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Polyester plastics are widely used in daily life, but also cause a large amount of
waste. Degradation by microbial enzymes is the most promising way for the
biobased upcycling of the wastes. However, there is still a shortage of high-
performance enzymes, and more efficient polyester hydrolases need to be
developed. Here we identified two polyester hydrolases, jmPE13 and jmPE14,
from a previously isolated strain Pseudomonas sp. JM16B3. The proteins were
recombinantly expressed and purified in E. coli, and their enzymatic properties
were characterized. JmPE13 and jmPE14 showed hydrolytic activity towards
polyethylene terephthalate (PET) and Poly (butylene adipate-co-terephthalate)
(PBAT) atmedium temperatures. The enzyme activity and stability of jmPE13were
further improved to 3- and 1.5-fold, respectively, by rational design. The results of
our research can be helpful for further engineering of more efficient polyester
plastic hydrolases and their industrial applications.
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1 Introduction

Polyester plastics are widely used in our daily life due to their good properties such as
durability, waterproofing, and transparency. At the same time, their wastes have also caused
serious environmental pollution (MacLeod et al., 2021). Polyethylene terephthalate (PET)
consists of ethylene glycol (EG) and terephthalate (TPA) and is the most popular plastic
used in the packaging of beverages and food, as well as medical devices and textiles.
Poly(butylene adipate-co-terephthalate) (PBAT) is composed of TPA, adipic acid, and 1, 4-
butanediol, and is widely used in agricultural mulch films and plastic bags. Although these
polyesters are considered biodegradable, the natural degradation rate of them can be very
slow (Jimenez et al., 2022). Microorganisms and their secreted enzymes can degrade and
transform plastic waste, making bio-upcycling the most promising approach for waste
plastic treatment. To bio-upcycle plastics efficiently, it is still necessary to discover the
microorganisms and enzymes that are capable of degrading plastics and modify them to
improve their catalytic efficiency (Ali et al., 2021; Tamoor et al., 2021).
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Although the appearance of plastics is not long ago, some
enzymes with promiscuous activity derived from soil or marine
microorganisms as well as metagenomes have been found to
hydrolyze the ester bonds of plastics such as PET (Zhu et al.,
2022; Qiu et al., 2023; Tournier et al., 2023). The enzymes with
broad substrate spectrum, including lipases, esterases, and cutinases,
have been reported to depolymerize PET mainly producing mono-
2-hydroxyethyl terephthalic acids (MHET). Among them, cutinases
generally have good thermostability and catalyze PET degradation at
a temperature of about 50°C (Sui et al., 2023). In 2016, IsPETase and
IsMHETase from Ideonella sakaiensis 201-F6 were found to act
synergistically to hydrolyze PET to TPA under mesophilic
conditions (Yoshida et al., 2016; Palm et al., 2019). PBAT shares
some structural similarities with PET, and some enzymes have both
PET and PBAT hydrolytic activities such as Ples from the marine
microbial consortium I1 (Li et al., 2022; Meyer Cifuentes et al., 2022)
and TfCut from Thermobifida fusca (Chen et al., 2008; Roth et al.,
2014; Yang et al., 2023). Some other enzymes have only been
reported to have PBAT hydrolytic activity, such as PpEst from
Pseudomonas pseudoalcaligenes was reported to degrade PBAT to
terephthalatebutanediol monoester (BT) (Wallace et al., 2017). The
discovery of these enzyme activities provides a material and
theoretical basis for biocatalysis of plastic degradation.

Due to the unsatisfactory activity and stability of native enzymes,
enzyme engineering efforts have been made to modify these hydrolases
to improve their catalytic properties (Samak et al., 2020; Lu et al., 2022;
Wei et al., 2022; Blazquez-Sanchez et al., 2023; Li et al., 2023; Liu et al.,
2023; Shi et al., 2023). For example, the mutant LCCICCG obtained by
combinatorial site-directed mutagenesis of LCC, a leaf-branch compost
metagenome-derived cutinase, can depolymerize PET by 90% in 10 h at
72°C (Tournier et al., 2020). DuraPETase is a mutant of IsPETase that
has been engineered by the computational redesign strategy (GRAPE)
and has increased its activity by 300 times at mild temperatures (Cui
et al., 2021). Yang et al. engineered TfCut through a double mutation
strategy to render a more flexible substrate-binding pocket, enabling it to
completely hydrolyze PBAT into TPA within 48 h (Yang et al., 2023). In
addition, techniques such as cell surface display and nano-
immobilization have also been used to improve the catalytic
performance of PETases (Jia et al., 2021; Jia et al., 2022). Great
progress has been made in the research of plastic-degrading enzymes,
but it is still not enough to meet the needs of industrial applications.
Discovering more polyester hydrolases and improving their properties
will further contribute to polyester plastic upcycling (Xu et al., 2023).

In this study, we identified two potential polyester hydrolases,
jmPE13 and jmPE14, from a previously isolated strain Pseudomonas
sp. JM16B3. The proteins were recombinantly expressed and purified
in E. coli, and their enzymatic properties were characterized.
JmPE13 and jmPE14 showed hydrolytic activity toward PET and
PBAT at medium temperatures. The enzyme activity and stability of
jmPE13 were further improved by rational design.

2 Materials and methods

2.1 Materials

Polyethylene terephthalate (PET) and polybutylene adipate co-
terephthalate (PBAT) were purchased from Macklin (Shanghai,

China). Bis (2-hydroxyethyl) terephthalate (BHET) was purchased
from Aladdin (Shanghai, China). Terephthalatebutanediol monoester
(BT) was purchased from Aikon Biopharmaceutical R&D Co. Ltd
(Jiangsu, China). Mono-(2-hydroxyethyl) terephthalic acid (MHET)
was synthesized according to the protocol by Palm et al. (Palm et al.,
2019). PET and PBAT semicrystalline films andmicroplastics samples
were prepared according to the previously reported methods (Cui
et al., 2021).

2.2 Cloning, expression, and purification
of enzymes

The full-length gene of jmPE13 and jmPE14 without the signal
peptide sequence was codon-optimized (Supplementary Table S1),
synthesized, and cloned into the pET-32b expression vector, by
GENEWIZ (Suzhou, China). The mutants were generated by using
the site-directed mutagenesis on wild-type jmPE13. The site-
directed mutation of jmPE13 was carried out by whole-plasmid
PCR using the primers listed in Table 1. The PCR products were
digested with DpnI to remove the parent plasmid and purified with a
PCR purification kit. The construct was transformed into E. coli
BL21 (DE3) to express the protein. LB liquid medium containing
ampicillin (100 μg/mL) was inoculated with a starter culture.
Cultures were grown at 37°C until the OD600 was approximately
0.6. Isopropyl-beta-D-thiogalactopyranoside (IPTG, 0.1 mM final
concentration) was added to induce protein expression. Then they
were incubated overnight at 16°C with shaking at 200 rpm. Cells
were harvested by centrifugation for 10 min at 8,000 g at 4°C, and
then suspended in 50 mM Tris-HCl (pH 8.0). After sonication, the
cell suspension was centrifuged (4°C) at 12,000 g for 20 min, and the
supernatant was subjected to nickel-chelating chromatography.

2.3 Enzyme activity assays

When using p-nitrophenol caprylate (pNP-C8) as substrate, the
reaction system contained 50 mMTris-HCl buffer at pH 8.0, 10 mM
pNP-C8, and 0.2 mg/mL enzyme protein. The release of
p-nitrophenol was recorded by measuring the absorbance at
405 nm in a Multiskan GO microplate reader at 37°C. When
using PET or PBAT semicrystalline microplastics as substrate,
the reaction system contained 50 mM Tris-HCl buffer at pH 8.0,
1 mg/mL microplastics, and 0.2 mg/mL enzyme protein. The
mixture was incubated at 30°C with shaking at 1,000 rpm and the
products were analyzed by high-performance liquid
chromatography (HPLC). All experiments were performed three
times and corrected for the subtraction of substrate self-
decomposition, that is, buffer without enzyme protein as a control.

2.4 The effect of pH and temperature on
enzyme activity

The effect of pH and temperature on the activity of the enzyme
(0.2 mg/mL) was tested using pNP-C8 (10 mM) as substrate. The
effect of pH on enzyme activity was determined by measuring the
activity at a pH ranging from 4.5 to 9.2. 50 mM citrate-sodium citrate
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buffer was used for pH 4.0-6.6, 50 mM phosphate buffer was used for
pH 6.6-7.8, and 50 mM Tris-HCl buffer was used for pH 7.8-9.2. The
effect of temperature on enzyme activity was examined across the
range of 25°C–65°C, in 50 mM Tris-HCl buffer at pH 8.0.

2.5 Thermal stability

Thermal inactivation of the enzyme proteins was examined at
40°C. The purified proteins (1 mg/mL in 50 mM Tris-HCl buffer at
pH 8.0) were incubated at 40°C and sampled at different intervals
and then cooled on ice for 10min. Their residual enzyme activities
were assayed at 37°C using pNP-C8 as substrate as described above.

2.6 Enzyme kinetic assays

Kinetic parameters of the enzymes for BHET were determined
in 50 mM Tris-HCl buffer at pH 8.0 containing 0.03–2.4 mM of
BHET and 0.2 mg/mL enzyme protein. The mixture was incubated
at 37°C for 2 h and the products were analyzed by HPLC. The kinetic
constants were obtained through nonlinear regression based on the
Michaelis-Menten equation.

2.7 HPLC

HPLC was used to analyze the products according to the
methods described previously (Tournier et al., 2020) with some
modifications. Briefly, 150 μL of the sample was mixed with 150 μL
of methanol and 6.5 μL of 6 N HCl and filtered through a 0.22 μm
filter before running HPLC. Measurement of the products was
performed using an Agilent 1,260 Infinity II equipped with an
InertSustain C18 column (4.6 × 250 mm, 5 μm) with a detection
wavelength of 240 nm. The column oven was held at 25°C. The
mobile phase was 1 mMH2SO4 in water with a gradient of methanol
(30%–90%) at 1 mL·min−1.

2.8 Scanning electron microscope
(SEM) analysis

The post-consumer PET bottles were cut into 6 mm slices and
incubated with 0.2 mg/mL of enzyme protein or protein-free 50 mM
Tris-HCl buffer as treated and control groups, respectively. After

incubating at 30°C for 7 days, the slices were dried in air and coated
using gold. The surfaces of the slices were observed under SEM
(Hitachi S-3400N) at different magnifications.

2.9 Sequence alignment and
phylogenetic analysis

The protein sequences of the characterized PET-hydrolases were
obtained from the UniProt database (https://www.uniprot.org/
uniprotkb/). The amino acid sequences were conducted with
multiple sequence alignment using the Clustal Omega web server
(https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers and Higgins,
2018). The results were rendered by ESPript 3.0 (Gouet et al.,
1999). The neighbor-joining phylogenetic tree was created by
MEGA-X (Kumar et al., 2018), and the figure was generated by
the iTOLweb server (https://itol.embl.de/) (Letunic and Bork, 2007).

2.10 Homology modeling, molecular
docking, andmolecular dynamic simulations

The homology model structures of jmPE13 and jmPE14 were
created by the SWISS-MODEL web server (https://swissmodel.
expasy.org/) (Waterhouse et al., 2018) using the crystal structure
of PET2 mutant (PDB entry: 7ECB) (Nakamura et al., 2021) as the
template. Pymol software (The PyMOLMolecular Graphics System,
Version 1.8 Schrödinger, LLC, De Lano Scientific, San Carlos, CA,
United States of America) was used to view the structure and
generate figures.

AutoDock 4.1 (The Scripps Research Institute, La Jolla, CA,
United States) (Morris et al., 2009) was used to predict the binding
modes of jmPE13 and jmPE14 with BHET. AutoDockTools 1.5.6 was
used to prepare the proteins and ligands for docking procedure.
Kollman charges and polar hydrogens were added. AutoGrid was
used to generate the grid maps. The grid dimensions were 60 points
in each dimension separated by 0.375 Å. The files were generated in
PDBQT format. For the ligand, random starting positions and
orientations were used. The Genetic Algorithm was used with
2,500,000 energy evaluations and a population of 300 individuals;
100 runs were carried out.

The molecular dynamics (MD) simulations were performed
using Gromacs v4.5.5 (Pronk et al., 2013), with the Gromacs 96
(54a7) force field. The model structures of jmPE13 and the
mutants were solvated with a three-point water model in a cubic

TABLE 1 Primers for constructing the mutants.

Mutant Primers Template

M1 5′-AGCAACAGCAGCACGAGCGCCCTGAGGAACAAAATTGATAGCACCCGC-3′
5′-AATTTTGTTCCTCAGGGCGCTCGTGCTGCTGTTGCTCTGACTAATCAG-3′

jmPE13

M2 5′-GATTATCTGATTAGTCAGAGCACGAGCGCCCTGAGGAAC-3′
5′-CCTCAGGGCGCTCGTGCTCTGACTAATCAGATAATCCAG-3′

M1

M3 5′-ATTAGTCAGTGCAACAGCCGCACGAGCCCGCTGTATAACAAATGCGAT-3′
5′-GGTGCTATCGCATTTGTTATACAGCGGGCTCGTGCGGCTGTTGCACTG-3′

jmPE13

M4 5′-AGCAACAGCAGCACGAGCCCGCTGTATAACAAAATTGATAGCACCCGC-3′
5′-AATTTTGTTATACAGCGGGCTCGTGCTGCTGTTGCTCTGACTAATCAG-3′

jmPE13
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box. Na+ and Cl− ions were added to neutralize the charges in the
system. Then, a steepest descent energy minimization was
performed, followed by a 100 ps NVT and a 100 ps NPT
equilibration at 300 K, and 10 ns MD simulations were
performed at 300 K.

3 Results

3.1 Discovery of two potential plastic-
degrading polyesterases

We previously isolated a bacterium strain Pseudomonas
sp. JM16B3 from aquaculture water. To investigate the plastic-
degrading ability of JM16B3, we treated semicrystalline PET and
PBAT films with the fermentation supernatant of this strain. SEM
observation showed that after 72 h of treatment at 30℃, both kinds
of plastic films were damaged to a certain extent (Supplementary
Figure S1), suggesting that there may be extracellular enzymes with
polyester degrading activity. To discover potential polyester
hydrolases, we blasted the genome of JM16B3 with the protein
sequence of IsPETase. Two proteins were found to share 50% and
51% sequence identity with IsPETase and were named jmPE13 and
jmPE14, respectively.

There are 298 and 296 amino acids in jmPE13 and jmPE14,
respectively, containing a signal peptide (amino acids 1-23) and a
typical α/β hydrolase fold domain (Figure 1A). The protein
sequences of jmPE13 and jmPE14 share 88% identity.
Phylogenetic analysis showed that both jmPE13 and
jmPE14 belong to type II PET-hydrolases (Figure 1B). Of the
characterized enzymes, they showed the highest sequence
identities to type IIa PET-hydrolases (53%–61%), while their
protein sequence identities to type IIb and type I PET-hydrolases
were 52%–53% and 46%–49%, respectively (Supplementary Table
S2). Multiple sequence alignment showed that similar to the
characterized type II PET-hydrolases, the loops after α2 and after
β8 in jmPE13 and jmPE14 are longer than those of type I PET-
hydrolases (Figure 2). JmPE13 and jmPE14 have the typical catalytic
triads of the α/β hydrolase superfamily, which are S165-H243-
D211 and S163-H241-D209, respectively.

3.2 Structural characteristics of
jmPE13 and jmPE14

To analyze their structural characteristics, three-dimensional
structural models of jmPE13 and jmPE14 were constructed using
the crystal structure of PET2 (Nakamura et al., 2021) as a template.

FIGURE 1
Domain composition and phylogenetic analysis of jmPE13 and jmPE14. (A) Schematic representation of the domain composition of jmPE13 and
jmPE14. Signal peptide and α/β hydrolase fold domains are colored yellow and green, respectively. (B) Phylogenetic analysis of jmPE13, jmPE14, and the
known PET-hydrolases. The accession numbers and the names of the selected PET-hydrolases are labeled.
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The models showed an α/β hydrolase fold with a nine-stranded β-
sheet at the center surrounded by seven α-helices (Figure 3A;
Supplementary Figure S2). Two disulfide bonds were formed in
their structures, one near the active center, which is typical for type II
PET-hydrolases, and the other at the C-terminus. A shallow cleft is

formed on the molecular surface near the catalytic center of
jmPE13 and jmPE14, which may be the substrate binding pocket.

To predict the possible binding modes of jmPE13 and jmPE14 to
polyester plastic substrates, we performed molecular docking of the
model structures with the PET model substrate BHET. As shown in

FIGURE 2
Multiple sequence alignment of jmPE13, jmPE14, and the characterized PET-hydrolases. The type I, type IIa, and type IIb enzymes are shown in blue,
red, and orange background, respectively. The catalytic triads are indicated by blue triangles below.
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Figure 3B, BHET could be well accommodated in the substrate-
binding cleft. In the jmPE13-BHET complex, twelve residues (G91,
Y92, L93, P125, W164, S165, M166, Y189, A191, V213, H243, and
F244) formed intermolecular interactions with the substrate through
hydrogen bonds, van der Waals, and Pi-Alkyl (Figure 3C). In
jmPE14-BHET complex, the residues involved in substate-
binding included Y90, Q122, P123, W162, S163, M164, W187,
V211, H241, and F242 (Supplementary Figure S2).

3.3 Biochemical characterization of
jmPE13 and jmPE14

To characterize the enzyme activity and catalytic properties of
jmPE13 and jmPE14, we recombinantly expressed these two
proteins. The genes of jmPE13 and jmPE14 (without the signal
peptide) were cloned into the pET-32b vector and transformed into
E. coli BL21 (DE3) for expression of the proteins. After nickel affinity
chromatography, purified proteins were obtained (Supplementary
Figure S3). To determine their optimal catalytic conditions, we
examined the effects of pH and temperature on the enzyme
activities of jmPE13 and jmPE14. As shown in Figure 4A, B,
their optimal pH was about 7.8–8.0, and the optimal temperature
was about 34°C–37°C. In the range of pH 7.5-8.5 and temperature

30°C–40°C, both jmPE13 and jmPE14 can maintain more than 70%
of the highest enzyme activity. To investigate the thermal stability of
these two enzymes, the enzyme proteins were incubated at 40°C and
the residual activities were examined. The thermal inactivation
curves showed that jmPE13 could maintain more than 70% of
the enzyme activity within 2 h of incubation, then decreased to
50% at about 2.5 h, and almost completely lost the enzyme activity
after incubation for more than 6 h (Figure 4C). The thermal stability
of jmPE14 was slightly lower than that of jmPE13. Although it
maintained more than 80% activity within 1 h, it rapidly dropped to
less than 50% after 1.5 h incubation.

3.4 Polyester hydrolyzing activity of
jmPE13 and jmPE14

To investigate the polyester hydrolyzing activity, purified
proteins of jmPE13 and jmPE14 were incubated with the slices of
post-consumer PET bottles at 30°C for 7 days. The surface
morphology of the PET slices was observed by SEM. Compared
with the buffer control group, the surface of the PET slices was
significantly damaged after being treated with jmPE13 and jmPE14
(Figure 5A). We further tested the hydrolytic activity of jmPE13 and
jmPE14 on PET and its derived oligomer BHET by HPLC. The

FIGURE 3
Structural analysis of jmPE13. (A) The overall model structure of jmPE13. The catalytic triads and the disulfide bonds are labeled and shown in sticks.
(B) Bindingmode of BHET to jmPE13 predicted bymolecular docking. BHET is shown in yellow sticks. (C) 2D diagram of intermolecular interactions in the
complex of jmPE13-BHET.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Zhou et al. 10.3389/fbioe.2024.1349010

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1349010


results showed that after 5 h of incubation at 30°C, jmPE13 could
completely convert BHET to MHET, while jmPE14 was slightly less
active and a small amount of BHET remained (Figure 5B). For
semicrystalline PET microplastics, the reaction was performed at
30°C for 90 h. JmPE13 and jmPE14 hydrolyzed PET to produce
BHET and MHET (Figure 5C). Since some PET hydrolases have
been reported to hydrolyze PBAT, we also examined the hydrolyzing
activity of jmPE13 and jmPE14 on PBAT. The results showed that,
after incubation at 30°C for 48 h, both enzymes could hydrolyze
PBAT to produce BT (Figure 5D). These results indicate that
jmPE13 and jmPE14 have hydrolytic activity on PET and PBAT
polyesters.

3.5 Enzyme engineering of jmPE13

Although jmPE13 and jmPE14 can hydrolyze polyester
plastics, their hydrolysis activity and thermal stability are still
very low (Figures 4, 7). To find sites for modification to improve its
enzyme activity, we performed a structural alignment between
jmPE13 and the known PET hydrolase mutant LCCICCG (PDB
entry: 6THT) (Tournier et al., 2020). As shown in Figure 6A, a
significant difference is that the α2 of jmPE13 is followed by a
longer loop, while the corresponding position of LCCICCG is an α-
helix, which is consistent with the results of multiple sequence
alignment (Figure 2). We targeted this loop and designed four

FIGURE 4
Biochemical characterization of jmPE13 and jmPE14. (A) pH-activity curves of jmPE13 and jmPE14. The citrate-sodium citrate buffer, phosphate
buffer, and Tris-HCl buffer were used in the pH range 4.0–6.6, 6.6–7.8, and 7.8-9.2, respectively. (B) Temperature-activity curves of jmPE13 and jmPE14.
(C) Thermal inactivation curves of jmPE13 and jmPE14 at 40°C. Green, jmPE13; blue, jmPE14.

FIGURE 5
Polyester hydrolytic activity of jmPE13 and jmPE14. (A) SEM observation of the post-consumer PET bottles treated by jmPE13 and jmPE14 at 30°C for
7 days. (B–D) HPLC analysis of BHET-, PET-, and PBAT-hydrolytic activity of jmPE13 and jmPE14.
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mutants referring to the structure of LCCICCG (Figure 6B). In
mutants M1 (R146S/P149A/Y151R) and M4 (R146S), the
selected sites were mutated to the corresponding residues of
LCCICCG, and a truncated mutant M2 (ΔS143N144S145/P149A/
Y151R) was constructed based on M1. In addition, we tried to
introduce a disulfide bond to reinforce this loop (M3: S143C/
I154C). All mutants except M1 were solubly expressed in E. coli.
(Supplementary Figure S3).

We examined the enzyme activity of the mutants, but
unfortunately, both M2 and M3 showed varying degrees of
decreased hydrolytic activity for PET and PBAT compared to
jmPE13 (Figures 7A, B). M3 was almost completely inactive on
PET. However, M4 showed a significant increase in hydrolytic
activity for both polyesters. Moreover, this increase in activity
became more pronounced when the reaction time was prolonged.
After the reaction at 30°C for 90 h, the activity of M4 against both
PET and PBAT reached about 3 times that of jmPE13 (Figures
7C, D). The improvement of PET hydrolytic activity of M4 was
mainly due to the increase of BHET products, while the
production of MHET was comparable to that of jmPE13. The
enzymatic kinetic parameters of jmPE13 and M4 on BHET were
determined. The maximum reaction rate (Vmax) of M4 (5.22 ±
0.17 μM/min) was higher than that of jmPE13 (4.09 ± 0.5 μM/
min); however, the Km value of M4 (0.58 ± 0.05 mM) for BHET
was also higher than that of jmPE13 (0.39 ± 0.07 mM), indicating

that the increased activity of the mutant was accompanied by a
decrease in its affinity for this small substrate. To investigate the
thermostability of the mutants, each enzyme protein was
incubated at 40°C for a certain time and their residual activity
against PBAT was examined (Figure 7E; Table 2). The results
showed no significant change in the thermal stability of M2 and
M3 relative to the wild-type, with a slight increase and decrease,
respectively. However, the thermal stability of M4 has been
significantly improved, and its thermal inactivation half-life at
40°C is about 1.5 h longer than that of jmPE13, which is about
1.5 times that of jmPE13.

To understand the molecular basis of the enhanced stability
and enzymatic activity of M4 by the R146S single point
mutation, we performed MD simulations of jmPE13 and M4.
The results showed that this mutation resulted in a decrease in
root mean square fluctuation (RMSF) of a loop near the catalytic
center and a C-terminal loop, indicating a decrease in the
flexibility of these two regions (Figure 8A). The overall
rigidity of the molecule was also increased as indicated by the
change in root mean square deviation (RMSD) (Figure 8B). We
speculate that the increased activity of M4 may also be due to its
improved stability, which makes its activity decline more slowly
during the reaction period. This is also consistent with the
phenomenon that the increase in activity is more pronounced
with prolonged reaction time.

FIGURE 6
Design of the mutants. (A) Superposition of the model structure of jmPE13 (green) and the structure of LCCICCG (pink). The loops after α2 are circled
and shown in the enlarged diagram. (B) Mutations introduced in the individual mutants. The mutated sites are labeled and shown in sticks.
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4 Discussion

In this study, we discovered and biochemically characterized two
polyester hydrolases derived from our previously isolated
Pseudomonas strain. Both jmPE13 and jmPE14 exhibited the
ability to catalyze the hydrolysis of post-consumer PET plastic
bottles, amorphous PET, the PET derivative BHET, and PBAT at
moderate temperatures. For each of these polyester substrates,
jmPE13 showed higher activity than jmPE14. This phenomenon
of coexistent tandem enzymes with different activities in the same
strain may be ubiquitous in nature. For example, the two cutinases
Thc_Cut1 and Thc_Cut2 from Thermobifida cellulosilytica differ in
only 18 amino acids. However, the difference of amino acids near the
active center leads to the difference of substrate binding cleft
structure, and then leads to the difference of their hydrolysis

activities to long-chain aliphatic substrates and PET (Arnling
Baath et al., 2022). There are 20 differential amino acids between
jmPE13 and jmPE14, most of which are distributed on the enzyme
surface (Supplementary Figure S4). In particular, residues located
near the active center (Y189 and F193 of jmPE13;W189 and Y191 of
jmPE14), which are the parts constituting the substrate binding
clefts, may affect substrate binding and become the main factor
causing the different activities of the two enzymes. JmPE13 and
jmPE14 hydrolyze PET yielding BHET and MHET, and hydrolyze
PBAT resulting in BT formation. Some enzymes have been reported
to further hydrolyze MHET and BT to TPA with extended reaction
time, such as Ple629 (Meyer Cifuentes et al., 2022). This activity is
absent in jmPE13 and jmPE14, but their hydrolytic activity for PET
and PBAT is relatively higher, suggesting that they may be more
suitable for catalyzing hydrolysis of highly polymeric substrates.

Activity and stability are the most important properties of
industrial enzymes and the major goals of enzyme engineering.
Wemodified jmPE13 by referring to the structure of a representative
enzyme LCCICCG. MD simulations showed that all three designed
mutants improved the overall molecular rigidity (Supplementary
Figure S5). The local structure of the mutated regions of M3 and
M4 did not change significantly, except for the truncated mutation

FIGURE 7
Enzyme activity and thermal stability of the mutants. (A) PET-hydrolytic activity of the enzymes. The reaction mixtures were incubated at 30°C for
24 h, and the produced MHET and BHET were measured by HPLC. (B) The PBAT-hydrolytic activity of the enzymes characterized by measuring the
produced BT. The reaction mixtures were incubated at 30°C for 24 h. (C,D) are the activity of jmPE13 and M4 for PET and PBAT, respectively, reacting at
30°C for 90 h. (E) Thermal inactivation of the enzymes at 40°C. Proteins were incubated at 40°C and sampled at regular intervals to determine
residual activity against PBAT at 30°C.

TABLE 2 Thermodynamic parameters of the enzymes.

Enzymes jmPE13 jmPE14 M2 M3 M4

kinact 0.2396 0.2356 0.2318 0.3323 0.1584

t1/2 at 40°C (h) 2.89 2.94 2.99 2.09 4.37
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that caused the corresponding loop of M2 to become shorter
(Supplementary Figure S5C). However, they all lead to
conformational changes of the distant loops, especially those
located near the active center. The changes of M2 and M3 are
more obvious, the loop near their C-terminus became a helix. And
these larger changes may also be responsible for their decreased
activity. A deeper understanding of the structure-function
relationships of these enzymes in future is needed for better
rational design.

5 Conclusion

In summary, two polyester plastic hydrolases, jmPE13 and
jmPE14, were identified in a Pseudomonas strain. The enzyme
proteins were expressed and purified in E. coli, and their enzyme
properties were characterized. Both jmPE13 and jmPE14 showed
hydrolytic activity towards PET and PBAT polyester plastics.
JmPE13 was further modified by enzyme engineering, and a
mutant M4 with improved enzyme activity and thermal stability
was obtained. The results of this study provide a basis for further
research and molecular design of polyester plastic hydrolases.
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