical repair leads
to better quality repair tissue and/or there is less scar-like repair
tissue when the torn ends are sutured. Recently, a high impact
multicenter, randomized, controlled trial by Myhrvold et al.
confirmed a lower rate of re-rupture with surgical AT repair,
although the patient-reported outcome between surgically and
non-surgically treated patients showed no differences (Myhrvold
et al., 2022). Therefore, patient selection and expectations of
participating in an active lifestyle may influence the choice of
treatment. In conservative treatment protocols, early mobilization
is likely recommended compared to prolonged immobilization via
casting (Kangas et al., 2003; Van der Eng et al., 2013), but issues
around re-rupture rate and other complications still remain to be
resolved in detail. Given the heterogeneity in patient outcomes even
within the surgical treatment cohorts [(Svedman et al., 2018);
discussed in Hart et al. (2023)], it is also likely, but not proven,
that heterogeneity may also exist within the conservative treatment
population as well. Thus, comparing two heterogeneous populations
within both the surgical and non-surgical groups may lead to an
obscuring of differences in outcomes. It may also depend on when
the long-term assessments are performed (i.e., 1, 2, 10 years) as a
good versus poor outcome at 1-year may be overcome by 2 or
10 years dependent on activity level and other parameters. The
potential that good outcomes versus poor at 1 year is actually based
on the rate of healing to yield a good outcome and this may be
obscured at 2 or 10 years as those with an initial poor outcome
progress to what is now a good outcome. Some of these issues may
also depend on the age and sex of the cohorts assessed as a younger
population may use the repaired/healed AT differently than an older
patient population.

Attempts to improve outcomes after a
tendon injury: Focusing on the at

The average healing of a ruptured tendon, including the AT, is
quite variable, leading to the conclusion that they do not heal well. In
part, this is due to the fact that the tendon is healing in an
environment that is very different from that in which it
developed during fetal life [discussed in (He et al., 2022)], and
thus expecting complete regeneration may be an unreasonable
expectation. However, tendons do contain cells with stem cell-
like properties [(Lu et al., 2023)], but their role in healing is not
well characterized. In the adult stage of life, how the tendon heals
may in part be due to whether it is surgically repaired or just
immobilized, but as discussed above, some patients heal with a good
outcome while others heal with a poorer outcome at 1-year post-
injury. Prior to the reports of good versus poor outcomes following
natural healing of the AT, and continuing to today, many studies
have attempted to improve healing using a variety of interventions
without attempting to segregate naturally occurring good and poor
healers. While not all of the interventions have assessed efficacy for
AT healing, the interventions utilized include growth factors
[reviewed in (El-Sherif et al., 2023; Lin et al., 2023; Miescher
et al., 2023; Rieber et al., 2023; Wang and Li, 2023)],
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acupuncture (Stewman, 2023), platelet-rich plasma (PRP) and
variations (Markazi et al., 2022; Everts et al., 2023), other cell
therapies including mesenchymal stem cells (MSC) (Chamberlain
et al., 2017; Alt et al., 2021; Zhang et al., 2021; Jiang L. et al., 2023;
Yuan et al., 2023; Zulkifli et al., 2023), and extracellular vesicles (EV)
derived from MSC and related stem cells (Lu et al., 2021; Lyu et al.,
2022; Wang and Li, 2023; Xue et al., 2023; Zou et al., 2023) and other
cellular preparations (Aydin et al., 2023). Use of glucocorticoid
injections to ostensibly control inflammation to enhance tendon
healing or improve the local injury environment was variable and
dependent on a variety of factors (Dietrich-Zagonel et al., 2018;
Dietrich-Zagonel et al., 2022), and was often detrimental to healing
(Dean et al., 2014). Some of these approaches have been used for
treatment of tendinopathies other than ruptures, and in such cases,
the outcomes are more related to pain rather than tissue
regeneration.

While some of the approaches to improve tendon healing are
still experimental in preclinical models, attempts to enhance tendon
healing with some interventions such as PRP have been reported to
not enhance tendon healing in a significant manner (Keene et al.,
2022). However, PRP is used in an autologous manner so the failure
to enhance healing could be due to limitations related to the source
of the PRP or the local injury environment they were injected into,
the age of the donor, the timing of the injection or the volume. As the
preparation of PRP can also vary [discussed in (Kydd and Hart,
2020; Godoi et al., 2022; Bagheri et al., 2023; Everts et al., 2023;
Giannotti et al., 2023)], this may also influence outcomes.

While the interventions identified above are quite diverse in
their chemical, biochemical and cellular basis, their impact on
improving clinical outcomes is variable, in part due to the
heterogeneity of the patients and the quality of the local post-
injury environment (discussed in the last paragraph of the
Introduction section), as well as the fact that nearly all patients
receiving cellular interventions (i.e., PRP, stem cells, and other
cellular preparations) prefer to receive autologous materials
which may not be optimal to impact outcomes [discussed in
Kydd and Hart (2020); Hart and Nakamura (2022)]. Going
forward, using tools such as biomarkers of good versus poor
clinical outcomes could enhance the use of some of those
interventions identified above to improve the outcomes of
selected patient subsets (Hart et al., 2023).

Of the cellular interventions discussed above, likely the approach
that may offer the best opportunity to improve healing is the use of
extracellular vesicles (EVs) that exhibit low immunogenicity
(Sarcinella et al., 2023) and thus can be optimized for allogeneic
use. EV contain a variety of molecules including miRNAs (Ragni
et al., 2020; Ragni et al., 2021; F-Palama et al., 2023) which are
reported to influence tendon healing (Liu et al., 2021). The
effectiveness of EV can also be influenced by the culture
conditions (Hanai et al., 2023; Phelps et al., 2023) and thus,
potentially targeted for specific applications.

The way forward and the next steps

The finding of biomarkers prognostic for good versus poor long-
term tendon healing outcomes can change the approaches to clinical
trials, as well as clinical research. Identifying such biomarkers within

days of injury also has implications for how one approaches the
evaluation of interventions with proteins, drugs or cellular therapies.
The ability to identify biomarkers which relate to outcomes at the
different phases of healing should enhance the evaluation of
interventions to improve outcomes (summarized in Table 1). As
outlined in Table 1, the process of healing is complex so having
biomarkers at different stages of the process to assist in such
evaluations may be critical. Some approaches to address current
gaps in our knowledge and understanding of the process are
outlined below.

Clinical research

A. Identification of biomarkers via proteomics is really a first
step. One next has to determine how the biomarkers are
affecting outcomes, or whether they are just surrogates for
outcomes. One option of what is needed has been reported by
Chen et al. (2023a); Chen et al. (2023), where how one of the
biomarkers identified as being related to good healing
outcomes (eEF-2) affects cellular processes was investigated.
In addition, morphological and immunolocalization studies
(I.e., proteins and cells) are needed to assess where the
biomarker may be exerting an effect on healing. In
addition, one may want to include the use of approaches
such as Shear Wave Propagation (Blank et al., 2022) to assess
the progression of the healing process from early to later
(i.e., 1, 2, 5 years post-surgery) to assess the remodeling stage
of healing and whether it is accelerated in some patients
compared to those with poor outcomes.

B. The biomarkers identified as prognostic for good vs. poor
outcome at 1-year after AT rupture was focused on patients
with mid-substance injuries. Are the same biomarkers
associated with outcomes after an injury to the
myotendinous junction or the insertion into bone? The
environments and tissues involved in such injuries are very
different from those involved in mid-substance injuries.

C. Do injuries to other tendons (i.e., flexor tendons,
supraspinatus, patellar) that require surgical interventions
yield similar biomarkers to those identified for AT
ruptures, or are they different. Likely both the
environments and the tissues/cells are different so one may
need to perform studies similar to those reported for the
ruptured AT with patients suffering from injuries to
other tendons.

D. Are the biomarkers identified as being prognostic of good vs.
poor outcomes after AT rupture characteristic of general
healing processes (i.e., ligament, skin, etc.) or unique to the
ruptured AT? That is, are some people “good healers” and
other “poor healers” irrespective of the healing site? This
might imply that there is a strong genetic component to
the process.

Clinical trials

A. Clinical trials designed to assess the impact of specific
interventions on outcomes could target those destined to
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achieve good outcomes vs. a poor outcome even after the fact
so as to determine whether the two populations would be
influenced differently. Thus, converting those destined for a
poor outcome to a good outcome could be one set of outcomes
for a specific intervention and whether an intervention could
further improve those destined for a good outcome naturally
would be a second goal of the trial. The results from the
proteomics studies could be done independently from the
intervention so as not to impact of the timing of the
intervention and could also be done in a blinded manner.

B. As discussed previously, healing outcomes likely reflect the
effectiveness of repair processes and do not lead to
regeneration. Therefore, if regeneration is the goal of the
research, then it may be more appropriate to investigate the
potential for regeneration with those already destined for a
good outcome versus those destined for a poor outcome as in
the latter, one may have to also overcome deficiencies that the
intervention is not capable of addressing.

C. Clinical trials should also be undertaken to determine whether
the same of different biomarkers are identified with good vs.
poor outcomes depending on the location of the injury in a
tendon such as the Achilles tendon. Injuries to this tendon can
occur at the bone-tendon interface or at the myotendinous
junction, as well as the mid-substance which the current
biomarkers have been associated with thus far. As reports

indicate that healing outcomes are better the more proximal
the injury to the Achilles tendon (Qureshi et al., 2023), this will
be important to establish whether separate biomarkers are
associated with outcomes following injury at these transition
points in the tendon versus within the tendon mid-substance.

Thus, the advent of biomarkers of outcomes after a tendon rupture
may impact both clinical research and clinical trials in new ways and
with enhanced potential to yield benefits to both understanding healing
processes and patients in their post-injury life.

Conclusion

Wound healing after an extensive injury is complex, involving
many steps in the process. Healing in tissues designed to function in
high load environments, are particularly complex. Therefore, the
finding of a number of biomarkers prognostic of good versus poor
outcomes has the potential to change the way some clinical research
and clinical trials are conducted. However, even when biomarkers
prognostic for healing outcomes are identified, it is critical to
determine how the biomarkers impact healing, how the local
environment affects outcomes, and whether one can utilize the
information to further enhance the healing potential of specific
patient subpopulations. Thus, do biomarkers reflect a critical stage

TABLE 1 Healing phases, novel biomarkers of tendon repair and established approaches to enhance tendon repair.

Healing
phase

Specification of healing phase Novel biomarkers. Association
with healing outcome

Various approaches to enhance
tendon repair

1. Induction Inflammation. Blood-derived cells, which
subsequently releases growth factors

ITIH4 Higher ITIH4 levels are positively
associated with better clinical outcomes
after ATR.

Platelet rich plasmaDerived from centrifugation
of whole blood. Such platelet preparations
contain many growth factors and anabolic
molecules

2. Production Proliferation.Tissue-derived cells are attracted
and transformed into myofibroblasts at the
healing site. The myofibroblasts subsequently
activate production of tendon callus

eEF2Higher eEF2 levels are positively associated
during both inflammatory and proliferative
healing with improved clinical outcomes
after ATR.

Stem cells, E.g., Mesenchymal stem cells (MSC)
(Hart et al., 2022), bone marrow stem cells
(BMSC) (Natsu-ume et al., 2005), and
genetically modified cells that synthesize and
deliver the desired growth factor in a temporally
and spatially orchestrated manner. Growth
factors IGF TGF-B BMP VEGF

3. Orchestration Proliferation. New pathways for delivery of
healing substances are built with neuro-vascular
ingrowth into a tendon-matrix normally devoid
of nerves and vessels

CFD Lower CFD levels are associated with
improved patient outcomes after ATR.

NGF and neuropeptides are released, which
guide neurovascular ingrowth. Subsequently to
healing factors that regulate nerve and blood
vessel retraction are released. Early mobilization
accelerates the nerve plasticity, i.e., nerve
regeneration, expression of neuromediators and
their receptors, and nerve retraction (Lu et al.,
2023; Miescher et al., 2023)

4. Conduction Proliferation. A prerequisite for healing to
commence and to initiate the development of a
functioning tissue matrix into which cells,
vessels, and nerves can grow in and where
production of new granulation tissue can occur

FGF-2 Higher FGF-2 gene expression is
positively associated with better patient
outcomes after ATR.

Tendon tissue, flap techniques, or tendon grafts
are used. Scaffolding techniques–either biogenic
or synthetic (e.g., bioresorbable polymers)
scaffolds

5. Modification Remodeling. Transition from Col III to Col I is
essential for scar maturation. Increasing
mechanical loading activates myofibroblasts and
fibroblasts to increase the production of relevant
matrix molecules leading to structural
reorganization to enhance the capacity of the
tissue to withstand high mechanical load

Pyruvate. Higher pyruvate levels are associated
with better patient outcomes after ATR.

Pyruvate is involved in tendon repair associated
with the transition from Col III to Col I in the
scar tissue during remodeling. Increasing
mechanical loading activates myofibroblasts and
fibroblasts to increase the production of
collagen type I to increase the callus size and
enhance the capacity to withstand high
mechanical load
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of healing and therefore, an important initial step (s) in this complex
process, or are they surrogates for some other process that can be
deduced by network analysis of the proteomic data? The answers to
such questions are critical to moving the field forward and will
require significant new research efforts before they can translate to
patient populations. However, these are achievable goals with the
right investment and commitment in the not so distant future.
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