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Objective: Biomechanical Machine Learning (ML) models, particularly deep-
learning models, demonstrate the best performance when trained using
extensive datasets. However, biomechanical data are frequently limited due to
diverse challenges. Effective methods for augmenting data in developing ML
models, specifically in the human posture domain, are scarce. Therefore, this
study explored the feasibility of leveraging generative artificial intelligence (AI) to
produce realistic synthetic posture data by utilizing three-dimensional
posture data.

Methods: Data were collected from 338 subjects through surface topography. A
Variational Autoencoder (VAE) architecture was employed to generate and
evaluate synthetic posture data, examining its distinguishability from real data
by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The
benefits of incorporating augmented posture data into the learning process were
exemplified by a deep autoencoder (AE) for automated feature representation.

Results:Our findings highlight the challenge of differentiating synthetic data from
real data for both experts and ML classifiers, underscoring the quality of synthetic
data. This observation was also confirmed by SPM. By integrating synthetic data
into AE training, the reconstruction error can be reduced compared to using only
real data samples. Moreover, this study demonstrates the potential for reduced
latent dimensions, while maintaining a reconstruction accuracy comparable to
AEs trained exclusively on real data samples.

Conclusion: This study emphasizes the prospects of harnessing generative AI to
enhance ML tasks in the biomechanics domain.
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1 Introduction

Biomechanics, the study of human movement and its
mechanical principles, holds great promise for advancing our
understanding of human locomotion, aiding clinical diagnoses,
and enhancing athletic performance (Barnes and Kilding, 2015;
Ferreira et al., 2016; Ceyssens et al., 2019; Valamatos et al., 2022). In
biomechanical data analysis, Artificial Intelligence (AI) and
Machine Learning (ML) methods have gained traction (Halilaj
et al., 2018; Phinyomark et al., 2018; Dindorf et al., 2022a),
yielding promising results, such as in studies involving post-
stroke patients (Lau et al., 2009) or Parkinson’s disease (Wahid
et al., 2015). These approaches excel in handling intricate,
multidimensional data, offering objective insights, and
pinpointing distinctive group-specific disparities (Horst et al.,
2019; Dindorf et al., 2021a). Notably, these methods often
outperform traditional statistical analysis methods in related
databases (Bzdok et al., 2018; Halilaj et al., 2018; Phinyomark
et al., 2018). However, their potential is frequently constrained by
persistent challenges such as data scarcity.

Data scarcity refers to a situation in which the available data for
analysis or decision-making are limited in quantity, quality, or
relevance, often presenting challenges in drawing meaningful
insights or conclusions (Alzubaidi et al., 2023). Unlike certain
fields, such as image classification, which benefit from vast
databases containing millions of images (Deng et al., 2009),
biomechanical data frequently encounter limitations, typically
comprising only hundreds or a few thousand data points (Horst
et al., 2021). These limitations stem from various challenges,
including difficulties in participant recruitment, resource
constraints, ethical considerations, specialized expertise
requirements, and the often expensive and intricate nature of the
measurements. Consequently, the development and effectiveness of
ML algorithms tailored to biomechanical tasks are impeded by the
lack of comprehensive datasets.

Data augmentation is a widely used technique in ML and data
science, aimed at artificially expanding the size of a dataset by
applying various transformations or modifications to existing data
(Bicer et al., 2022). The primary objective of data augmentation is to
diversify the training dataset, making it more robust, and reducing
overfitting (Lashgari et al., 2020). By introducing variations in the
data, the model becomes better at generalizing to unseen examples,
consequently enhancing its performance on real-world data. The
utilization of data augmentation in ML improves a model’s capacity
for generalization, which is particularly pronounced in deep learning
scenarios (Bicer et al., 2022). For example, in computer vision tasks,
data augmentation may encompass randomly rotating or flipping
images, changing their color balance, or cropping them differently
(Jiang et al., 2020). Similarly, natural language processing techniques
can involve paraphrasing sentences, adding synonyms, or
introducing typographical errors into the text data (Kang et al.,
2021; Bayer et al., 2023).

However, in biomechanics, kinematic data are often presented
as tabular or time-series data for dynamic measurements (Horst
et al., 2021). In the domain of clinical gait analysis, certain
techniques such as magnitude perturbation, temporal
perturbation, random rotation, and noise injection have been
employed (Kiprijanovska et al., 2020; Tunca et al., 2020;

Paragliola and Coronato, 2021). Alternatively, data augmentation
for tabular data may involve generating additional samples by
interpolating between existing data points or by applying
sampling techniques primarily used for imbalanced datasets (for
example, the synthetic minority oversampling technique: SMOTE)
(Dindorf et al., 2021a; Iglesias et al., 2023).

Furthermore, there exists considerable promise in leveraging
generative models for data generation purposes. Generative models
such as Variational Autoencoders (VAEs), Generative Adversarial
Networks (GANs), and autoregressive models like transformer-
based models represent powerful ML models capable of creating
new data samples that closely resemble the training data to which
they were exposed (Bicer et al., 2022). These models learn the
underlying data distributions and generate data points with
similar characteristics. This makes them valuable not only for
data augmentation but also for content generation (Hussain
et al., 2020) and anomaly detection (Yang et al., 2022). Regarding
data augmentation, the synthetic data generated by these models can
be combined with the original data, resulting in a larger and
diversified dataset for training ML models.

Several studies have explored the application of generative
models in analyzing human movement data, highlighting the
potential of generative models in the biomechanical domain.
Researchers have developed (Takeishi and Kalousis, 2021) a
generative model for the human gait that ensures physically
realistic outputs by integrating a VAE with a differentiable
physics engine, demonstrating its efficacy in gait style transfer.
Similarly, Liu et al. (2020) employed a conditional GAN to
replicate the kinematic attributes of individuals with lateral
collateral ligament injuries in their feet and ankles. Additionally,
Luo and Tjahjadi, (2020) utilized conditional GANs to create a
parametric three-dimensional (3D) model of the human body,
including an underlying skeleton, enabling the synthesis of
asymmetrical gait samples. Furthermore, Song et al. (2020)
harnessed a Deep Convolutional GAN to create binary images
that captured three distinct abnormal gait patterns, encompassing
falls, reels, and drags.

Although several studies have emphasized the utility of
generative AI in the domain of gait data, only one has addressed
posture analysis using 3D spinal computed tomography scans of the
lumbar spine (Huang and Zhang, 2023). In response to this pressing
issue, we explored whether generative AI can bridge the gap in data
scarcity by creating synthetic yet realistic stereographic 3D spinal
posture data. By leveraging the capabilities of the VAE, we embarked
on the task of generating synthetic posture data. The goal is not only
to evaluate whether it is possible to train a VAE on posture data and
generate synthetic data, but also to scrutinize whether these
synthesized postures can be discerned from genuine data by
means of Statistical Parametric Mapping (SPM) and a
classification task challenging both domain experts and ML
classifiers. Furthermore, this study extends beyond data
generation. We explored the practical implications of
incorporating synthetic data into the learning process. A critical
aspect of this inquiry is the use of an autoencoder (AE) for feature
learning based on posture data.

AEs are widely used for denoising tasks in clinical biomechanical
data. Previous studies (Mohammadian Rad et al., 2018; Elkholy
et al., 2019) have demonstrated their effectiveness in improving the
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FIGURE 1
Overall workflow of the study. The top left image illustrates the DIERS formetric III 4D™ system’s (DIERS International GmbH, Schlangenbad,
Germany) measurement procedure (originally from (Dindorf et al., 2022b), courtesy of DIERS International GmbH). The original data pool is expanded
using a Variational Autoencoder (VAE) (upper right) to address sample size limitations for diverse Machine Learning tasks. This is followed by task-specific
model development, exemplified here by a deep Autoencoder, utilizing the augmented data (bottom).

TABLE 1 Subject characteristics and related trials.

Subjects
(n)

Male (n);
Female (n)

Age
(years)

Hight
(cm)

BMI
(kg/m2)

Further information

Healthy a

(asymptomatic)
201 69;

132
41.28
(13.42)

172.51
(8.19)

23.49
(3.21)

18–70 years; free of pain; no history of surgery or fracture
between C7 and pelvis; no medical or therapeutic treatment

(C7- pelvis) last 12 months; no medical or therapeutic
treatment due to musculoskeletal problems (musculoskeletal
system except C7-pelvis) last 6 months; BMI ≤30.0; gait

stability; an age- and sex-accorded walking speed and spinal
function as well as an appropriate joint mobility to theoretically
be able to perform a physiological gait pattern; WHO register

(INT: DRKS00010834)

Healthy b

(asymptomatic)
25 12;

13
34.68
(12.07)

176.28
(8.83)

24.01
(3.45)

Repeated measurements at three points in time; walking
without walking aids and pain; no acute or chronic diseases; no
pregnancy; BMI <30; WHO register (INT: DRKS00014325)

Back pain 32 14;
18

44.53
(14.84)

174.00
(11.00)

26.01
(4.79)

Area of pain: 6% thoracic spine (TS), 72% lumbar spine (LS),
and 22% TS + LS; no acute fractures, walking restraints, or
acute/chronic illnesses that prevent safe walking; WHO register

(INT: DRKS00013145)

Spinal fusion 34 20;
14

56.26
(15.40)

171.00
(11.00)

26.95
(4.43)

Spinal fusion somewhere between C7 and L5; no acute
fractures, walking restraints, or acute/chronic illnesses that
prevent safe walking; WHO register (INT: DRKS00013145)

Osteoarthritis 60 29;
31

64.00
(11.27)

171.00
(9.15)

25.68
(2.35)

30 knee osteoarthritis and 30 hip osteoarthritis; walking without
walking aids; no walking impairments that prevent safe
walking; no acute or chronic diseases; no pelvic or spinal
surgery; no pregnancy; BMI <30; WHO register (INT:

DRKS00017240)

aThe dataset is part of the dissertation project of Janine Huthwelker. For more details see (Huthwelker et al., 2023).
bThe dataset is part of the dissertation project of Friederike Werthmann.

Abbreviations: BMI: body mass index, SD: standard deviations, WHO: world health organization, TS: thoracic spine, LS: lumbar spine, C: cervical, L: lumbal.
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discriminative capabilities of models. In various domains, it has been
observed that feeding features reconstructed by AEs to a
discriminative model as input often yields superior accuracy
compared with using the original data (Marchi et al., 2015; Zhao
T. et al., 2017; Tu et al., 2020). The latent space of the AE proves to is
a valuable resource for automatic feature extraction, a technique that
has shown significant utility in other studies (Nguyen et al., 2018;
Zaroug et al., 2020; Yang and Yin, 2021). For example, by utilizing
latent space in conjunction with other ML models, enhanced
performance in various tasks has been demonstrated (Hernandez
et al., 2020).

Given the pivotal role of AEs in biomechanical data analysis,
enhancing their reconstruction accuracy holds immense value.
Consequently, we sought to elucidate whether augmenting the
training dataset with generated synthetic postures can lead to
reduced reconstruction errors and a more compact feature
representation of an AE without sacrificing reconstruction accuracy.

2 Materials and methods

The comprehensive workflow is outlined in Figure 1 for a
concise overview. Subsequent sections will furnish detailed
insights into each step delineated in the figure.

2.1 Subjects and data acquisition

In four separate studies, data were collected from
353 participants. Depending on the study design, as outlined in
Table 1, each subject underwent postural data collection for the
spine on one or three distinct days. During each session, an average
of 12–14 individual images was captured for each subject. This data
collection encompassed both healthy individuals and those with
various pathologies, such as back pain, spinal fusion, and
osteoarthritis. The DIERS formetric III 4D™ system, specifically
DICAM v3.7 analyzing software (DIERS International GmbH,
Schlangenbad, Germany), was employed as a non-invasive means
of rasterstereography, also known as surface topography (ST).
Detailed information regarding the participants’ characteristics is
presented in Table 1. This method enables comprehensive spinal
measurements across all body planes without requiring invasive
radiation-based techniques or extensive preparation.

We utilized fifty-four static parameters from the system,
including measurements such as pelvic obliquity (°), pelvic
inclination (dimples) (°), pelvic rotation (°), as well as the
orientation of VP, T1–12, and L1–L4 in all planes (°), as part of
our modeling process. Supplementary Table S1 provides a
comprehensive description of these parameters.

Subsequently, for each participant, we randomly selected three
samples without replacement for further calculations. We employed
the isolation forest technique (500 trees) to effectively identify and
address multivariate outliers. This approach has been demonstrated
to be effective in various studies involving kinematic data (Dindorf
et al., 2021b; Yee et al., 2021). Consequently, from our initial dataset
of 1059 samples, we removed 66 outliers using this method, resulting
in a final total of 993 samples, derived from 338 subjects for
further analysis.

Although multiple classes of healthy subjects and pathologies
were present (Table 1), a single VAE was trained using all the
available data. This decision was based on several key
considerations.

Insufficient sample sizes were available for each individual class,
making it impractical to effectively train separate VAEs for
each class.

Previous studies have highlighted the difficulty of discriminating
between respective classes, such as distinguishing healthy postures
from pathological ones, using ML classifiers (Dindorf et al., 2021b).
This suggests that there is limited class-specific information that can
be exploited.

Opting for a single VAE offers the advantage of capturing shared
patterns and common features that potentially exist across various
classes. This approach aims to uncover the underlying similarities
that might be overlooked by class-specific models.

By employing a single VAE, the model was designed to learn a
universal latent space that remained independent of class labels. This
allowed the model to focus on extracting general representations
that were common to all classes without being biased by class-
specific distinctions.

2.2 General workflow and
evaluation procedure

Model development, training, and evaluation of the VAE and
AE were integrated into a grouped k-fold cross-validation process
(k = 5). In each cross-validation fold, the data underwent random
partitioning, with approximately 70% assigned to training, 10% to
validation, and 20% to testing (the proportion of test data for each
fold is given by k = 5). It was ensured that subject-specific data,
considering multiple measurements per subject, remained separate
across the sets. The corresponding specific workflow is illustrated in
Figure 2. The utilization of grouped k-fold splitting, a method that
prevents subject-specific data from being concurrently included in
the training, validation, and test sets, offers several advantages. This
approach facilitates improved hyperparameter tuning and early
detection of overfitting. Furthermore, this method enhances the
robustness of the model evaluation by considering the variability
across different training instances. Additionally, by ensuring that
subject-specific data are not mixed across the training and
evaluation sets, it becomes possible to assess how well the models
can be generalized to new, previously unseen subjects or data points,
thereby providing a more comprehensive evaluation of the model’s
performance. The steps pertaining to this workflow are described in
detail in the following sections.

2.3 VAE implementation

For data generation in our study, we opted for a VAE over a
GAN for several compelling reasons. GANs typically require a more
extensive and diverse dataset to perform effectively. They thrive
when presented with substantial amounts of data that capture
intricate patterns and nuances. GANs are sensitive to
hyperparameter choices and can suffer from issues such as mode
collapse (Saxena and Cao, 2022). In this case, the posture data were
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not sufficiently extensive to fully harness the potential of the GAN.
Our preliminary study, which involved exploratory work with the
available posture data, confirmed that VAE outperformed GANs
when considering our dataset in terms of both the data quality and
stability observed during the training process.

A VAE is an artificial neural network employed for generative
tasks. It functions by encoding the input data into a lower-
dimensional latent space and then decoding it back into the
original data space. The key innovation of a VAE is its ability to
model probability distributions in a latent space, allowing it to
generate new similar data samples by sampling from these
distributions. This makes VAEs particularly useful for tasks, such
as data generation, denoising, and representation learning. In short
the general information flow in a VAE can described the following
(please refer to (Zhao S. et al., 2017) for a detailed description):

The encoder takes input data x and produces parameters for a
probability distribution over the latent space. Let z be the latent
variable, q (z|x) is the approximate posterior distribution, p(z) is the
prior distribution (usually a standard Gaussian), and μ(x) and σ(x)

are the mean and standard deviation predicted by the encoder. The
latent variable z is sampled from the distribution:

Z ~ N μ x( ), σ x( )2( )

The decoder takes the sampled latent variable z and reconstructs
the input data x. The conditional distribution of the data given the
latent variable is modeled as p (x|z). The reconstructed data x̂ is
sampled from this distribution.

The training objective for a VAE is based on the Evidence Lower
Bound (ELBO), which is defined as follows:

ELBO � E q z|x( )( ) logp x | z( )[ ] − KL q z|x( ) ‖ p z( )[ ]

The first term is the reconstruction term, encouraging the model
to generate data similar to the input. The second term is the
regularization term, penalizing the divergence between the
learned latent distribution q (z|x) and the prior distribution p(z).

The information flows from the input data through the encoder
to the latent space, and then from the latent space through the

FIGURE 2
Workflow of the generation, testing and evaluation of the synthetic data. RTSD = dataset with 50% real, 50% synthetic data; RT3SD = dataset with
25% real, 75% synthetic data; MSE = Mean Squared Error; SPM = Statistical Parametric Mapping; AE = Autoencoder; VAE = Variational Autoencoder.
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decoder to reconstruct the data. The objective during training is to
maximize the ELBO, thereby encouraging themodel to learn a useful
latent representation of the input data.

It aims at a smaller latent dimension than the original number of
features to capture the most important features and reduce the
complexity of data representation by learning a more compact
representation of the data. Furthermore, this proved useful
because the smaller latent dimensions acted as a form of
regularization, preventing the VAE from overfitting the training
data (Mahmud et al., 2020). In addition, it has been suggested that
when the latent dimension is smaller, the decoder must generate
data with fewer degrees of freedom, which can lead to more coherent
and structured generated samples (Zhao et al., 2019).

To determine the model architecture, a grid hyperparameter
search was performed based on the accuracy of the combined
losses (reconstruction loss and KL divergence loss) in the
validation set. We varied the latent vector length (5, 10, 15,
and 20), two hidden layer sizes for the encoder and decoder (54,
108, 256, and 500), batch size (32, 64, and 128), learning rate
(0.01, 0.001, and 0.0001), and number of epochs (200, 400, 600,
and 1,000). The VAE model employs an Adam optimizer to
minimize the combined loss function. Based on each training
set, scaling was applied using StandardScaler from Scikit-learn
(Pedregosa et al., 2011). The final model has the following
configuration:

The encoder network operated on the input posture data (shape:
54) through two dense layers with specific sizes of 256 and 108,
utilizing both Rectified Linear Unit (ReLU) activation functions.
These layers reduced the input data to a latent space of
15 dimensions. This is followed by a symmetric decoder section
comprising two corresponding dense layers, both employing ReLU
activation, and an additional final layer employing linear activation.
The epochs were set to 400 with a learning rate of 0.001, and a batch
size of 128. For a visual representation of the architecture of the VAE
please refer to Figure 3.

Although the intermediate losses employed during VAE training
are pivotal for the training process, theymay not be as informative or
comparable. Instead, we report the Mean Squared Error (MSE) to
evaluate the reconstruction errors and conduct model comparisons.

2.4 Evaluation synthetic data

To evaluate the distinguishability of synthetic data from real
data, we adopted three distinct approaches: (a) judgment by domain
experts, (b) implementation of an ML classifier, and (c) statistical
evaluation using SPM.

First, we generated synthetic data for each VAE model during
cross-validation of the required size (see below). Therefore, random
sampling from a standard Gaussian distribution was performed to
generate latent vectors. These latent vectors are then passed through
the decoder component of the trained VAEmodel. Subsequently, we
combined the original data from the test set with synthetic data,
enabling us to perform the identification tasks denoted as (a), (b),
and (c). For expert-based evaluation (a) and SPM analysis (c), we
rescaled the feature values to match the scale and distribution of the
original data. This was done to ensure that the experts could assess
the data in an accustomed manner while preserving the fidelity of
their evaluation process:

a) In the expert-based evaluation, we opted for a random subset
of 100 real and 100 synthetic data samples because a comprehensive
assessment was economically infeasible due to constraints on the
experts. Therefore, for each fold, we randomly selected and
combined ten real samples from the test set with ten synthetic
samples generated by the respective VAE model. Each sample
underwent an independent evaluation by three experts, and the
final expert-based classification was determined via a majority vote.
These experts possessed extensive experience working with spinal
data and were familiar with the dataset. During the evaluation, the
data were presented visually, similar to the illustration in Figure 4.

FIGURE 3
Visualization of the VAE architecture in the current study. The values in the white boxed represent the layer sizes.
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The expert ratings were organized, and the accuracy for each rater
and across all ratings was calculated using MATLAB (MathWorks,
Natick, Massachusetts, United States). The loose majority voting was
calculated based on (Ballabio et al., 2019). Fleiss’ kappa was
calculated using the SPSS software (IBM, Armonk, New York,
United States).

b) We conducted a supervised classification task to discriminate
between real (all test set samples) and synthetic samples equal in size
to the test set. To achieve this, we employed a k-nearest neighbour
classifier with k = 10. The other parameters were set to the default
scikit-learn parameters (Pedregosa et al., 2011). To gauge the
effectiveness of the classifier in distinguishing between the two
data types, we leveraged the cross-validation accuracy score
derived from a 5-fold cross-validation procedure.

c) For further evaluation of the synthetic data based on (Bicer
et al., 2022) the statistical difference between the synthetic and real
data for each vertebrae in the anatomical plane were compared
employing a non-parametric 1D two-tailed unpaired t-test (α =
0.05) using the spm1d package (Pataky et al., 2013) in MATLAB.
Hence, in the actual dataset, a single sample was randomly chosen
for each subject. A synthetic dataset of equal size (n = 338) was
created by randomly selecting synthetic samples generated during
the cross-validation folds.

2.5 Use case evaluation AE

For present studies that use case evaluation, the primary
emphasis should be dimensionality reduction. We do not focus
on the generative capabilities or probabilistic modeling offered by
VAEs. Our objective is to establish a deterministic mapping from the
input data to a latent representation, ensuring that similar input data
points are consistently mapped to similar points in the latent space

without introducing any randomness. To satisfy these criteria, we
chose to utilize an AE because it does not introduce a probabilistic
element that could result in variations within the latent-space
representations. Second, AEs are simpler to implement and incur
less computational overhead. Unlike VAEs, AEs do not require
complex probabilistic modeling or variational inference techniques.

We evaluated the potential usefulness of artificially created
posture data using the VAE training of the AE in three
different scenarios:

• Utilizing only the unaugmented data as training data, referred
to as RTD (100% real training data).

• Employing the real data combined with synthetic data in equal
proportions in the training dataset, denoted as RTSD (50%
real, 50% synthetic).

• Expanding the real data with synthetic data three times its size,
labelled as RT3SD (25% real, 75% synthetic).

For augmented data generation, we randomly selected one
trained VAE model that resulted from the cross-validation
process and created synthetic data of the respective sizes, as
described in the previous section.

The AE was trained during grouped k-fold cross-validation,
similar to the training of the VAE (k = 5), to assess how well the
AE could generalize its learned representations to new,
previously unseen subjects. Scaling was applied based on each
training set (without synthetic data) using StandardScaler from
Scikit-learn.

Similar to VAE, a grid hyperparameter search guided by the
validation set accuracy using unaugmented data was performed. The
latent dimension was set to be equal to that of the VAE, and the
number of hidden layers was set to three. The hidden layer sizes (25,
50, 100, 250, and 500) of the encoder and decoder, batch sizes (32,

FIGURE 4
Visual comparison of 50 exemplary real (black line) and 50 exemplary synthetic (red line) data samples. Data are rescaled to original feature space.
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64, and 128), and learning rates (0.01, 0.001, and 0.0001) were
varied. Early stopping was integrated into the training procedure,
which involved monitoring the validation loss and restoring the best
weights when necessary, with a patience setting of 10 epochs and a
maximum of 1,000 epochs. This approach led to the final deep AE
configuration as follows:

The model was structured with an encoder section featuring
three dense layers (500, 250, and 50 units in the first, second, and
third layers, respectively), which collectively reduced the input data
into a 15-dimensional latent space. This was followed by a
symmetric decoder section consisting of three corresponding
dense layers. All of these layers utilize ReLU activation functions,
except for the final layer of the encoder and decoder, which employs
a linear activation function. To train the AE, we employed the MSE
loss function in combination with the Adam optimizer (learning
rate = 0.001) and a batch size of 64.

Finally, we explored the potential for reducing the latent dimension
while maintaining the same reconstruction accuracy as in the
unaugmented data by augmenting the training data while preserving
other hyperparameters. This exploration was guided by a manual
search procedure that considered the accuracy of the validation set.

2.6 Statistics and further calculations

Modeling was implemented using the TensorFlow (Abadi et al.,
2016) and Keras (Chollet, 2015) frameworks. Visualization was
performed employing matplotlib (Hunter, 2007). Visual
exploration of the latent space was performed with Uniform
Manifold Approximation and Projection for Dimension
Reduction (UMAP) (McInnes et al., 2018).

3 Results

3.1 VAE and synthetic data evaluation

The reconstruction errors of the trained VAE are listed in
Table 2. Subsequently, the trained VAE was employed to
generate synthetic data. Both generated synthetic data samples as
well as real posture data samples are visually presented and
compared alongside each other in Figure 4. Notably, there were
no discernible systematic differences between the real and synthetic
data when viewed visually. This was also statistically confirmed by
the SPM, which showed that for no vertebrae, the difference between
the real and synthetic data was significant (Figure 5).

The results of the ML and expert-based evaluations assessing the
separability of real and synthetically generated posture data using
the VAE are presented in Table 3. Both the ML classifier and human
experts struggled to accurately distinguish between synthetic and
real data, with experts exhibiting a notably poorer performance than
the ML classifier.

The first rater’s accuracy was 52.00%, the second one achieved
51.00%, and the third rater rated 53.50% of all cases correctly. The
interrater reliability is calculated at κ = .073 indicating that only
slight agreement between the raters (Landis and Koch, 1977). Loose
majority vote (50%) shows data was more often rated as real (real =
307, synthetic = 293).T
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3.2 Use case evaluation AE

The reconstruction errors for the AE and the real and
augmented datasets are listed in Table 2. An evident
enhancement of more than five times in the accuracy of the test
set reconstruction becomes strikingly apparent when the training
data are expanded with synthetic data using the VAE. This
improvement was particularly prominent when using synthetic
data of equal proportions in training (RTSD). Extending the
original data to three times its size (RT3SD) only slightly reduced
the test-set reconstruction error.

The impact of this augmentation on the reconstruction quality
becomes apparent when visually comparing the performance of the
AE with and without the inclusion of synthetic data. This
comparison demonstrates the superior reconstruction with the
augmented dataset (see Figure 6).

Explorative reduction of the latent dimension from 15 to seven
while keeping the other hyperparameters leads to a slightly better
reconstruction performance of the AE while training with the
augmented data compared to training only on the unaugmented
data with a latent space of 15. In contrast, when using only the
unaugmented data RTD with three latent dimensions, the
performance deteriorated significantly.

Visualization exploration of the latent space using UMAP
(McInnes et al., 2018) (Figure 7) shows no clearly visible clusters

and no clear grouping of the datasets used for the study (healthy,
back pain, spinal fusion, osteoarthritis).

4 Discussion

This study addresses a critical issue in the field of biomechanics:
scarcity of data for the development of ML models. Our exploration
of the use of generative AI to generate synthetic posture data offers
promising insights into how limited data challenges can be mitigated
and how biomechanical ML can be enhanced.

The promising results regarding loss reduction, as well as the low
MSE values for data reconstruction, indicate the VAE’s ability to
capture the underlying features of the data distribution and show
that it is generally possible to develop a VAE model on posture data.
Our results align with those of recent biomechanical studies that
have successfully applied Variational VAEs to capture essential data
distribution features (Huang and Zhang, 2023; Kneifl et al., 2023).

Addressing the quality of synthetic data is of pivotal concern when it
is applied toML tasks. The synthetic data closelymirror the characteristics
of the real data (Sharifi Renani et al., 2021). However, evaluating the
quality of the synthetic data in the absence of a definitive benchmark
dataset is challenging. Although various quantitative metrics have been
suggested (Zhou et al., 2019), their applicability in the biomechanical
context remains limited (Bicer et al., 2022). To overcome this challenge,

FIGURE 5
SPM results displayed for each anatomical plane. The blue line and area each represent the mean and SD of the real data, while the red line
corresponds to synthetic data. The red dotted lines indicate the critical t-values, signifying the absence of significant differences in-between. Additionally,
the black line depicts the t-values observed for each vertebra.
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we adopted a comprehensive evaluation approach for synthetic data,
encompassing both objective assessments through ML classification and
SPM and subjective evaluations through expert ratings.

Visually, the synthetic data closely resemble the real data. On a
statistical basis, employing SPM, no discernible differences were
detected between the real and synthetic data. Moreover, when
evaluated by both ML classifiers and domain experts, distinguishing
between real and synthetically generated posture data proved highly
challenging. The experts exhibited minimal-to-negligible consensus,
underscoring the inherent challenges of such assessments. This
multifaceted evaluation collectively indicates that the synthetic data
generated by the VAE exhibit a high level of quality and maintain
consistency with the real-world posture data. Consequently, it can be

concluded that the proposed VAE is highly effective for generating
synthetic posture data that accurately emulate real data.

Incorporating synthetically generated posture data into the ML
process, here with the use case example of an AE, yielded notable
improvements in training and test set reconstruction accuracy. This
is in line with several studies that demonstrated that AE benefits
from larger datasets (Zhao et al., 2015). When incorporating
synthetic data, a remarkable improvement in the accuracy of the
test set reconstruction became evident, with a more than seven-fold
reduction in the test set MSE compared with using unaugmented
data for training. These results suggest that augmenting the training
data for training an AE with synthetic examples by means of a VAE
not only enhances the model’s ability to reconstruct the data it was
trained on but also improves its generalization to unseen test data,
which has also been reported in other works (Wan et al., 2017;
Kornish et al., 2018).

It is important to note that alternative approaches to data
augmentation have the potential to enhance model performance when
dealing with limited data. For instance, transfer learning, an ML
technique, allows a model to leverage the knowledge gained from a
previous task to enhance its generalizability to a new task. Transfer
learning compensates for the scarcity of labeled data by transferring
knowledge from other well-labeled data sources. To address the shortage
of abnormal gait data, researchers have (Pandit et al., 2019; Martinez and
Leon, 2020) employed various neural networks pretrained on extensive

TABLE 3 Separability as classification results or real and synthetic posture data comparing experts and human performance.

Accuracy ML evaluation Human experts’ evaluation

66.53% ± 2.72% 52.17% (κ = .073)

Actual real Actual synthetic Actual real Actual synthetic

Confusion Matrix Predicted real 562 234 160 147

Predicted synthetic 431 759 140 153

FIGURE 6
Comparison between actual (represented by black lines with
markers) and reconstructed data. The blue lines show reconstructions
using solely the original training data, while the orange lines denote
reconstructions based on training data augmented by synthetic
data (RTSD) generated through the VAE for exemplary four subjects
Data is rescaled to original feature space.

FIGURE 7
Latent space visualization using UMAP (McInnes et al., 2018) for a
latent dimension of 15 and training using the augmented data RT3SD.
The color code represents the class membership according to the
datasets used (see Table 1).
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datasets. One approach of interest could involve combining transfer
learning with subsequent training on augmented data.

Visual exploration of the latent space revealed a notable
absence of distinct clusters and clear groupings among the
datasets used in this study, encompassing postures categorized
as healthy and those associated with back pain, spinal fusion, and
osteoarthritis. This finding underlines the challenges in
discriminating between healthy and pathological postures, a
hurdle that previous research has highlighted when employing
ML classifiers without the benefit of feature learning techniques
(Dindorf et al., 2021b). Considering these challenges, the findings
of this study are comprehensible and contribute to the current
state of research by demonstrating that even the application of
feature learning through an AE does not yield a discernible
enhancement in discriminability.

Notably, our VAE was not trained separately for each class for the
aforementioned reasons, which may have resulted in a mixed latent
space in which class-specific information was not well separated.
Consequently, class-specific discriminative characteristics may not be
as pronounced in the synthetic data, potentially impeding the formation
of discernible clusters. Future research should consider including
dynamic movement data from the spine as a promising direction.
The dynamic aspects of posture and movement could potentially offer
more distinctive class differences, potentially facilitating the
identification of clusters; hence, there is significant inter-subject
variability in spine movement, for example, during gait (Prost et al.,
2021). In the context of distinguishing between biological sexes, recent
findings have indicated a significant improvement in classification
accuracy when utilizing dynamic data as opposed to relying solely
on static data (Dindorf et al., 2021c). This highlights the potential of
using dynamic data to enhance the accuracy of classification models for
specific applications.

Although our research has yielded promising insights into the
use of generative AI to address data scarcity in biomechanical
ML, it is crucial to acknowledge several limitations that should be
considered when interpreting the results and planning future
studies. Despite the favorable results in distinguishing synthetic
data from real data, it is important to mention that there may still
be subtle differences between the two. Synthetic data, although
visually and quantitatively similar, may not capture all of the
intricacies of real-world biomechanical postures, potentially
leading to limitations in specific applications where extreme
precision is required.

This study primarily relied on a specific dataset obtained from a
particular group of subjects via surface topography. The
effectiveness of the generative AI approach may vary when
applied to different biomechanical datasets or to data collected
using diverse measurement techniques. The ability of the model
to be generalized to broader and more diverse populations requires
further investigation.

Although our results demonstrate the benefits of augmenting the
training dataset with synthetic data, the optimal balance between real
and synthetic data remains an open question. The study could only show
that with the current AE expanding the real data with synthetic data to
three times their size (RT3SD) slightly improved the reconstruction
performance compared to real data combined with synthetic data of
equal proportions (RTSD). Further research is required to explore the
potential impacts of varying proportions of synthetic data.

The use of synthetic data in healthcare raises ethical concerns.
On one hand, it mitigates privacy risks by minimizing the demand
for additional patient data, thereby reducing the risk of data
breaches. However, synthetic data may not fully represent the
complexities of actual patient data, potentially leading to biased
or inaccurate outcomes. The extent to which accountability applies,
in this case, must be discussed in a context-specific manner.

Future directions may involve extending the application of
generative AI to other biomechanical domains such as dynamic
spinal data. An increase in the volume of accessible posture data has
the potential to significantly enhance the applicability of GANs.
Therefore, a future comparative analysis between GANs and the
approach presented in this study, if feasible, is considered important.
Additionally, investigating the impact of synthetic data on various ML
architectures or distinct tasks, such as regression or classification, is a
promising area of research. In the context of gait data, deep generative
models combined with differentiable physics engines have been
proposed to ensure that the generated data are in line with physical
laws (physically informedmodeling) (Takeishi and Kalousis, 2021). The
adoption of this methodology in the context of posture data could
ensure the realism of the generated data and should be evaluated in
future studies. Furthermore, an intriguing direction for future research
could be the exploration of an extended VAE that conditions data
generation or reconstruction on additional information, such as class
labels, or other attributes, such as biological sex. This exploration is
particularly relevant as existing studies highlight the presence of
biological sex differences in spinal data (Yukawa et al., 2018; Mohan
and Huynh, 2019; Ludwig et al., 2023). These models, known as
Conditional Variational Autoencoders (CVAEs) (Zhao T. et al.,
2017), can accentuate the class membership, potentially leading to
the generation ofmore realistic posture data by incorporating additional
subject characteristics. To the best of our knowledge, this application
has not been explored in the biomechanical domain.

5 Conclusion

In summary, our study underscores the potential of generative
AI, specifically VAEs, in addressing data-scarcity challenges within
the biomechanics field. By generating synthetic posture data that
closely mirror real-world observations, our study presents a viable
approach path for expanding datasets, strengthening model
performance, and advancing biomechanical applications.
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