AUTHOR=Haris Fahni , Jan Yih-Kuen , Liau Ben-Yi , Hsieh Chang-Wei , Shen Wei-Cheng , Tai Chien-Cheng , Shih Yin-Hwa , Lung Chi-Wen TITLE=Plantar pressure gradient and pressure gradient angle are affected by inner pressure of air insole JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2024.1353888 DOI=10.3389/fbioe.2024.1353888 ISSN=2296-4185 ABSTRACT=
Clinically, air insoles may be applied to shoes to decrease plantar pressure gradient (PPG) and increase plantar gradient angle (PGA) to reduce foot ulcers. PPG and PGA may cause skin breakdown. The effects of different inner pressures of inflatable air insoles on dynamic PPG and PGA distributions are largely unknown in non-diabetics and people with diabetes. This study aimed to explore the impact of varying inner air insole pressures on PPG and PGA to establish early mitigation strategies for people at risk of foot ulcers. A repeated measures study design, including three air insoles (80 mmHg, 160 mmHg, and 240 mmHg) and two walking durations (10 and 20 min) for a total of six walking protocols, was tested on 13 healthy participants (height, 165.8 ± 8.4 cm; age, 27.0 ± 7.3 years; and weight, 56.0 ± 7.9 kg, BMI: 20.3 ± 1.7 kg/m^2) over three consecutive weeks. PPG, a measurement of the spatial variation in plantar pressure around the peak plantar pressure (PPP) and PGA, a variation in the gradient direction values at the three plantar regions, big toe (T1), first metatarsal head (M1), and second metatarsal head (M2), were calculated. This study indicated that PPG was lower at 80 mmHg air insoles after 20 min of walking in the M1 region (