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Phenotypic analysis has significant potential for aiding breeding efforts.
However, there is a notable lack of studies utilizing phenotypic analysis in
the field of edible fungi. Pleurotus geesteranus is a lucrative edible fungus with
significant market demand and substantial industrial output, and early-stage
phenotypic analysis of Pleurotus geesteranus is imperative during its breeding
process. This study utilizes image recognition technology to investigate the
phenotypic features of the mycelium of P. geesteranus. We aim to establish the
relations between these phenotypic characteristics and mycelial quality. Four
groups of mycelia, namely, the non-degraded and degraded mycelium and the
5th and 14th subcultures, are used as image sources. Two categories of
phenotypic metrics, outline and texture, are quantitatively calculated and
analyzed. In the outline features of the mycelium, five indexes, namely,
mycelial perimeter, radius, area, growth rate, and change speed, are
proposed to demonstrate mycelial growth. In the texture features of the
mycelium, five indexes, namely, mycelial coverage, roundness, groove depth,
density, and density change, are studied to analyze the phenotypic
characteristics of the mycelium. Moreover, we also compared the cellulase
and laccase activities of the mycelium and found that cellulase level was
consistent with the phenotypic indices of the mycelium, which further
verified the accuracy of digital image processing technology in analyzing the
phenotypic characteristics of the mycelium. The results indicate that there are
significant differences in these 10 phenotypic characteristic indices (P <0.001),
elucidating a close relationship between phenotypic characteristics and
mycelial quality. This conclusion facilitates rapid and accurate strain
selection in the early breeding stage of P. geesteranus.
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1 Introduction

Pleurotus geesteranus, a globally cultivated edible fungus, plays a significant role in
economies worldwide (Singh et al., 2021; Wei et al., 2023). Analysis of P. geesteranus
market prospects in 2024 showed that the global P. geesteranus market size is
approximately 10.9 billion US dollars and is expected to grow at an annual rate of
about 5%. In 2023, P. geesteranus accounted for 17.45% of the output of edible fungi in
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China. The seeds of edible fungi are referred to as edible fungus
strains. According to the source, generation of propagation, and
production purposes, they can be divided into three levels:
mother strain, original strain, and cultivation strain. The
mycelial quality is intricately tied to its yield, making it a
crucial factor influencing economic benefits (Zhang et al.,
2019). Mycelial degeneration refers to the phenomenon where
the traits of edible fungus populations deteriorate, leading to
deviations in yield, quality, and resistance that do not meet
human needs. Mycelial degeneration is a serious issue
commonly encountered in the cultivation of various edible
fungi. In practical production, mycelial degradation generally
takes place during its preservation and subculture. Using
degenerated strains for cultivation often results in delayed
fruiting, low yield, and poor quality, which cause significant
economic losses to producers of edible fungus (Pérez et al.,
2021). The mycelial phenotype is the collective expression of
its individual traits within a certain environment and provides
fundamental information for breeding purposes (Helgason and
Fitter, 2009). Mycelial degeneration of P. geesteranus is both
complex and varied. To optimize the high production cultivation
of the mycelium of P. geesteranus, breeders need to evaluate the

mycelial phenotype by gathering phenotypic information
through sampling, measurement, observation, and calculation
techniques (Lehmann et al., 2019; James et al., 2022). Phenotypic
parameters including mycelium growth rate, density, color, and
content of specific substances such as polysaccharides, active
proteins, and other bioactive components of the strain serve as
the primary criteria for assessing the mycelial quality of P.
geesteranus (Yang et al., 2022). In the initial stages of
cultivation, accurately distinguishing the degenerated
mycelium based on phenotypic characteristics is crucial
(Danner et al., 2023). This process aids in effective selection
and cultivation of the mycelium, while also preventing the
degenerated mycelium from flowing into the production
process, ultimately enhancing overall economic efficiency.

To date, the phenotypic characteristics of edible fungi have
been assessed through observation, resulting in drawbacks like low
precision, inadequate standardization, time-intensive procedures,
and high-intensity labor (Furbank and Tester, 2011; Yin et al.,
2022; Liu et al., 2023). Digital image processing is capable of
precise computation for qualitative and quantitative analyses,
instead of manual measurement, which often relies on
subjective judgment based on experience. Recently, digital
image processing has emerged as a vital analytical method for
evaluating the phenotypic attributes of crops, encompassing
factors like crop color, growth, density, and uniformity
(Mahajan et al., 2015; Zhao et al., 2019; Omari et al., 2020).
This approach involves analyzing pixel attributes and inter-pixel
attributes and analyzing the dynamic characteristics of their trait
expression over growth time (Chen et al., 2014). Guo et al. (2018)
extracted a total of 51 image-based traits from 507 rice samples for
studying the plant drought tolerance traits and assisting in
drought-resistant breeding. Li B. et al. (2020) conducted a
systematic analysis of 119 image-based digital traits of
200 cotton seedlings under drought stress. Li H. et al. (2020)
quantified the correlation among 43 phenotypic characteristics of
rapeseed with their growth conditions and predicted the final
rapeseed yield. Currently, researchers have attained high-
throughput, high-precise, and non-destructive acquisition of
crop phenotypes for staple food crops like rice, wheat, and
soybean, utilizing digital image processing technologies. This
motivates the focus toward digital and efficient breeding
research (Shakoor et al., 2017).

FIGURE 1
Image of four activated mycelium samples of Pleurotus geesteranus. (A) non-degenerated strain labeled X2-N; (B) 5th generation subculture strain
labeled X2-5; (C) 14th generation subculture strain labeled X2-14; (D) degenerated strain labeled X2-T.

FIGURE 2
Equipment for mycelium image acquisition.
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The phenotypes of edible fungi associated with mycelial quality
are varied and intricate, encompassing factors such as growth rate,
density, color, and content of specific substances. These phenotypic
characteristics have a strong correlation with mycelial quality (Yoo

et al., 2019). Specifically, it is generally manifested in the following
aspects: 1) mycelial morphology: the relation between mycelial
morphology and quality lies in the fact that the more regular and
faster-growing species often have higher quality; 2) mycelial density:

FIGURE 3
Comprehensive technical framework for phenotypic characteristics of the mycelium. 1) Four categories of mycelium samples, non-degraded (X2-
N) and degraded (X2-T) mycelium and the 5th (X2-5) and 14th (X2-14) subcultures, were processed using two methods: contour and texture; 2) the
calculations generated 10 corresponding indices of mycelial phenotypic characteristics; 3) statistical analysis of these data revealed the relationship
between mycelial phenotypic characteristics and its quality; 4) the cellulase activity assessments were used to verify the accuracy of the above
two methods.

FIGURE 4
Calculation steps and methods of the mycelial outline. 1) Grayscale of the digital image of the mycelium was obtained using the camera, and the
region of interest (ROI) was extracted; 2) outline of the boundary of the Petri dish (A) and the mycelium (B), as shown by the blue line; 3) the minimum
external matrix of the mycelial boundary is denoted by the green line (C); 4) the radius, perimeter, and area were calculated through the horizontal and
vertical axes by the red double-headed arrow (D); 5) days 2 and 8 of mycelium growth were set as two unit time observation points to calculate their
growth rate and change speed.
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the higher the mycelial density, the more vigorous the mycelial
growth and the higher the yield; 3) mycelial growth rate: the
mycelium with faster growth rates can quickly occupy growth
space and reduce competitive pressure, thereby improving yield;
4) mycelial color: the color of the mycelium can reflect the metabolic
state and growth environment. The mycelium with bright and
uniform coloration usually grows vigorously.

At present, the current research and applications of digital image
processing for phenotypic analysis of P. geesteranus remain open.
The objective of this paper is to investigate the inherent relations
between the phenotypic characteristics of P. geesteranus and its
mycelial quality. We acquired imaging data depicting four groups of
the mycelium of P. geesteranus, encompassing both non-degraded
and degraded states. We extracted two pivotal phenotypic
characteristics of the mycelium, outline and texture, including a
total of 10 indices and carried out quantitative calculation and
analysis through digital image processing technology (Williams
et al., 2013; Minervini et al., 2014; Yang et al., 2019; Basak
et al., 2021).

Additionally, in order to study the correlation between
phenotypic traits and mycelial quality, we also compared
cellulase and laccase activities for verification. Cellulase, known
as carboxymethyl cellulase (CL), is present ubiquitously in
bacteria, fungi, and animals (Ghose, 1987). CL facilitates the
degradation of carboxymethyl cellulose and finds extensive
applications in medicine, food, cotton spinning, environmental
protection, and renewable resource utilization (Khan et al., 2023).
When cellulase breaks down cellulose, it is converted into glucose
units and other reducing sugars. These reducing sugars can react
with an anthrone reagent to form a blue–green complex, the
intensity of which is proportional to the concentration of the
reducing sugar. By measuring the color intensity after the
reaction, the activity of cellulase can be indirectly calculated, that
is, the amount of reducing sugar produced by cellulose breakdown
per unit time. Therefore, we used the anthrone colorimetric method
to analyze the cellulase activity on the mycelium. Laccase is a
copper-containing polyphenol oxidase, belonging to the cupric
blue oxidase family, widely distributed in fungi and higher plants,
with strong redox ability, and has a wide range of applications in
pulp biobleaching, degradation of environmental pollutants,
lignocellulosic degradation, and biological detection.

Finally, the paper concluded that the phenotypic indices of cellulase
and the mycelium were consistent and analyzed the internal
relationship between mycelial quality and these phenotypic
characteristics concerning the mycelial outline and texture.

2 Materials and methods

2.1 Strain image materials

2.1.1 Mycelium of P. geesteranus
This study selected the mycelium from P. geesteranus (Xiu 2),

along with subcultures up to the 5th and 14th generations, as well as
degraded strains. All these materials were sourced from the Fungi
Research Center of Fujian Agriculture and Forestry University.
Among them, the non-degenerated strain was labeled as X2-N,
the 5th generation subculture strain was labeled as X2-5, the 14th
generation subculture strain was labeled as X2-14, and the
degenerated strain was labeled as X2-T.

During the experiment, the solid medium, Potato Dextrose Agar
(PDA), comprised 200 g potato, 20 g glucose, 20 g agar, and 1,000mL
water. First, we performed strain activation by inoculating each of the
four mycelium strains into 90-mm-diameter Petri dishes containing the
PDA medium. These dishes were then placed in a 25 °C incubation
room and cultured in an inverted position for 8 days. The images of the
four activated species are shown in Figure 1. In the next step, we
expanded the culture on the activated strain samples of P. geesteranus. A
5-mm-diameter piece of the mycelium was cut from the end of the
mycelium and inoculated at the center of a new 90-mm-diameter PDA
Petri dish. They were cultured in an inverted position in a 25-°C
incubation room for 8 days, and data were collected at that time. In this
test, 100 non-degenerated strains, 100 X2-5 strains, 100 X2-14 strains,
and 100 degenerated strains were collected; a total of 400 samples were
preserved in the Key Laboratory of Agricultural Information Perception
Technology, Qishan Campus, Fujian Agriculture and Forestry
University.

2.1.2 Image acquisition
This experiment captured the images of the mushroom by using

an industrial camera (Basler acA 1300-30 gm; Germany), which was
equipped with a Sony ICX445 CCD chip, 20 frames per second,
resolution of 1.3 million pixels through Pylon Viewer 64-Bit
software. The camera was positioned at a fixed distance of 25 cm
directly above the Petri dish, resulting in mycelial images with a size
of 1,280 × 980 pixels. Images were captured on days 2 and
8 following mycelial subculture. The mycelial samples displaying
evident abnormalities in the outline and texture morphology were
excluded, and the remaining 400 samples were employed for
calculation and analysis in this study. The device for image
acquisition of the mycelium was set in the Key Laboratory of
Agricultural Information Perception Technology at Fujian

TABLE 1 Phenotypic characteristic indices of the mycelial outline.

Index X2-N X2-5 X2-14 X2-T F p

Radius (cm) 29.59 ± 3.04b 26.50 ± 2.44c 31.93 ± 3.46a 17.38 ± 2.32d 100.30 <0.001

Perimeter (cm) 176.10 ± 22.54b 157.39 ± 30.09c 201.94 ± 31.99a 92.68 ± 18.42d 62.66 <0.001

Area (cm2) 3,150.30 ± 621.31b 2,515.08 ± 474.53c 3,715.42 ± 816.76a 30.32 ± 33.55d 75.62 <0.001

Growth speed (cm/d) 3.66 ± 0.43b 3.22 ± 0.35c 4.00 ± 0.49a 1.92 ± 0.33d 100.30 <0.001

Change speed (cm2/d) 449.93 ± 88.76b 359.19 ± 67.79c 530.66 ± 116.68a 155.32 ± 39.25d 75.63 <0.001

Note: 1) All characteristic data were recorded on day 8 after subcultures and subject to the mean ± SD (n � 100) in each group; 2) values with superscripts a, b, c, d{ } denoted significant

differences across index rows (p � 0.05); 3) all the comparison data were checked using the Bonferroni correction.
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Agriculture and Forestry University, as shown in Figure 2, which
consisted of an industrial camera, light source, computer, and
detection objects.

2.1.3 Image processing software
In order to realize the analysis and quantitative calculation of

mycelial images on outline and texture indices, this experiment first

FIGURE 5
Comparison of five phenotypic characteristic indexes on the mycelial outline. (A) Radius (cm), (B) perimeter (cm), (C) area (cm2), (D) growth speed
(cm/d), and (E) change speed (cm2/d). 1) The horizontal axis represented the four groups of mycelia, and the vertical axis represented each phenotypic
data index; 2) all characteristic data were recorded on day 8 after subcultures and subject to the mean ± SD (n � 100) in each group; and 3) values with
superscripts a,b,c,d{ } denoted significant differences across index rows (p � 0.05).
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used MATLAB 2020b (9.9.0.1467703) 64-bit (win64) software to
perform the outline and texture processing, allowing computation in
the formulations of 10 indices, namely, radius, perimeter, area,
growth rate, change speed, mycelium coverage, integrity, groove
depth, density, and density change. Furthermore, IBM SPSS
Statistics R26.0.0.0 64-bit was utilized to analyze and optimize
the normality and correlation of the acquired image data. In
addition, OriginPro 2022 software outputted the statistical maps
of the data. The computer environment was Windows 10 with the
graphics card driver being version 27.21.14.5167 of NVIDIA
GeForce GT 730.

2.2 Strain image processing methods

The comprehensive technology is presented in Figure 3. We
obtained 10 phenotypic indicator datasets for each strain sample
by employing both outline and texture processing methods.
Initially, in the outline formulation, binarization and
threshold segmentation were employed to delineate the
mycelial boundary, minimum circumscribed rectangle, and
horizontal and vertical axes (Chen et al., 2008; Underwood
et al., 2017). Following this, five indices, namely, mycelial
perimeter, radius, area, growth rate, and change speed, were
calculated to scrutinize the morphological and phenotypic traits
of the mycelial outline (Bae et al., 2011; Le et al., 2012).
Subsequently, the gray-level co-occurrence matrix was used to
extract pixel count, contrast, and entropy (Xuan et al., 2022; Wu
et al., 2023). An additional set of five indices, namely, mycelium
coverage, roundness, groove depth, density, and density change,
were calculated to analyze the phenotypic characteristics of the
mycelium texture (Hu et al., 2022). Moreover, the cellulase and
laccase activity indexes of the mycelium were compared,
providing additional validation for the analysis results on the
phenotypic characteristics of the mycelium (Samy et al., 2022).
Finally, the study analyzed the internal correlation between the
outline and texture concerning the phenotypic characteristics of
the mycelium for P. geesteranus.

2.2.1 Outline processing methods
We made observations at two time points—on day 2, following

mycelium activation, and on day 8 of its growth—calculating the
growth rate and change speed accordingly. The calculation steps and
methods are shown in Figure 4.

The detailed procedure for analyzing the phenotypic
characteristics of the mycelium concerning outline morphology is
summarized as follows:

Input: The gray value of the mycelial image

1) Grayscale processing on the mycelial image:

np ← Analyze the gray-level difference of the inner and

outer edges of the Petri dish, and calculate the number

of pixels on the border of the Petri dish;

nv ← Analyze the difference between the gray level of

the mycelium and the background pixel, and calculate

the number of pixels on the border of the mycelium.

2) Use the number of all 2D pixels contained within

the boundary:

NP ← Calculate the number of Petri dish pixels;

NV ← Calculate the number of mycelium pixels.

3) Calculate the minimum circumscribed circle matrix:

ZL ← Extract the horizontal axis in the mycelium

outline, and calculate the number of pixels on the

horizontal axis of the mycelium;

ZS ← Extract the mycelial vertical axis, and calculate

the number of pixels on the vertical axis of

the mycelium.

4) Day 2 of strain growth was regarded as the first

observation time point t1, and day 8 was regarded

as the second observation time point t2:

R1、A1 ← Calculate the mycelium radius and mycelium

area at t1;

R2、A2 ← Calculate the mycelium radius and mycelium

area at t2.

Output: Use Eqs 1–5 to obtain five indexes of the mycelium

outline (R, L, A, VR, and VW).

Algorithm 1. The outline processing methods.

The five indices of the mycelial outline, namely, the mycelial
radius, perimeter, area, growth rate, and change speed, were
calculated to analyze the morphological and phenotypic
characteristics (Hu et al., 2022), and the obtained results are
shown in Table 1; Figure 5.

2.2.1.1 Radius

R � ZL + ZS

np
× πRp, (1)

TABLE 2 Phenotypic characteristic indices of the mycelial texture.

Index X2-N X2-5 X2-14 X2-T F p

Coverage 49.52 ± 9.77b 39.53 ± 7.46c 58.40 ± 12.84a 17.10 ± 4.32d 75.62 <0.001

Roundness 0.80 ± 0.15ab 0.81 ± 0.27ab 0.93 ± 0.32a 0.65 ± 0.22b 4.12 0.009

Groove depth 59.30 ± 14.05a 43.24 ± 16.16b 28.43 ± 12.35c 51.15 ± 10.54ab 19.16 <0.001

Density 162.65 ± 23.46a 117.89 ± 32.62b 88.71 ± 22.07c 134.24 ± 20.89b 30.13 <0.001

Density change 1.69 ± 0.39a 0.95 ± 0.54b 0.47 ± 0.37c 1.22 ± 0.35b 30.13 <0.001

Note: 1. All characteristic data were recorded on day 8 after subcultures and subject to the mean ± SD (n � 100) in each group; 2) values with superscripts a, b, c, d{ } denoted significant

differences across index rows (p � 0.05); 3) all the comparison data were checked by using the Bonferroni correction.
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FIGURE 6
Comparison of five indexes of the mycelial texture. (A) Coverage, (B) roundness, (C) groove depth, (D) density, and (E) density change. 1) The
horizontal axis represented the four groups of mycelia, and the vertical axis represented each phenotypic data index; 2) all characteristic data were
recorded on day 8 after subcultures and subject to mean ± SD (n � 100) in each group; 3) values with superscripts a,b,c,d{ } denoted significant
differences across index rows (p � 0.05).
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where R is the mycelial radius; ZL and ZS are the number of pixels
on the horizontal and vertical axes of the mycelium, respectively;
and np and Rp are the number of pixels on the border of the Petri
dish and the measured diameter of the petri dish, respectively.

2.2.1.2 Perimeter

L � nv

np
× 2πRp, (2)

where L is the perimeter of the mycelium, nv is the number of pixels
on the border of the mycelium, and np is the number of pixels on the
border of the Petri dish.

2.2.1.3 Area

A � NV

NP
× πR2

p, (3)

where A is the mycelial area,NV is the number of pixels of the Petri
dish, and NP is the number of pixels of the mycelium.

2.2.1.4 Growth rate

VR � R2 − R1

t2 − t1
, (4)

where VR is the growth rate of the mycelium, R1 is the mycelial
radius of t1 observation time points, and R2 is the mycelial radius of
t2 observation time points.

2.2.1.5 Change speed

VW � A2 − A1

t2 − t1
, (5)

where VW is the change in mycelial growth and A1 and A2 are
the mycelium areas at two observation time points.

2.2.2 Texture processing methods
The steps of processing the phenotypic characteristics of the

mycelium concerning texture morphology are summarized
as follows:

Input: The gray value of the original image of the

mycelium is 0–255

1) WF ← Use the ratio of mycelial area NV and Petri dish

area NP to calculate the mycelial coverage, as shown

in Eq. 6;

2) WP ← Use the square of the ratio of mycelial perimeter

L and the mycelial area A to calculate the mycelial

roundness, as shown in Eq. 7;

3) WC ← Use the contrast feature quantity of the gray-

scale co-occurrence matrix to calculate the mycelial

groove depth, as shown in Eq. 8;

4) WB ← Use the gray value at the axis (xg1,yg1) to calculate

mycelial density, as shown in Eq. 9;

5) WS ← Use the density at time t2 and t1 to calculate the

density change, as shown in Eq. 10;

Output: Five indices of mycelial texture morphology, WF,

WP, WC, WB, and WS.

Algorithm 2. The texture processing methods.

The five indices of the mycelial texture, namely,
coverage, roundness, groove depth, density, and
density change, were computed to analyze the
morphological and phenotypic characteristics (Hu et al.,
2022), and the obtained results are shown in Table 2;
Figure 6.

FIGURE 7
Results of enzyme activity in four groups of mycelia. (A) Results of cellulase activity in four groups of mycelia and (B) results of laccase activity in four
groups of mycelia. 1) The horizontal axis represented the four groups of mycelia, and the vertical axis represented the enzyme activity in units of fresh
weight; 2) all characteristic data were recorded on day 8 after subcultures and subject to the mean ± SD (n � 100) in each group; 3) values with
superscripts a,b,c,d{ } denoted significant differences across index rows (p � 0.05).
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2.2.2.1 Coverage

WF � NV

NP
× πR2

p, (6)

where WF is the coverage of the mycelium, NV is the number of
pixels of the Petri dish, NP is the number of pixels of the
mycelium, and Rp is the measured diameter of the Petri dish.

2.2.2.2 Roundness

WP � L2

4πA
, (7)

whereWP is the roundness of the mycelium, L is the perimeter of the
mycelium, and A is the mycelial area.

2.2.2.3 Groove depth

WC � ∑N1

g1�1
∑N2

g2�1
g1, g2( )2P g1, g2( ), (8)

where N1 is the number of pixels between the minimum and
maximum values along the horizontal axis, N2 is the number of
pixels between the minimum and maximum values along the
vertical axis, g1 and g2 are the brightness values of the pixels,
and P is the total number of occurrences.

2.2.2.4 Density

WB � g1 + g2 + ... + gn
f xg1, yg1( ) + f xg2, yg2( ) + ... + f xgn, ygn( ), (9)

whereWB is the density of the mycelium and f(xg1, yg1) is the gray
value at the axis (xg1, yg1).

2.2.2.5 Density change

WS � WB2 −WB1

t2 − t1
, (10)

where WS is the density change and WB2 and WB1 denote the
density at time t2 and t1, respectively.

2.3 Methods for extracting enzyme activity
from the mycelium

2.3.1 Extraction method for cellulase activity
The activated mycelium was placed in a centrifuge tube

using a hole puncher with a diameter of 5 mm and was then
stored in a refrigerator at 4°C. Approximately 0.1 g of mycelial
tissue was measured, to which 1 mL of extract was added. The
mixture was homogenized in an ice bath and then centrifuged at
8,000 g for 10 min at 4°C. The supernatant was carefully
extracted and stored on ice for subsequent use (Marei
et al., 2012).

We adapted the anthrone colorimetric method to quantify the
reducing sugar content generated through the degradation of
sodium carboxymethyl cellulose, which was catalyzed by CL
(Wood and Bhat, 1988). The procedure involved shaking the
sample at 37°C for 1 h and then placing it in a 90-°C water bath
for 15 min. Subsequently, we centrifuged the sample at 8,000 g at
25°C for 10 min after cooling, collected the supernatant, and mixed
it to prepare the saccharification solution. This solution was then
incubated in a 90 °C water bath for 10 min. After cooling, we took
200 μL of the reaction solution and measured the absorbance value
A at 620 nm using a 96-well plate and then calculated
ΔA � A+ − A−, where A+ and A− denote the measurement and
control tubes, respectively. It was noted that these reducing sugars
can react with the anthrone reagent to form a blue–green complex,
the intensity of which is proportional to the concentration of the
reducing sugar. By measuring the color intensity after the reaction,
the activity of cellulase can be indirectly calculated, that is, the
amount of reducing sugar produced by cellulose breakdown
per unit time.

The regression equation for determining standard conditions
was given by y � 2.5090x − 0.0462, where x is the standard
concentration (mg/mL) and y is the absorbance value. The
catalytic production of 1 μg of glucose per g of tissue per minute
is defined as a unit of enzyme activity. Then, based on the fresh
weight of the sample, we calculated cellulase activity
VCL(μg/min /g) as shown below, and the results are given
in Figure 7A.

VCL � 1000 × ΔA + 0.0462α( ) ÷ 2.509 × βf[ ] ÷ W × βs ÷ βt( ) ÷ T

� 79.6 × ΔA + 0.0462βf( ) ÷ W ,

(11)
where βf denotes the total volume of the reaction, βs is the reaction
volume of samples, βt is the extra volume of the extraction, T is the
reaction time, and W is the sample mass. In this test, we gave the
following parameters: βf � 0.6mL, βs � 0.05mL, βt � 1mL, and
T � 60min.

2.3.2 Extraction method for laccase activity
The activated mycelium was placed in a centrifuge tube using a

hole puncher with a diameter of 5 mm and was then stored in a
refrigerator at 4°C. Approximately 0.1 g of mycelial tissue was
measured, to which 1mL of the extract was added. The mixture was
homogenized in an ice bath and then centrifuged at 13,000 g for
30 min at 4°C. The supernatant was carefully extracted and stored
on ice for subsequent use.

Laccase decomposes the substrate ABTS to produce ABTS free
radicals, which have a significantly higher absorbance coefficient at
420 nm than the substrate ABTS. By determining the increase rate of
ABTS free radicals, the activity of laccase can be calculated. The
reaction mixture was cooled to room temperature after 20 min in a
water bath at 60°C. We took 200 μL of the reaction solution and
measured the absorbance value A at 420 nm using a 96-well plate
and then calculated ΔA � A+ − A−, where A+ and A− denote the
measurement and control tubes, respectively. The amount of
enzyme required to oxidize 1 nmol substrate ABTS per gram of
sample per minute was defined as one unit of enzyme activity. Then,
based on the fresh weight of the sample, we calculated cellulase
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activity VLaccase(nmol/min /g) as shown below, and the results by
using Eq. 12 are given in Figure 7B.

VLaccase � ΔA
ε × d

× βf ÷ βs × W ÷ βt( )[ ] ÷ W × βs ÷ βt( ) ÷ T

� 78.52 ×ΔA ÷ W ,

(12)
where ε denotes the millimolar extinction coefficient of ABTS, d

is the light diameter of the cuvette, βf denotes the total volume of the
reaction, βs is the reaction volume of samples, βt is the extra volume
of the extraction,T is the reaction time, andW is the sample mass. In
this test, we gave the following parameters: ε � 36 L/mmol/cm,
d � 0.5 cm, βf � 0.3mL, βs � 0.045mL, βt � 1mL, and T �
20min.

3 Results

3.1 Results of the mycelial outline

For convenience, four groups of mycelium, namely, the non-
degraded and degraded mycelium and the 5th and 14th subcultures,
were denoted as X2-N, X2-T, X2-5, and X2-14, respectively.We took
100 samples selected from each group. A total of 400 samples were
photographed and recorded on day 8 after inoculation. We precisely
computed the outline morphology of the mycelium by using
Algorithm 1, resulting in a total of five phenotypic characteristic
indices: radius, perimeter, area, growth speed, and change speed. We
adopted the one-way ANOVA method, and the mean and standard
deviation (SD) of the five indices for the four groups of mycelium are
shown in Table 1. The results showed that there were significant
statistical differences in the five indices among the four groups (all
P< 0.001). The pairwise comparison of each index showed that all
five indices of X2-T related to the outline morphology are lower than
those of the X2-N and X2-5 and X2-14.

Figure 5 shows the performance trends of the five indices on the
phenotypic characteristics of the mycelial outline (radius, perimeter,
area, growth rate, and change speed), which were basically consistent.
The growth rate of the mycelium weakened from the activation stage to
X2-5, but it accelerated from X2-5 to X2-14. However, for X2-T, there
was a significant downward trend in all aspects.

3.2 Results of the mycelial texture

For the 400 existing samples, we accurately calculated the
texture morphology of the mycelium by using Algorithm 2,
resulting in five indices of phenotypic characteristics: coverage,
roundness, groove depth, density, and density change. We took the
one-way ANOVAmethod, and the mean and SD of the five indices
of the four groups of mycelium are given in Table 2. The results
showed that there were statistical differences in the five indices
among the four groups (all P< 0.05). Among them, the difference
in the mycelial roundness data was the smallest (P � 0.009), and
the differences among the other indices were more significant
(P< 0.001). The pairwise comparison of each index showed that
X2-T had the lowest mycelium coverage, while X2-14 had the

worst performance in terms of groove depth, density, and
density change.

The coverage indices given in Figure 6 were generally consistent.
The roundness of the four groups of mycelia showed little difference.
However, as the subculture times increase, the groove depth, mycelial
density, and their rate of changes significantly decreased, even falling
below X2-T. This phenomenon suggested that during the process, a
faster growth rate in the subculture leads to sparser mycelium texture,
darker coloration, and shallower grooves. On the contrary, X2-T
exhibited the lowest coverage due to its extremely slow growth rate
but maintained relatively completed roundness, and the mycelial
texture was still white and dense with obvious grooves.

3.3 Results of enzyme activity

In this study, 30 samples were selected from X2-N, X2-5, X2-14,
and X2-T. The anthrone colorimetric method was used to calculate the
index of cellulase activity in the unit of mycelium mass using Formula
11. The comprehensive statistical results of these indexes through one-
way ANOVA showed that there were statistical differences in cellulase
activity among the four groups (P< 0.001). As shown in Figure 7A,
during the process of subculture, the cellulase activity was subject to the
characteristics of decreasing and then increasing, and the cellulase
activity of the degraded mycelium was lower than that of X2-N.
Furthermore, as shown in Figure 7B, the laccase activity was most
active in the degraded mycelium.

Comparing Figures 5–7 shows that the cellulase activity trend of the
mycelium was basically consistent with the analysis results of five
indices related to its mycelium outline, as well as the analysis results
of the two indices of mycelium coverage and roundness in its texture
morphology. However, the laccase activity of the strain was different
from the 10 indices in the outline and texture of the mycelium, and
contrarily, the laccase activity of the degraded mycelium was
particularly significant. Therefore, from the physiological perspective
of themycelium, the cellulase activity of thismycelium can be consistent
with the phenotypic characteristic indices of the mycelium. Cellulase
activity can be well used to verify the accuracy of digital image
processing technology in the analysis of phenotypic characteristics.

4 Discussion

As a species of edible fungi with high yield and high economic
value, the analysis of the phenotypic characteristics of P. geesteranus
currently involves a lot of manual repeated operations, mainly
including the average growth rate, color, texture, density, and
edge uniformity, measured and calculated by a manual ruler or
experience (Cardini et al., 2020). By applying digital image
technology to the analysis of the mycelium, its phenotypic data
can not only improve the accuracy of phenotypic characteristics
obtained by manual measurement but also convert qualitative
phenotypic characteristics into objective ones that can be
qualitatively and quantitatively analyzed (Hardy et al., 2017). It
has been shown that the use of digital image processing technology is
regarded as an automated mean to extract and analyze the
phenotypic characteristics of the mycelium, which has obvious
advantages (Phoulady et al., 2016).
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In order to better analyze the phenotypic characteristics of P.
geesteranus, digital image processing technology has made certain
progress in the following aspects (Alkhudaydi et al., 2019):

1) Image acquisition and preprocessing: High-quality image
acquisition equipment and preprocessing techniques are used to
obtain the enhanced images of the growth process of P. geesteranus.

2) Feature extraction: Relevant features related to the phenotype of
P. geesteranus are extracted from the preprocessed images. These
features can include shape, color, and texture (Yang et al., 2024).

3) Algorithm design and analysis: Utilizing algorithms and
mathematical formulas to digitally calculate the phenotypic
characteristics of P. geesteranus (Zhai et al., 2019).

4) Application and expansion: Combining technologies from
other fields with digital image processing to achieve more
efficient and accurate phenotypic analysis of P. geesteranus
(Wei et al., 2021).

In our study, the statistical analysis results of the above phenotypic
characteristics showed that during the subculture process of the
mycelium, the growth rate of the mycelium showed a trend of
slowing down at first and then accelerating, and the texture quality
of the mycelium decreased with the acceleration of their growth rate.
At the same time, the growth ability of the degraded mycelium was
definitely the weakest. Therefore, in the early breeding stage of the
mycelium, we could efficiently eliminate those degraded mycelia with
slow production speed from the outline indices, and we also eliminated
those mycelia with uneven texture and sparse density from the texture
indices. Thus, among these two types of phenotypic characteristics, the
mycelium with better growth, higher quality, and stronger vitality
could be quickly identified for cultivating P. geesteranus.

In summary, there is still considerable room for development in the
digital image processing research of P. geesteranus phenotypic analysis.
In this paper, four groups of mycelia, X2-N, X2-5, X2-14, and X2-T,
were formulated by using digital image processing technology from its
outline and texture morphology. However, different edible fungus
species had individual differences, and their phenotypic
characteristics were also different in the macroscopic view.
Therefore, in the field of research on the phenotypic characteristics
of edible fungi, it is necessary to combine the characteristics of different
mycelia to address proper algorithms and analysis schemes of
phenotypic characteristics (Zhang et al., 2020).

5 Conclusion

This paper studied the phenotypic characteristics of the mycelium
of P. geesteranus by using image recognition technology.We found that
the mycelium was analyzed from the outline and texture shapes. In the
outline shape, five indexes, namely, mycelium radius, perimeter, area,
growth rate, and change speed, were calculated to obtain the results of
quantitative analysis. In texture shape, five indices, namely, mycelial
coverage, roundness, groove depth, density, and density change, were
calculated to obtain the results of qualitative analysis. All indices of the
degraded mycelium were significantly lower than those of the non-
degraded mycelium, and the obtained analysis results showed large
statistical differences (P< 0.05). Moreover, these analysis results were

further verified by using cellulase activity. It could be observed that
during the subculture process of the mycelium, the growth rate of the
mycelium showed a trend of slowing down at first and then
accelerating, and the texture quality of the mycelium decreased with
the acceleration of its growth rate. At the same time, the growth ability
of the degraded mycelium was definitely the weakest. Our results
revealed a close relationship between phenotypic characteristics and
mycelial quality, providing a rapid and accurate method for strain
selection in the early breeding stage of P. geesteranus.
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