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Chronic wound management is an intractable medical and social problem,
affecting the health of millions worldwide. Decellularized extracellular matrix
(dECM)-based materials possess remarkable biological properties for tissue
regeneration, which have been used as commercial products for skin
regeneration in clinics. However, the complex external environment and the
longer chronic wound-healing process hinder the application of pure dECM
materials. dECM-based composite materials are constructed to promote the
healing process of different wounds, showing noteworthy functions, such as anti-
microbial activity and suitable degradability. Moreover, fabrication technologies
for designing wound dressings with various forms have expanded the application
of dECM-based composite materials. This review provides a summary of the
recent fabrication technologies for building dECM-based composite materials,
highlighting advances in dECM-based molded hydrogels, electrospun fibers, and
bio-printed scaffolds in managing wounds. The associated challenges and
prospects in the clinical application of dECM-based composite materials for
wound healing are finally discussed.
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Introduction

Skin is the largest organ that acts as a protective barrier from the complex external
environment (Li et al., 2022a). The health of the skin is often affected by various thermal,
mechanical, and chemical hazards. Accordingly, wound management is a problem that
humankind must face (He et al., 2023). Although the body possesses wound-healing ability
by self-regulation with multiple cells, the wound-healing process is significantly affected by
numerous factors (Cui et al., 2022). Bacterial infection, inflammation, and insufficient
wound management may induce chronic wound infection, which frequently occurs in
diabetes, cardiovascular disorders, and elderly patients (Las Heras et al., 2020; Xu et al.,
2022b; Duan et al., 2023). Besides the loss of skin functionality in massive trauma, the scar
formation also brought psychological and social challenges to patients (Fernandes
et al., 2022).

Allogenic/xenogeneic tissue or organs have been used in clinical organ transplantation
and skin tissue regeneration. However, the adverse immune rejection response induced by
antigens of tissue or organs significantly increased the possibility of failure in organ
transplantation (Wong et al., 2021). Fortunately, researchers have developed various
decellularization methods to obtained decellularized extracellular matrix (dECM),
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including physical methods (freeze-thaw cycling and
pressurization), chemical methods (bases and acids, detergents),
and enzymes mediated biological methods (Golebiowska et al.,
2024). During the decellularization process, the immunogenic
cellular components of native tissue are removed, whereas the
extracellular biomacromolecules and other tissue-specific
bioactive molecules in extracellular matrix (ECM) are mostly
preserved (Chen et al., 2023a; Xu et al., 2023). dECM could
accelerate the wound healing process and enhance tissue repair
by multiple cellular processes, including in motivating cell growth
and proliferation, promoting re-epithelization and angiogenesis,
and inhibiting inflammation (Wang et al., 2021). Decellularized
extracellular matrix (dECM) based biomedical products (such as
AlloDerm® and Oasis®) have been used in the clinic as a promising
substitute for regular wound dressings (Mostow et al., 2005; Callcut
et al., 2006).

Although dECM tended to form hydrogels under 37°C to mimic
tissue microenvironment, the unsuitable physicochemical properties
and fast degradation rate of dECM still hinder the application (Chen
et al., 2023b). The combination of natural and synthetic polymers
with dECM could improve the mechanical properties, which has
been used for promoting tissue regeneration (Zhang et al., 2022;
Shen et al., 2023; Shi et al., 2023). Due to the risk of infections,
developing antibacterial and effective dECM-based biomaterials for
promoting wound healing is urgently needed. dECM hybrid
scaffolds such as nanofiber films, sponges, hydrogels, and three-
dimensional (3D) meshes with outstanding performance have been
continuously constructed for tissue regeneration. The multiple
approaches, including electrospinning, molding, and 3D printing,
significantly expand the application of dECM-composite
biomaterials.

In this review, we focused on the combination of dECM-derived
biomaterials with drugs or other biomaterials for skin tissue
engineering. More specifically, we discussed the fabrication
techniques for constructing dECM-composite scaffolds that are

suitable for wound healing. Finally, we highlight the
contemporary challenges and prospects of dECM-composite
biomaterials in skin regeneration applications (Figure 1). This
review aims to provide the comprehension of dECM-based
composite biomaterials, guiding the researchers to choose suitable
fabrication technologies and ultimately promoting the clinical
translation of biomaterial in skin tissue engineering.

Fabrication methods to build dECM-based
composite materials

As mentioned, dECM-based composites have exhibited
numerous outstanding outcomes in promoting skin regeneration.
Therefore, it is crucial to build composite materials with appropriate
morphologic forms, such as nanofiber, films, hydrogel, and 3D
meshes, to manage different types of wounds. In this section, we
have categorized recent literature based on fabrication technologies
(including molding, electrospinning, and 3D printing) to build
dECM-based composite wound dressing.

Molding
After decellularization, solubilized dECM powder could be

manipulated to form a hydrogel using molding process after
adjusting the suitable pH and physiological temperature, which
may be based on the thermal cross-linking of collagen-induced
self-assembly (Pati et al., 2014). Due to their excellent bioactivity,
injectable feasibility, and thermal-sensitive properties, dECM-based
hydrogels have shown attractive advantages in tissue regeneration
(Zhang et al., 2021b). However, their rapid degradation and weak
mechanical properties still pose a major challenge. Designing a
dECM-based hydrogel system with suitable physical and chemical
properties is required for expanding its application in the tissue
regeneration field. For example, Xu et al. mixed gelatin, chitosan,
and dECM to form composite hydrogel (dECM/Gel/CS), showing

FIGURE 1
Fabrication of dECM composite and its use in wound healing application.
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suitable compressive elastic modulus (≥482.17 kPa), excellent
hydrophilicity, and appropriate degradability (Xu et al., 2021).
The dECM/Gel/CS composite showed exceptional
biocompatibility and stable antibacterial activity on Escherichia
coli and Staphylococcus aureus. In another work, Zhang et al.
successfully fabricated a photo-cross-linkable hydrogel based on
dECM-methacrylate (dECM-MA) and gelatin methacryloyl
(GelMA) as skin scaffolds (Zhang et al., 2021a). The mechanical
strength and water absorption of dECM-MA/GelMA scaffolds were
significantly improved compared to the GelMA and dECM groups.
Moreover, immunohistochemical results of the wound area showed
that the dECM-MA/GelMA group facilitated collagen deposition
and promoted angiogenesis and re-epithelialization.

To avoid the secondary injuries of changing wound dressing,
researchers have designed dECM-based hydrogel with appropriate
adhesion for wound treatment. Wang et al. designed a composite
hydrogel system that combines with o-nitrobenzene-modified
gelatin-coated dECM to enhance the tissue adhesive property
(Wang et al., 2023a). The composite scaffolds significantly
accelerated the epidermal regeneration in the wound model by
promoting angiogenesis and collagen fiber reformation. Likely,
Bo et al. fabricated adipose-derived stem cells loaded hydrogel
system made from a combination of dECM and o-nitrobenzene-
modified hyaluronic acid (Bo et al., 2020). The photo-cross-linkable
composite hydrogel exhibited good skin adhesive activity, which
could apply to different kinds of skin defects with irregular forms.
Moreover, the cells-loaded hybrid system significantly accelerated
the wound closure rate, which was achieved by enhancing collagen
deposition, promoting re-epithelialization, and promoting
angiogenesis.

Besides improving the mechanical properties of dECM-based
hydrogel wound dressing, numerous functional molecular or
bioactive substances were combined with dECM to satisfy
different wound microenvironments. For instance, Liu et al.
developed a bioactive composite hydrogel by mixing dECM,
asiaticoside-loaded polydopamine nanoparticles, and GelMA for
wound healing (Liu et al., 2023). Compared with other groups,
composite hydrogels exhibited higher regenerated hair follicle
numbers, revealing the ability to promote scarless wound healing.
Tang et al. combined dECM hydrogel with platelet-rich plasma
derived from the human body to promote wound healing (Tang
et al., 2022). The migration and tube formation assays on human
umbilical vein endothelial cells (HUVECs) showed that the hydrogel
could promote angiogenesis, and the immunofluorescence staining
and polymerase chain reaction (PCR) analysis of RAW 264.7 cells
indicated the capability of M2 macrophage polarization promotion.
Moreover, the wound repair experiment of nude mice and porcine
showed that hydrogel could significantly promote skin regeneration.
Recently, Song et al. prepared adipose-derived mesenchymal stem
cell-derived exosomes encapsulated dECM hydrogels (ECM@exo)
for skin regeneration (Song et al., 2023). Culturing with human
immortalized keratinocyte cells (HaCaT) and HUVECs, ECM@exo
significantly enhanced cell proliferation, migration, and
angiogenesis. In vivo evaluations investigated in normal and
diabetic wound models showed that the ECM@exo could reduce
the inflammatory factor (tumor necrosis factor-α (TNF-α) and
interleukin-6 (IL-6)) expression. To controlling the releasement
of bioactive factors, Xiao et al. proposed a dECM-MA hydrogel

for the spatiotemporal delivery of macrophage-associated cytokine
(Xiao et al., 2023). In detail, the dECM-MA hydrogel encapsulated
pro-healing cytokines acted as the core, whereas the pro-
inflammatory cytokines-loaded dECM-MA hydrogel was the
sheath portion. Compared with single cytokines therapy, the
spatiotemporal dual cytokines release hydrogel remarkably
improved cell proliferation, increased the cell migratory rate, and
induced higher collagen III/I expression in fibroblasts. Moreover,
the hydrogel exhibited higher angiogenic effects in vitro and also
accelerated skin reconstruction with high quality.

Electrospinning
Nanofibers or microfibers that are produced by electrospinning

have emerged as potential biomedical materials for wound
management (Memic et al., 2019). This electrospinning fibers-
based wound dressing with large specific surfaces could fit
different kinds of skin, providing a suitable environment for cell
adhesion and growth (Wang et al., 2023b). The dECM-based
electrospinning fibers have shown potential in skin repair due to
the penetrating network structure that could mimic the ECM
structure of natural skin. In contrast, dECM materials provide
biochemical for tissue regeneration. By controlling the
electrospun solution properties and process parameters,
electrospun fibers combined with polymers and dECM have been
utilized in tissue engineering applications (Krishtul et al., 2020; Li
et al., 2022b).

Typically, dECM and polymers were dissolved in a suitable
solution to fabricate composite electrospun fibers. For instance, Kim
et al. prepared nanofibers of poly-D,L-lactide-co-glycolide (PLGA)
and dECM with different concentrations (0.25%, 0.5% and 1%)
(Kim et al., 2017). The increase in the dECM ratio significantly
enhanced the mechanical strength of electrospun fibers, promoting
the proliferation of rat granulation fibroblasts. Similarly, Kim et al.
prepared nanofibrous electrospun hybrid scaffolds using heart
dECM and poly (l-lactide-co-caprolactone) (PLCL) (Kim et al.,
2018) as wound dressing materials. Compared with the gelatin-
PLCL group, the prepared nanofibers effectively promoted
angiogenesis and vessel maturation in vitro, accelerating wound
healing by minimizing inflammation, promoting angiogenesis, and
reducing scar in vivo. In addition, Gao et al. combined
electrospinning with gas foaming techniques to fabricate 3D
nanofiber scaffolds based on polycaprolactone (PCL) and dECM
and loaded with ε-polylysine (Gao et al., 2023). The 3D nanofiber
scaffolds with layer-like structures exhibited excellent thermal
stability, hydrophilicity, and outstanding antibacterial activity.
Moreover, in vivo results demonstrated that the nanofibers were
suitable to accelerate wound healing by promoting CD31 expression
and decreasing TNF-α expression.

Bioactive molecules, such as antibacterial drugs or particles,
were also used in dECM-based nanofiber systems. For example,
Chandika et al. fabricated usnic acid-enriched dECM-PCL
nanofibrous scaffold for promoting wound healing (Chandika
et al., 2022). Furthermore, the nanofiber scaffolds showed
desirable anti-microbial properties and biofilm inhibition
activities activity, indicating long-term usnic acid releasement for
14 days. In addition, Zhan et al. designed a dECM/PLCL
multifunctional nanofibers platform loaded with copper and
coated with chitosan (CTS@PLCL/DWJM@Cu) via a coaxial
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electrospinning approach (Zhan et al., 2022). The core-shell
nanofiber exhibited initial releasement of chitosan for exerting
early antibacterial activity, presenting sustained release copper to
promote neovascularization. The core-shell nanofiber showed
satisfactory mechanical properties, suitable hydrophilicity and
protein absorption, and excellent inhibition efficacy of both S.
aureus and E. coli. Overall, CTS@PLCL/DWJM@Cu significantly
inhibited bacterial growth, promoted neovascularization, and
created a microenvironment for collagen deposition, further
promoting the wound healing of diabetic wounds.

Besides mixing dECM with polymer as an electrospinning
solution, dECM composite materials with different
electrospinning forms have been developed. For example, Tang
et al. prepared PLGA nanofiber that cultured human adipose-
derived stem cells (hADSCs) and then decellularized them to
obtain dECM-PLGA meshes, promoting the wound healing
process in vitro (Tang et al., 2019). In another investigation, Lee
et al. developed human dermal fibroblasts loaded with electrospun
PCL fibers to obtain a 3D multi-layered fibrous scaffold (Lee et al.,
2016). In detail, the cell was cultured on PCL fiber for 4 days. After
decellularization, the freeze-milling dECM-PCL powder was used to
fabricate a fibrous scaffold by the electrohydrodynamic jet process.
The SEM images showed that all scaffolds with micro-fibrous
bundles dECM-PCL based scaffolds showed higher tensile
modulus and faster water absorption rate than pure PCL-based
scaffolds. Gholipourmalekabadi et al. fabricated bi-layer membranes
by using human amniotic membrane dECM and silk fibroin
nanofiber as 3D artificial skin (Gholipourmalekabadi et al., 2018).
After being cultured with ADSCs for 7 days, the composite
membranes significantly increased the expression of pro-
angiogenesis factors compared with pure dECM.

3D printing
3D printing has gained increasing attention in tissue

regeneration due to the ability to prepare scaffolds with suitable
3D morphologies and structures by using computer-aided design
(Wang et al., 2022b). 3D printing is a viable option to create suitable
structures for matching the inhomogeneous wound site, which also
mimics native skin tissue by combining biomaterials with cells
(Tanfani et al., 2023). Due to the printability of dECM,
researchers constructed different types of bioengineered 3D
structures based on dECM, showing translational potential for
promoting tissue repair (Hwang et al., 2022). However, the low
viscosity and long gelation time may result in the poor shape fidelity
of dECM hydrogel-based 3D structure (Yeleswarapu et al., 2023).

The addition of polymers in dECM-based bio-ink or mixing the
dECMwith other kinds of bio-ink has been employed to enhance the
mechanical properties of the printed structure. Jorgensen et al.
provided a hybrid bioink by combining fibrinogen and dECM for
extrusion-based bioprinting (Jorgensen et al., 2020). Compared with
the dECM hydrogel, the combination of fibrinogen demonstrated
higher storage modulus and viscosity at low temperatures, which
showed shear thinning properties and longer structural stability.
Bashiri et al. prepared a bioink based on alginate/gelatin that loaded
different human placental dECM concentrations (Bashiri et al.,
2023). The addition of dECM could significantly improve the
compressive strength and tensile strength of the 3D printing
scaffold. Compared with the alginate/gelatin scaffold, the 3D

printed scaffolds with 5% dECM significantly enhanced wound
healing and pro-angiogenic gene expression. Fu et al. exploited a
3D-printed dECM-GelMA-HAMA scaffold that incorporated
hADSCs as a skin substitute (Fu et al., 2023). The integrated 3D
printed scaffold significantly promoted wound healing in vivo,
relying on promoting angiogenesis, re-epithelialization, and
collagen deposition, and inhibiting inflammatory response.

Additionally, there is an urgent need to design dECM-based
biomaterial that inhibits bacterial infection for wound healing.
Likewise, Xu et al. prepared a hybrid 3D printed tissue
engineering scaffold composed of gelatin, quaternized chitosan,
and dECM assembled with poly (ionic liquid)s (Xu et al., 2022a).
By assembling poly (ionic liquid)s into the scaffold, the composite
platform displayed a strong Gram-negative and Gram-positive
bacteria inhibition rate, effectively preventing bacterial infection
for a long time. Moreover, the composite scaffold demonstrated
excellent hemostatic effect and hemocompatibility, thus showing an
essential potential in skin engineering. Hu et al. reported a
multifunctional dECM-MA-based 3D printing hydrogel scaffold
embedded with copper epigallocatechin gallate nano-capsules for
diabetic wound management (Hu et al., 2023). The cellular
experiments indicated that the multifunctional 3D platform
showed favorable anti-inflammatory capacity and good
biocompatibility, which could accelerate vascularization and
promote cell migration and invasion. In vivo experiments of the
diabetic split-thickness skin graft model demonstrated that
compared with commercial dECM groups, 3D-printed scaffolds
significantly decreased the size of wound area with no obvious
contracture. Moreover, 3D-printed scaffolds showed a similar ratio
of collagen I/III in dermis and skin thickness to native tissue,
indicating the potential tissue regeneration ability with non-scar
in diabetic wound. In another work, Lin et al. prepared sodium
alginate and dECM-MA as bio-ink to load with the curcumin and
basic fibroblast growth factor (bFGF) for a 3D scaffold construction
(Lin et al., 2023). The bFGF in scaffolds could significantly promote
neovascularization, and the curcumin could inhibit bacterial growth,
indicating a promising way to promote the bacterial infection
wound for potential clinic applications. Nanoparticles with
unique properties have been used in 3D structure construction,
whichmay reinforce the mechanical and physicochemical properties
of hydrogels or introduce the new biological functions of bio-ink
(Chakraborty et al., 2021). Hu et al. fabricated 3D scaffolds by
mixing dECM with mesoporous bioactive glass and exosomes as
bioink to through extrusion-based printing technology (Hu et al.,
2021). The composite hydrogel scaffolds showed a sustained release
of exosomes for 14 days, and the addition of bioactive glass
significantly promoted the cell proliferation, adhesion,
angiogenesis. Moreover, the 3D wound dressing not only showed
rapid hemostatic ability but also shortened wound closure rate and
enhanced angiogenesis in diabetic wounds.

In nature, skin consists of epidermis, dermis, and hypodermis in
order; relative cells were interspersed in ECM that supported the
mechanical properties and resilience of skin (Daikuara et al., 2022).
To simulate natural full-thickness skin with the epidermal and
dermal compartment, Ahn et al. used a 3D bioprinting
technology by sacrificial gelatin-assisted to build a full-thickness
skin model, which was constructed by dECM-loaded human dermal
fibroblast as dermis and sacrificial gelatin-loaded human epidermal
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keratinocyte as epidermal layer (Ahn et al., 2023). In another work,
Jin et al. designed an artificial skin with a 3D structure, which was
constructed by 20% GelMA as an epidermal layer, 1.5% porcine skin
dECM as a dermis layer, and 10% GelMA as a vascular network (Jin
et al., 2021). The in vitro results showed that the 3D-printing skin
model provided a suitable microenvironment for cell proliferation
and also supported epidermis reconstruction. In addition, the full-
thickness wound test revealed that the 3D-printing skin substitute
significantly enhanced the wound-healing process and promoted the
synthesis of collagen III while inhibiting the excessive proliferation
of collagen I.

Conclusion and perspectives

Wound management remains a serious challenge burden on
healthcare systems nowadays. Due to the limitations of dECM-based
biomaterials alone in the wound healing process, the strategy of
combining polymers or drug agents with dECM significantly
enhanced the physicochemical property, showing great potential
in skin regeneration. Moreover, the emergence of fabrication
techniques and the breakthrough of apparatuses may provide a
great way for dECM-based composite wound dressing in successful
clinic translation. In this review, we have summarized the recent
developments of dECM-based composite materials in wound
healing, highlighting the significance of the fabrication method in
the design and bio-function of those biomaterials.

As a promising field, some challenges remain in developing
dECM-based composite wound dressing for clinic application.
Various types of functional components with different
mechanisms have been united with dECM-based biomaterials for
promoting wound healing. However, due to the dynamic changes of
the wound healing process, it is difficult to meet the requirements of
the entire skin regeneration process. Moreover, the wound
microenvironment is rather complicated and involves immune
relation cells, pH, oxygen, enzymes, and microbiology, among
others. Therefore, developing dECM-based wound dressing could
respond to the woundmicroenvironment, and precise delivery of the
bioactive agents on demand is a further direction.

Although dECM-based composite biomaterials with different
forms are produced by various fabrication technologies as
alternatives to skin grafts, skin is a complex organ that is
composed of epidermal, dermal, and hypodermal, which contain

different cell types and density, ECM composition, and
microstructure. Fabrication of tissue-engineered skin substitutes
with 3D micro-structure and the combination of relative cells are
still challenging. Therefore, the integration of various fabrication
technologies in building skin substitutes is promising. The
cooperation of clinicians, scientists, and mechanical engineers
may move the dECM-based biomaterial forward in the future.
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