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Diabetes mellitus and chronic kidney disease represent escalating global
epidemics with comorbidities akin to neuropathies, resulting in various
neuromuscular symptoms that impede daily performance. Interestingly,
previous studies indicated differing sensorimotor functions within these
conditions. If assessing sensorimotor features can effectively distinguish
between diabetes mellitus and chronic kidney disease, it could serve as a
valuable and non-invasive indicator for early detection, swift screening, and
ongoing monitoring, aiding in the differentiation between these diseases. This
study classified diverse diagnoses based on motor performance using a novel
pinch-holding-up-activity test and machine learning models based on deep
learning. Dataset from 271 participants, encompassing 3263 hand samples
across three cohorts (healthy adults, diabetes mellitus, and chronic kidney
disease), formed the basis of analysis. Leveraging convolutional neural
networks, three deep learning models were employed to classify healthy
adults, diabetes mellitus, and chronic kidney disease based on pinch-holding-
up-activity data. Notably, the testing set displayed accuracies of 95.3% and 89.8%
for the intra- and inter-participant comparisons, respectively. The weighted
F1 scores for these conditions reached 0.897 and 0.953, respectively. The
study findings underscore the adeptness of the dilation convolutional neural
networks model in distinguishing sensorimotor performance among individuals
with diabetes mellitus, chronic kidney disease, and healthy adults. These
outcomes suggest discernible differences in sensorimotor performance across
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the diabetesmellitus, chronic kidney disease, and healthy cohorts, pointing towards
the potential of rapid screening based on these parameters as an innovative
clinical approach.
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biomechanics, bioengineering

1 Introduction

Globally, diabetes mellitus (DM) has significantly impacted
healthcare costs and socioeconomic burdens, escalating from
966 billion United States dollars (USD) in 2021 to a projected
1,054 billion USD by 2045. A recent epidemic report estimated
the global prevalence of diabetes at approximately 10.5%, set to rise
to 12.2% by 2045 (Sun et al., 2022). Similarly, a recent
epidemiological report indicated that the prevalence of chronic
kidney disease (CKD) was 10.0% in adult populations globally;
however, this value may be underestimated. Akin to DM-related
impacts, CKD-related healthcare stands as the primary driver of
medical and social costs in most countries (Sundström et al., 2022).
Patients with severe DM often progress to CKD, which can impose
greater care challenges; hence, CKD could be considered a more
severe condition in patients with DM (Parving et al., 2006; Thomas
et al., 2016). To monitor DM progression and prevent the
development of severe disease, a low-cost, quick, and noninvasive
method is needed.

Individuals with DM and CKD commonly experience peripheral
nerve disorders (Baumgaertel et al., 2014), particularly peripheral
neuropathy (Pop-Busui et al., 2017; Ezzeldin et al., 2019; Feldman
et al., 2019; Karlsson et al., 2019). Clinical symptoms associated with
neuropathies include pain, impaired thermal discrimination,
sensory deficits, reduced motor function, and diminished or
absent distal reflexes (Callaghan et al., 2015; Pop-Busui et al.,
2017; Ezzeldin et al., 2019; Feldman et al., 2019). These
symptoms significantly impact daily activities and could be
critical in pre-DM and early stages of CKD (Singleton et al.,
2001; Ziegler et al., 2008; Im et al., 2012; Smith and Singleton,
2012; Bongaerts et al., 2013; Asghar et al., 2014; Moorthi et al., 2019).
Monitoring changes in sensorimotor function, an evident
neurological feature, might be a feasible strategy to monitor the
progression of both diseases. Early detection of these diseases could
aid patients and clinicians in comprehending disease progression
and subsequently achieving improved prognosis (Tesfaye et al.,
2010; Bernardi et al., 2011; Bril et al., 2011; Dyck et al., 2011;
Kempler et al., 2011; Spallone et al., 2011; Finnerup et al., 2015; Pop-
Busui et al., 2017). Despite easily identifying neuropathies in both
groups, the mechanism of neuropathies in DM and CKD remains
unclear and may result in different neuropathic symptoms or
sensorimotor features in these two diseases (Biessels et al., 2014;
O Brien et al., 2014; Vincent et al., 2011; Zenker et al., 2013). For
example, patients with CKDwere found to exhibit poorer light touch
sensory function than non-CKD participants, even after excluding
the effects of DM (Moorthi et al., 2019). In other words,
sensorimotor performance might vary between DM and CKD,
despite both having neuropathies as diagnoses. Due to potential
differences in sensorimotor performance between DM and CKD,

evaluating sensorimotor function to monitor disease progression
could prove to be a valuable, low-cost method.

Recent studies introduced a novel pinch-holding-up-activity
(PHUA) test, using sensorimotor function measurements with
robust psychometric properties (Chiu et al., 2009). These
investigations aimed to discern disparities in hand sensorimotor
performance hand between patients with DM and healthy adults
(Chiu et al., 2014; Hsu et al., 2015), as well as differences between
patients with CKD and healthy adults (Tu et al., 2019). These studies
showed significant differences in sensorimotor performance
between healthy adults and patients with peripheral neuropathic
hands. Sensorimotor parameters—such as force ratio and
percentage of maximal pinch force—were notably larger in
patients with neuropathy, indicating that the use of inefficient or
improper hand performance strategies. Furthermore, these
parameters displayed medium-to-high correlations between
sensory conditions and fine motor function (Shieh et al., 2011;
Hsu et al., 2013).

However, these studies primarily relied on a limited set of
parameters—such as force ratio or maximal pinch ratio—derived
from specific events within the signals to determine the inferior
sensorimotor performance in individuals with neuropathic hands.
Unfortunately, these parameters proved insufficient for
distinguishing sensorimotor features between the DM and CKD
groups using current analytical approaches.

In recent years, machine learning has rapidly developed for
human motion analysis. For fundamental research, Liu et al.
proposed several base studies for extracting interpretable and
explainable features to help build machine learning models for
human activity recognition (HAR) (Liu et al., 2021; Hartmann
et al., 2022; Liu et al., 2023) and published a feature extraction
library for time-series data (Barandas et al., 2020). Hartmann et al.
also found that high-level and interpretable features can be used in
few-shot learning, and the results were promising (Hartmann et al.,
2023). At the same time, a new branch in machine learning, called
deep learning, has found widespread use in complex and noisy signal
applications, where conventional analyses might struggle to extract
pertinent information (LeCun et al., 2015; Goodfellow et al., 2016).
Ideal deep learning models use original data or parameters without
preprocessing or human-selected procedures. Previous studies have
demonstrated the efficacy of convolutional neural networks (CNN)
in appropriately handling time-series images or signals of human
motion (Hannink et al., 2016; Hannink et al., 2017; Kautz et al.,
2017). Architectures like VGG (Hannink et al., 2016; Hannink et al.,
2017; Kautz et al., 2017), ResNet (Wang et al., 2017; Cheng et al.,
2021), and dilation CNN (Arık et al., 2017; Bai et al., 2018; Lei et al.,
2019) have emerged as strong candidates for processing time-series
signals. Despite their demonstrated capabilities in processing time-
series data, current studies rarely classify different peripheral
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neuropathies based on sensorimotor features of hand performance.
Therefore, this study aimed to develop three distinct CNN models
for classifying DM and CKD diagnoses based on hand
sensorimotor function.

2 Materials and methods

2.1 Study participants

All the data used in this study were retrospective and
anonymized from previous research (Chiu et al., 2014; Hsu et al.,
2015; Tu et al., 2019). Participant demographics from these studies
are shown in Table 1. Sensorimotor function data were collected
from participant hands between 2006 and 2018 using a standardized
device and measurement protocol. The flowchart for the sampling
inclusion and exclusion is described in Figure 1. The datasets
included hand data from healthy controls and DM groups for
both hands, whereas the dataset of the CKD group contained

data solely from hand without a venous fistula. Neuropathies in
DM and CKD arise from metabolism issues, including poor blood
glucose control and the presence of toxic substance in blood. As a
result, damage to neurons on both the right and left side is expected
to be equal. Consequently, data from the right and left hands were
assumed to be similar and were not segregated during training and
testing. Inclusion criteria for DM followed the diagnostic guidelines
of the American Diabetes Association in 1997, whereas all CKD
participants were stage-5 (GLR <15 mL/min) and undergoing
hemodialysis. To prevent complexities arising from comorbid
conditions, participants with both DM and CKD were excluded.
The control group exclusion criteria were as follows: (Sun et al.,
2022): upper limb nerve injuries; (Sundström et al., 2022) acquired
or congenital hand or wrist anomalies; (Parving et al., 2006) skin
infections or diseases; (Thomas et al., 2016) diagnoses of DM, CKD,
or any cardiovascular disease; (Baumgaertel et al., 2014)
grade ≥2 arterial hypertension; and (Ezzeldin et al., 2019)
cognitive dysfunction, and an inability to follow instructions.
Informed consent was obtained from all participants, and the

TABLE 1 The demographic information of the three groups of participants.

Control (n = 75) DM (n = 159) CKD (n = 37)

Age (years) 46.47 (16.28) 58.83 (9.61) 60.19 (9.31)

Onset (years) — 9.55 (6.53) 5.44 (3.79)

Dominant (R/L) 72/3 159/0 37/0

Gender (M/F) 30/45 83/76 22/15

Total Samples in dataset 1,427 1,421 415

Intra

Training 827 (58%) 771 (54%) 251 (60%)

Validation 300 (21%) 325 (23%) 82 (20%)

Testing 300 (21%) 325 (23%) 82 (20%)

Inter (ratio%, cases)

Training 1,033 (72%, 55) 1,048 (74%, 116) 320 (77%, 28)

Validation 166 (12%, 9) 168 (12%, 20) 40 (10%, 4)

Testing 228 (16%, 11) 205 (14%, 23) 55 (13%, 5)

FIGURE 1
The flowchart for the dataset inclusion and exclusion from previous research.
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study adhered to the instructions of the Institutional Review Boards
of Chi Mei Medical Center and Chiayi Christian Hospital (Chiu
et al., 2014; Hsu et al., 2015; Tu et al., 2019).

2.2 Instruments and data-
collecting protocols

Sensorimotor hand function data were collected using a custom
designed apparatus comprising a specific device (size: 6.0*4.5*9 cm,
weight: 480 g), incorporating a six-axes loadcell (Nano-25, ATI
Industrial Automation, Apex, NC) and tri-axial accelerometer
(Model 2,412, Silicon Designs, Inc., Issaquah, WA) for the
PHUA test. Previous studies have affirmed the validity and
reliability of the PHUA test in assessing hand sensorimotor
performance (Chiu et al., 2009; Shieh et al., 2011; Hsu et al.,
2013; Chiu et al., 2014; Hsu et al., 2015; Tu et al., 2019). The
load cell and accelerometer were set to a sampling rate of 100 Hz.
The data collection protocols for PHUA were standardized across
the three groups. Participants were instructed to: (Sun et al., 2022):
pinch the device with the thumb and index fingertips, (Sundström
et al., 2022), lift the device approximately 5 cm above the table and
maintain for 5 s, (Parving et al., 2006), lift the device to
approximately 30 cm at a self-determined speed, and (Thomas
et al., 2016) slowly lower the device after 10 s. Each PHUA trial
lasted approximately 15 s, with only the initial 10 s used for data
collection to minimize bias during uncontrolled lowering periods.
Each participant performed ten trials for each hand. The
demographic information of the three groups of participants,
final sample size, and the dataset after splitting are summarized
in Table 1.

2.3 Dataset and preprocessing

In the collection of medical signals, resampling one participant is
a common strategy for expanding the sample size. To resample, each
of our subjects were asked to repeat the same protocol to generate
the data samples. In this study, the PHUA data of one participant
was resampled four to ten times. For the DM, data collection was
resampled four to six times. For the healthy adults and CKD, the
resampling was nine to ten times more than DM due to fewer
participants and an imbalanced dataset. Although this method easily
increases the sample size, it often leads to overfitting and data
leakage. To prevent these issues and ensure model robustness, two
different dataset splitting methods were employed: (Sun et al., 2022)
inter-participants: the dataset was split based on participants,
ensuring that the model did not encounter repeated participants
during training, validation, or testing; and (Sundström et al., 2022)
intra-participants: data splitting occurred within the trial of each
participant. Each participant data were segregated for training,
validation, and testing, ensuring that trials did not overlap across
these phases. No other methods were used to expand the dataset
used in this study.

The dataset was arranged for testing first, and then the
remaining data were utilized for training and validation. The
percentage of each group differed between the two data-splitting
methods. When employing the inter-subject method to split the

dataset, variations in the number of resample trials per subject could
have led to slight differences in sample numbers. The sample sizes
for training, validation, and testing are provided in Table 1. All
hyperparameters and model structures were adjusted during the
cross-validation phase. Once optimal validation results were
obtained, the entire training and validation dataset were
combined for final model training. Model performance was then
evaluated using the dedicated testing set, without any modifications
to the model to prevent data leakage.

2.4 Algorithm development and evaluations

Due to the PHUA protocol, we assumed that the features are
present during the rising phase, and the time point of the rise is not
restricted to every subject. Consequently, the features of the obtained
signals in this study were presumed to exhibit time-translation
symmetry and can be regarded as local features. The assumption
of time-translation symmetry implies that the features would have
similar forms but can appear any time without strict constraints.
Under this assumption, the CNN structure is a suitable choice for
searching for features over time by shifting the windows on the
signal. Recent research has demonstrated the superiority and
efficiency of CNN architectures over recurrent neural networks
for analyzing time-series signals (Pascanu et al., 2012; Pascanu
et al., 2013; Längkvist et al., 2014; Fawaz et al., 2019). Therefore,
CNNmodels were constructed for three groups: healthy adults, DM,
and CKD. The first model is derived from the VGG model
(Simonyan and Zisserman, 2014), which uses a linear structure
without shortcuts. The benefits of the VGG-like model (fully
convolutional network [FCN]) offers simplicity and ease of
comprehension but has limited depth. Its straightforward
structure and fewer parameters make it a widely used option for
testing deep learning models. The second model is based on ResNet
(He et al., 2016). ResNet is structured with a shortcut, allowing
residuals to traverse through the shortcut and learn, despite the
network being extremely deep. A deep model is sufficiently robust
for approximating a wide array of functions (Lin and Jegelka, 2018).
The third proposed model, a dilation CNN (dil-CNN), represents
the latest advancement capable of handling exceptionally long time-
series data (Bai et al., 2018; Lei et al., 2019). This architecture
compels nodes to glean essential features and transmit them
through lengthy time series without necessitating a deeply layered
design. In this study, we introduced FCN, ResNet, and dil-CNN
architectures to distinguish among healthy adults and patients with
DM and CKD.

The input data are raw data with absolute values from 0 to 10 s
(100 Hz), comprising 1,000 frames. To aid the model’s convergence,
the pinch force vector sum and load force vector sum are included in
the input. No other pre-processing or human-selected features were
utilized for the model input. The trial sample is depicted in Figure 2.

The model architecture is illustrated in Figure 3. The receiver
operating characteristic curve (ROC) curve and area under the ROC
curve (AUC) were used to evaluate model performance. The F1 score
and confusion matrix were calculated to provide a comprehensive
evaluation of accuracy and detailed category-specific performance.

The optimizer of CNN was RMSProp (lr = 0.0001, rho = 0.9,
epsilon = 1e-7), and the L1 and L2 regularization was used for the
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parameters in the CNN models. A SoftMax function is used to
output layer for deciding the category.

The CNN models were built by Python 3.9.9 and based on
TensorFlow 2.6. The hardware for training and programming was
i7-9,700, GTX3080 with 10 GB G and 40 GB RAM. The operating
system was Windows 10.

The accuracy, confused matrix, ROC, and AUC are shown to
evaluate the model performance. Also, the weighted F1 score is
calculated in this study. Considered as the imbalance dataset, the
F1 score with sample-weighted could show more information. All
training, validation, and testing evaluation results were shown and
discussed to display the overfitting situations.

3 Results

The model parameters used to demonstrate the model
efficiency are listed in Table 2. In the FCN model, the total
parameters employed were 502,979, whereas dil-CNN, shallower
in structure, used 205,123 parameters. In ResNet, the total
parameters is 379,907 (Table 2). The model structures of the
FCN and dil-CNN were similar; however, the FCN was deeper,
with two additional convolutional layers. The FCN and dil-CNN
differed in its dilation rate, increasing from 2 to 4 in the
seven–10 convolutional layers (Figures 3A, B). ResNet,
following the structure of the original study with two blocks
(He et al., 2016) repeated four times (Figure 3C). To mitigate
overfitting risks, our models were designed with reference to the
original article were not replicated at the same depth, such as
VGG-19 or ResNet-34, we opted for a shallower architecture
during the validation phase, refining it iteratively through trial
and error.

The final test results indicate intra-participant accuracies for
FCN, ResNet, and dil-CNN as 0.926, 0.874, and 0.953, respectively.
Meanwhile, inter-participant accuracies for FCN, ResNet, and dil-
CNN stand at 0.879, 0.875, and 0.898, respectively (Table 3). The
weighted F1 scores (wF1) for intra-participant assessments of these
models were 0.927, 0.873, and 0.953, whereas the inter-participant
wF1 scores were 0.877, 0.869, and 0.897, respectively (Table 3).

The evaluation of the model performance using the AUC is
shown in Table 4; Figure 4. Across the intra-participant dataset, the
AUCs for healthy adults were 0.984, 0.954, and 0.993 for FCN,
ResNet, and dil-CNN, respectively. In the inter-participant dataset,
these AUCs were 0.968, 0.966, and 0.966, respectively. The AUCs of
the three models for DM in the intra-participant dataset were 0.983,
0.961, and 0.994, respectively. Assessing DM within the
interparticipant dataset yielded AUCs of 0.972, 0.952, and 0.973.
Finally, for CKD in the intra-participant dataset, AUCs were 0.995,
0.938, and 0.999. For the inter-participant dataset, the AUCs of the
three models were 0.953, 0.916, and 0.977, respectively (Table 4).

4 Discussion

The contemporary diagnosis of DM and CKD in clinical settings
relies on blood tests (Harris and Eastman, 2000; Stevens and Levey,
2009), considered the golden standard. However, the proposed
PHUA test and the findings in this study do not aim to replace
this gold standard in clinical practice. Instead, the PHUA test,
combined with a deep learning model, offers a quicker and less
invasive method for distinguishing between patients with DM and
CKD in medical scenarios that require rapid screening or in places
where laboratory examinations are not readily available. Our
findings suggest that PHUA with a deep learning model could

FIGURE 2
Input data for CNNmodels. This figure shows a trial of a healthy adult. The input includes a three-axis pinch force (Nt) and three-axis load force (Nt),
which is calculated through the accelerations (a*0.48*9.8). The vector sum was calculated from the three axes of the pinch and load forces.
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potentially discern differences in the sensorimotor features of the
hand between CKD and DM. Therefore, this study may suggest a
simple test to aid in consistently monitoring the progression of DM
and preventing its advancement to CKD (Parving et al., 2006;
Thomas et al., 2016). Previous studies demonstrated that regular

follow-up examinations can reduce the severity of complications,
particularly for individuals >45 or <45 but with significant risk
factors such as obesity and a family history of DM (Pippitt et al.,
2016). Assessing sensorimotor capability is typically simple and
rapid in clinical, community, or home-based scenarios. To mitigate

FIGURE 3
(A) The architecture of FCN (VGG-like) model. (B) The architecture of dil-CNN (dilation CNN) model. (C) The architecture of ResNet model and the
details of identity block and convolutional block.
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evaluation difficulties and potential inter-tester errors, the PHUA
could serve a suitable apparatus for clinical assessments due to its
well-define design rationale. Its design was developed to challenge
participant reflex motor responses while performing upward
movements by pinching a glossy surface (Chiu et al., 2009; Hsu
et al., 2009; Shieh et al., 2011). The findings of this study indicate that
the PHUA test, coupled with a deep learning model, could serve as a
potential tool to evaluate the sensorimotor function of the hands,
and differentiate between DM and CKD based on sensorimotor
impairments, owing its high accuracy and AUC. Given its higher
accuracy, our proposed model with the PHUA test could be a viable
option for swift clinical screening and monitoring, particularly for
subjects who may be neglecting risks while being away from
medical providers.

Neuropathy in both DM and CKD typically manifests as neural
system damage that impairs sensorimotor performance (Tesfaye
et al., 2010; Baumgaertel et al., 2014), but research on distinctions
between DM and CKD in this context is limited. Our proposed
models suggest that deep learning models can uncover variations in

sensorimotor patterns between DM and CKD (Figure 5) and
marked the sample numbers in Figure 5 because of the
imbalanced sample size between different groups (Jannat et al.,
2023). The confusion matrix generated by the dil-CNN model
implies potential differences in PHUA-based sensorimotor
performance between DM and CKD, aligning with previous
findings (Moorthi et al., 2019). Earlier research demonstrated
that patients with CKD exhibit poorer light touch sensation
compared with healthy adults and those with DM (Moorthi
et al., 2019). However, the impact of worsened sensory sensation
on clinical evaluation of sensorimotor patterns remains unexplored.
The study findings indicate that a robust model could discern
specific differences in sensorimotor features between DM and
CKD. Despite similarities in impaired sensorimotor
function—such as sensory impairment and motor function
deficit—between DM and CKD, this discovery suggests that the
decline in sensorimotor function in these conditions might arise
from different mechanisms or conditions. However, although the
deep learning model highlights differences in sensorimotor patterns
between DM and CKD, it remains a black box, unable to specify the
exact degenerative processes causing these differences (Castelvecchi,
2016). Notably, sensory or motor function impairment affects
PHUA performance (Chiu et al., 2009; Shieh et al., 2011; Hsu
et al., 2012; Hsu et al., 2013). Previous studies have suggested
that neuropathies and the underlying mechanisms causing
sensorimotor degeneration in individuals with DM or CKD may
differ (Tesfaye et al., 2010; Callaghan et al., 2015; Pop-Busui et al.,
2017; Ezzeldin et al., 2019; Feldman et al., 2019; Karlsson et al.,

TABLE 2 The parameters of the CNN models.

VGG ResNet Dil-CNN

Trainable Parameters 500,867 376,643 204,035

Non-trainable Parameters 2,112 3,264 1,088

Total Parameters 502,979 379,907 205,123

TABLE 3 The evaluation results of the CNN models.

Intra-subjects Inter-subjects

Accuracy wF1 score Accuracy wF1 score

Train

VGG 0.991 0.991 0.999 0.999

ResNet 0.984 0.984 0.974 0.974

Dil-CNN 0.999 0.999 0.999 0.999

Valida

VGG 0.902 (0.018) 0.902 (0.019) 0.868 (0.050) 0.866 (0.052)

ResNet 0.844 (0.022) 0.843 (0.023) 0.832 (0.058) 0.829 (0.065)

Dil-CNN 0.926 (0.024) 0.925 (0.025) 0.901 (0.038) 0.901 (0.040)

Test

VGG 0.926 0.927 0.879 0.877

ResNet 0.874 0.873 0.875 0.869

Dil-CNN 0.953 0.953 0.898 0.897

TABLE 4 The Area Under the ROC Curve (AUC) of three groups under three CNN methods.

VGG ResNet Dil-CNN

Inter Intra Inter Intra Inter Intra

Healthy Adults (Control) 0.968 0.984 0.966 0.954 0.966 0.993

Diabetes Mellitus (DM) 0.972 0.983 0.952 0.961 0.973 0.994

Chronic Kidney Disease (CKD) 0.953 0.995 0.916 0.938 0.977 0.999
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2019). Neuropathy in DM stems from uncontrolled blood glucose
levels, deforming blood vessels and leading to insufficient neuronal
nourishment (Tabatabaei-Malazy et al., 2011; Baumgaertel et al.,
2014). Damage primarily occurs in the distal body parts (Ezzeldin
et al., 2019). In contrast, neuropathy in CKD results from toxic
substances in the blood (Baumgaertel et al., 2014; Arnold et al.,
2016), affecting nervous tissues throughout the body, including the
muscles, neural system, and metabolic system (Arnold et al., 2016).
Although these models solely differentiate motor patterns between
DM and CKD, prior research suggests that differing neuropathic
mechanisms also imply varying severity levels and affected the body
system ranges (Moorthi et al., 2019).

During the model design and adjustment phase, a smaller kernel
size resulted in higher accuracy within the modified model structure.
This finding aligns with previous research suggesting that smaller
kernels may lead to better convergence, a principle noted in the
original VGG designer work on image recognition (Simonyan and
Zisserman, 2014). The three proposed model architectures suffer from
overfitting. During the design phase, regularization to prevent

overfitting, such as the batch norm layer, L1 or L2 regularization
(Krogh and Hertz, 1992; Schmidhuber, 2015), and dropout
(Srivastava et al., 2014), was tested, and the overfitting condition did
not improve. Moreover, ResNet displayed severe overfitting compared
with the other dil-CNN models, but with more parameters included in
themodel (Table 2). This could be attributed to the shortcut structure of
ResNet, as demonstrated in previous research where a neural network
with shortcuts can fit signals effectively given enough layers (Lin and
Jegelka, 2018). Although ResNet structure in this study was not
extremely deep, overfitting persisted. Attempts were made to explore
models with fewer layers, but they resulted in underfitting compared
with the final proposed structure. Further research on shortcut-
designed models for time-series sensorimotor performance data is
warranted to address these challenges.

To accommodate the increased computational power and memory
requirements of larger models, the final model included only six
convolutional layers in the FCN and dil-CNN, whereas six identity
blocks were used in ResNet. Notably, the last layer of average pooling
outperformed the flattened layer (Lin et al., 2013). No additional dense

FIGURE 4
(A) The ROC curve of (left) intra-subjects and (right) inter-subjects of the del-CNNmodel. (B) The ROC curve of (left) intra-subjects and (right) inter-
subjects of the VGG model. (C) The ROC curve of (left) intra-subjects and (right) inter-subjects of the ResNet model.
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layer followed global average pooling, a strategy that mitigated
overfitting and increased testing accuracy. This aligns with the
findings in deep learning model design for image recognition post-
2013 (Lin et al., 2013; He et al., 2016; Szegedy et al., 2016).

The dil-CNN showed superior robustness with fewest
parameters among compared models. The total number of
parameters in the dil-CNN was 205,123, nearly half that of
ResNet (Table 2) and one-third that of the FCN. The dil-CNN
had a higher accuracy than the FCN (0.953 vs. 0.926 in intra-
participant; 0.898 vs. 0.879 in inter-participant; Table 3). In the
proposed model, dil-CNN exhibited the best performance.
Leveraging the design of dilation in convolution, the dil-CNN
effectively combines information across extended time-series

data. In our study, the structure based on VGG remains
unchanged, with dilation being the sole modification, yet it
notably enhances accuracy. However, we did not evaluate the
dilation kernel with a residual network (Bai et al., 2018) in our
proposed models because of observed overfitting in ResNet. Future
research should explore additional adjustments to the dil-CNN,
potentially incorporating a shortcut connection. Nevertheless, for
classification tasks involving sensorimotor signals, the dilation CNN
might prove superior to other structures.

Previous studies have relied on several human-selected
parameters, resulting in a lower AUC for patients with DM and
healthy adults (AUC = 0.724) (Chiu et al., 2014), as well as for CKD
and healthy adults (AUC = 0.848) (Tu et al., 2019), whereas the dil-

FIGURE 5
(A) The confusion matrix of (left) intra-subjects and (right) inter-subjects of the dil-CNN model. (B) The confusion matrix of (left) intra-subjects and
(right) inter-subjects of the VGG model. (C) The confusion matrix of (left) intra-subjects and (right) inter-subjects of the ResNet model.
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CNN exhibited higher AUC values (AUC > 0.96, Table 4). Notably,
complete raw data were included in our analysis, contributing to
improved prediction accuracy and potential for handling multiple
classes using deep-learning models, as indicated by our results.

Our study has several limitations that warrant
acknowledgement. All proposed models in this study faced
challenges related to overfitting, despite incorporating
regularization and batch-normalization layers. This issue might
stem from the restricted total number of participants, suggesting
the need for a larger sample size, particularly for machine-learning
models reliant on deep learning. Increasing the sample size could
enhance model stability and mitigate overfitting concerns in real-
world applications. In addition, few-shot learning with pre-
processing and feature engineering (Hartmann et al., 2023) could
be a possible solution for PHUA testing, especially using the model
in following subjects with a high potential risk of DM and CKD.
Moreover, the models based on deep learning represent black boxes
in this study, lacking explicit explanations for distinguishing
sensorimotor performance in DM from that in CKD. Although
visualization methods such as Grad-CAM (Selvaraju et al., 2017),
Grad-CAM++ (Chattopadhay et al., 2018), and I-GOS (Qi et al.,
2019) exist to potentially elucidate model attention, these
approaches offer visual insights without statistical significance
and are susceptible to misleading interpretations (Subramanya
et al., 2019). Developing interpretable AI warrants further
investigation, involving visualization techniques like Grad-CAM,
sensitivity analysis, and generative models. In the other way, human-
selected features with interpretable feature engineering can be an
innovative method for developing a explainable machine learning
model (Hartmann et al., 2022; Hartmann et al., 2023). These efforts
aim to assist clinical staff identifying meaningful features or key
points for evaluating patient sensorimotor performance. Another
limitation lies in the insufficient variety of diagnoses considered,
limiting the model adaptability in clinical scenarios. Future studies
should encompass diagnoses with similar sensorimotor
impairments, such as carpal tunnel syndrome, peripheral neural
damage, or neuromuscular disorders, to refine the model output
accuracy. An additional limitation is that our study represents just
the initial step toward rapid screening using PHUA with a DNN.
Furthermore, participants with DM and CKD were exclusively
recruited at severe stages. To establish a comprehensive clinical
solution for rapid screening or sensorimotor evaluation, different
stages and progressions of DM and CKD should be considered,
ensuring model robustness across diverse patient profiles.

Our findings underscored the potential of PHUA coupled with a
deep learning model to differentiate various sensorimotor patterns
among healthy adults and patients with DM and CKD. For the
evaluation of human sensorimotor performance based on time-
series signals, the dilated CNN structure demonstrated notable
accuracy and efficiency. Future studies require larger sample sizes
encompassing varying disease severities and considerations for the
comorbidity of DM and CKD to advance the next-generation model.
Developing an interpretable model is crucial to facilitate its practical
application in clinical settings.

In conclusion, our study highlights the capacity of the DNN
model to distinguish between healthy adults, participants with DM,
and CKD participants through the innovative motor performance
evaluation tool, PHUA. PHUA integrated with the dil-CNN model

exhibits remarkable stability and accuracy, presenting sensorimotor
performance assessment as a novel approach to aid in evaluating
CKD and DM diagnosis stages and offering an effective screening
method for both disorders. This study presents an innovative
application of machine learning in clinical evaluation, particularly
for patients with DM and CKD.
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