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The simulation-to-reality (sim2real) problem is a common issue when deploying
simulation-trained models to real-world scenarios, especially given the
extremely high imbalance between simulation and real-world data (scarce
real-world data). Although the cycle-consistent generative adversarial network
(CycleGAN) has demonstrated promise in addressing some sim2real issues, it
encounters limitations in situations of data imbalance due to the lower capacity of
the discriminator and the indeterminacy of learned sim2real mapping. To
overcome such problems, we proposed the imbalanced Sim2Real scheme
(ImbalSim2Real). Differing from CycleGAN, the ImbalSim2Real scheme
segments the dataset into paired and unpaired data for two-fold training. The
unpaired data incorporated discriminator-enhanced samples to further squash
the solution space of the discriminator, for enhancing the discriminator’s ability.
For paired data, a term targeted regression loss was integrated to ensure specific
and quantitative mapping and further minimize the solution space of the
generator. The ImbalSim2Real scheme was validated through numerical
experiments, demonstrating its superiority over conventional sim2real
methods. In addition, as an application of the proposed ImbalSim2Real
scheme, we designed a finger joint stiffness self-sensing framework, where
the validation loss for estimating real-world finger joint stiffness was reduced
by roughly 41% compared to the supervised learning method that was trained
with scarce real-world data and by 56% relative to the CycleGAN trained with the
imbalanced dataset. Our proposed scheme and framework have potential
applicability to bio-signal estimation when facing an imbalanced
sim2real problem.
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1 Introduction

In the field of deep learning, it is a prevalent method to train the
model within a simulated environment and afterward deploy it in
real-world scenarios (Tobin et al., 2017). However, modeling
discrepancies between the simulation and real-world domains
make it difficult to replicate simulation results in the real world
(Truong et al., 2021). The gap between simulation and real-world
data is known as the simulation-to-reality (sim2real) problem
(Hofer et al., 2021). Additionally, in certain fields like medicine
and healthcare, the challenge is not only addressing the sim2real
problem but also doing it in the context of data imbalance, especially
with featured abundant simulation data and scarce real-world data.
This phenomenon arises because obtaining real-world data is
expensive and risky, and in some cases, even illegal or unethical
(Abascal et al., 2021). Such challenges can be further characterized as
the imbalanced sim2real problem. Further refinement arises in the
imbalanced sim2real problem depending on the nature of the real-
world domain.When the real-world domain is a categorical variable,
the problem is identified as a classification-type imbalanced sim2real
problem. Conversely, when the real-world domain is continuous, it
presents a specific challenge known as the regression-type
imbalanced sim2real problem (Han et al., 2022). The regression-
type imbalanced sim2real problem is particularly difficult because
regression is equivalent to having theoretically infinite categories,
demanding greater efficacy and accuracy in the transformation
process. To bridge the gap between simulated and real-world
environments with imbalanced data, researchers have proposed
some methods, which are mainly categorized into domain
randomization and domain adaptation (Salvato et al., 2021).
However, both methods encounter challenges when confronted
with the regression-type imbalanced sim2real problem.

Starting with domain randomization, it entails randomizing the
simulation model to a wide range of simulated environments (such
as the parameters of the friction and contact models and possible
delays in the actuation) during training (Muratore et al., 2022). By
training in such varied environments, models have the potential to
attain superior generalization capabilities in the real-world (Tobin
et al., 2017). Domain randomization has the potential to address the
regression-type imbalanced sim2real problem completely, avoiding
the dependence on the real-world data. However, domain
randomization can lead to significant computational costs
because of the need for multiple simulations to account for all
environmental variations (Josifovski et al., 2022). Despite the
deployment of a multitude of simulation environments, domain
randomization still cannot fully capture the complexities and
natures of the real world (Zhao et al., 2020). Furthermore, while
real-world data may be scarce, they are not entirely absent. Thus,
exclusive reliance on domain randomization may lead to
underutilizing the real-world data (Ding et al., 2020).

Conversely, domain adaptation aims to align the disparity
between domains such that the trained model in simulation can
be generalized into the real-world domain, which entails the training
of models utilizing a combination of simulation and real-world data
(Peng et al., 2022). Some researchers combined domain adaptation
with imbalanced learning. Such methods can tackle the label shift
problem encountered during the training and testing phases, which
can ensure that models maintain robust classification performance

even when the distributions of the training and test datasets diverge
(Zhu et al., 2022; Ding et al., 2023). Other imbalanced domain
adaption methods emphasize addressing imbalances that frequently
arise among different categories for classification tasks, regardless of
data count or distribution (Kuang et al., 2022).

However, current existing imbalanced domain adaptation
learning almost exclusively focuses on classification issues, with
scarce solutions addressing the regression-type sim2real problem.
Moreover, most imbalanced domain adaptation methods address
the issue of quantity imbalances in input data. Given the overarching
context of sim2real, simulations serve as inputs and real-world data
act as the corresponding outputs (as labels), while finding a source
and target domains with balanced label space is usually arduous or
even impossible (Farahani et al., 2021). Lastly, in situations with
quantitative imbalances, the unpaired simulation and real-world
data emerge as a significant constraint in harnessing this
methodology. Thus, current domain adaptation techniques
remain insufficient at addressing the regression-type imbalanced
sim2real problem comprehensively.

Setting aside the imbalanced data factor, one methodology to
address the sim2real challenge is the bidirectional unsupervised
domain adaptation approaches, which entail the concurrent learning
of both sim2real and real2simmapping (Bhagat et al., 2019). Among
these approaches, the cycle-consistent adversarial network
(CycleGAN) stands out as one of the most notable approach
(Zhu et al., 2017). The CycleGAN’s prowess lies in its ability to
manage the sim2real challenge even with unpaired training datasets.
Furthermore, it has been verified that simultaneously tackling both
sim2real and real2sim not only enhances the quality of the generated
data but also exhibits considerable generalizability even faced with
unseen data samples. Consequently, this facilitates a more effective
transfer of knowledge between the two domains (Chen et al., 2022).
The efficacy has shown in scenarios where both simulation and real-
world data are abundant and balanced, as demonstrated in works
such as Chen et al. (2022), Jianu et al. (2022), and Zhao et al. (2023),
which contain 1,429, 2079, and 1980 simulation and real-world data,
maintaining a 1:1 ratio, respectively. However, when dealing with
the regression-type imbalanced sim2real problem, CycleGAN may
have the following two problems, as shown in Figures 1A, B:

1. Scarce real-world data for training discriminator. As shown in
Figure 1A, in the CycleGAN framework for sim2real tasks,
both the ground truth real-world domain and transferred real-
world domain are typically provided to the discriminator.
However, scarce real-world data make the training of
discriminator quite difficult as it is difficult to obtain the
correct distribution of real-world data, culminating in the
generator’s incapacity to generate data that resemble
real-world data.

2. Specific sim2real mapping issue. As shown in Figure 1B, while
it is possible to learn a mapping from the simulation domain to
the real-world domain with unpaired data using CycleGAN, it
may not necessarily generate the desired specific mapping,
causing the transferred real-world domain to deviate from the
expectation (Harms et al., 2019). In other words, the structure
of CycleGAN is capable of learning a domain transformation
between simulation and real world represented by Gsim2real

(abbreviated as Gs2r) : xS → ~xS→R and Greal2sim (abbreviated

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Zhou et al. 10.3389/fbioe.2024.1334643

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1334643


as Gr2s) : xR → ~xR→S. Although we hope that xS1 → ~xS1→R1

can be preserved, it potentially learns a domain transformation
between S1 and another real-world subdomain R2 as well. Even
though the discriminator may consider ~xR1 orR2 or R3 or... as
“real,” such mappings do not align with our expectation
(Zhang et al., 2018; Xie et al., 2020). This predicament
stems from the CycleGAN’s inherent capability to ensure
cycle consistency, e.g., Gr2s (Gs2r(xS)) = xS. It is possible to
demonstrate that any bijective geometric transformation T,
along with its inverse T −1, can be applied to Gs2r and Gr2s such
that Gs2r′ = Gs2r °T and Gr2s′ = Gr2s °T −1 and the transformed
functions Gr2s′ (Gs2r′(xS)) = xS, is also cycle-consistent (here °
denotes the concatenation operation of two transformations).
CycleGAN lacks the direct error between Gs2r(xS) and xR or
Gr2s(xR) and xS, which introduce uncertainty and difficulty in
achieving desired outputs task. Although the presence of
abundant simulation and real-world data could somehow
mitigate this issue, the results would be significantly affected
when dealing with the quantitative regression-type sim2real
problem with scarce real-world data.

To address the sim2real challenge with imbalanced
paired–unpaired data, the imbalanced Sim2Real (ImbalSim2Real)
scheme was proposed. Although the ImbalSim2Real scheme
incorporates architectural components commonly found in
models like the CycleGAN, such as Gs2r and Gr2s, as well as the
discriminator for simulation data (abbreviated as Dsim) and
discriminator for real-world data (abbreviated as Dreal), it

introduces several innovations tailored specifically to address the
regression-type imbalanced sim2real problem.

Separate training: In the ImbalSim2Real scheme, in order to
make full use of all real-world data, the dataset is segmented into
paired and unpaired data, and two-fold training is performed.

Space squashing with discriminator-enhanced samples: The
first-fold shifts attention to unpaired data. As shown in
Figure 1C, to enhance the capability of the discriminator, the
discriminator is space-squashed by providing additional
discriminator-enhanced samples (DES). The strength of the
discriminator plays a crucial role in the training of the generator
as a stronger discriminator forces the generator to improve its ability
to generate realistic samples (Schonfeld et al., 2020).

Data consistency through targeted regression loss: The second-
fold training focuses on paired data. As shown in Figure 1D, to
effectively utilize paired data and ensure a specific and quantitative
mapping between the simulation domain and ground truth real-
world domain, the second-fold training involves a data-consistency
module, which is referred to as targeted regression loss (TRL). The
update ofGs2r is not only confined to the discriminator but also has a
direct correlation with the TRL, hence lowering the uncertainty and
difficulties associated with obtaining desired outputs. Following the
enhancement by the first-fold, the second-fold was used to further
minimize the solution space of Gs2r for paired data in order to
improve the accuracy of unpaired data generation.

As an application of the ImbalSim2Real scheme, we focus on the
finger joint stiffness sensing problem, taken as a prime imbalanced
sim2real problem in the soft robot-assisted rehabilitation scenario. Soft

FIGURE 1
Current issues with CycleGAN when faced with the imbalanced sim2real problem and the potential solution. (A) Scarce real-world data for
discriminator, (B) Specific sim2real mapping issue, (C) Space-squashing with DES, (D) Data-consistency through TRL.
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actuators have been applied in various healthcare fields, such as
rehabilitation (Wang et al., 2021), surgery (Lu et al., 2023), and
assistance (Zhou et al., 2022). In particular, Heung et al. analyzed
the relationship between finger joint stiffness, soft actuator’s angle, and
air pressure, and hence developed an accurate analytic angle-pressure-
finger joint stiffness model (Heung et al., 2020). However, this approach
is based on the chamber structure of the soft actuator, which cannot be
used with a model-unknown soft actuator because of its model
dependency (Matsunaga et al., 2023). In spite of the lack of the
literature, it is not difficult to conceive the possibility of estimating
finger joint stiffness by training a neural network-based finger joint
stiffness self-sensing scheme with the air pressure and angle of a soft
actuator as inputs. We utilized a simulation-based model, notably
COMSOL Multiphysics for data collection. The simulation data
would be transformed into real-world data through the
ImbalSim2Real scheme, thus augmenting the availability of real-
world data, and then, generated real-world data could be used to
train a finger joint stiffness self-sensing scheme.

Our contribution can be summarized as follows:

1. An ImbalSim2Real scheme was specifically proposed for the
purpose of transferring simulation data to real-world data in
regression tasks with an imbalanced dataset.

2. A finger joint stiffness self-sensing scheme was proposed, in
which the finger joint stiffness can be estimated online without
the need for the analytic model of the soft actuator.

3. The novel finger joint stiffness self-sensing framework which
combined the self-sensing scheme with the ImbalSim2Real
scheme was proposed. To the best of our knowledge, this is the

first framework for the learning-based estimation of finger
joint stiffness. Furthermore, this framework holds potential for
the application in other experiments requiring the estimation
of biological signals in real world.

This paper is structured as follows. In Section 2, the proposed
framework is presented and discussed. Section 3 provides a detailed
description of the numerical imbalanced domain transfer experiment
and finger joint stiffness experiment. The results of the experiments are
presented and analyzed in Section 4. Ablation studies are conducted in
Section 5 to further validate the efficacy of the proposed ImbalSim2Real
scheme. In Section 6, the implications and limitations of the proposed
framework are discussed. Finally, in Section 7, the conclusion and
directions for future research are outlined.

2 Methods

2.1 Finger joint stiffness self-
sensing framework

The flowchart of the finger joint stiffness self-sensing framework
is depicted in Figure 2A, comprising both the ImbalSim2Real
scheme and the self-sensing scheme. The input to the framework
constitutes the simulated finger joint stiffness-related data (air
pressure and angle). The simulated finger joint stiffness-related
data were first transferred into regressed real-world finger joint
stiffness data by the ImbalSim2Real scheme shown in Figure 2B. The
regressed real-world finger joint data were then utilized to train the

FIGURE 2
(A) A Flowchart of finger joint stiffness self-sensing scheme framework, (B) ImbalSim2Real scheme, (C) The architecture of the G and D, (D) Finger
joint stiffness self-sensing scheme.
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self-sensing scheme shown in Figure 2D, which could be applied to
estimate real-world finger joint stiffness.

2.2 ImbalSim2Real scheme

As illustrated in Figure 2B, the ImbalSim2Real scheme comprises a
generator Gs2r that generated real-world data from simulation data and
Gr2s that generated simulation data based on real-world data (as
mentioned before, the generated real-world data and generated
simulation data were named regressed real-world data and regressed
simulation data, respectively). A discriminator Dreal is applied for
judging real-world data or regressed real-world data, and a
discriminator Dsim is applied for judging simulation data or regressed
simulation data (all abbreviations for the symbols used are provided in
SupplementaryMaterial S1). The ImbalSim2Real scheme contained total
three loss functions, namely, adversarial loss LGAN, targeted regression
loss LTRL, and cycle-consistency loss Lcyc. Given this diversity in loss
mechanisms, the scheme employed a two-fold training approach.

2.2.1 Adversarial loss
In this study, LGAN was divided into two parts, LGAN(s2r) and

LGAN(r2s), respectively. The adversarial loss is defined by Zhu et al.
(2017), which is expressed as follows:

LGAN s2r( ) Gs2r, Dreal( ) � Ereal~pdata real( ) logDreal real( )[ ]

+ Esim~pdata sim( ) log ((1 −Dreal Gs2r sim( )( ),

LGAN r2s( ) Gr2m,Dsim( ) � Esim~pdata sim( ) logDsim sim( )[ ]

+ Ereal~pdata real( ) log (1−( Dsim Gr2s real( )( ).

The real-world data conform to the distribution pdata(real), where
real ~ pdata(rea) indicates that the real-world data are sampled from
pdata(real). Similarly, the simulation data conform to the distribution
pdata(sim), where sim ~ pdata(sim) indicates that the simulation data
are sampled from pdata(sim). Although LGAN was the same as the loss
function of CycleGAN, the training data were different. Whether in
CycleGAN or GAN, the generator is trained to maximize the
probability of the discriminator making a mistake, and the
discriminator is trained to correctly classify the samples as real or
generated, while the generator and discriminator perform a min–max
game. At the same time, a powerful discriminator encourages the
generator to increase its capacity to produce realistic samples, which
is a critical factor in the training of the generator.

ForDsim, because there is a large amount of true simulation data,
Dsim can make good judgments and Gr2s can capture the simulation
data distribution, regardless of the amount of real-world data.
However, for Dreal, it can judge poorly when there are just a few
true real-world data. In order to improve the performance ofDreal, a
strategy of providing Dreal with DES was proposed. By providing
Dreal with DES, the discriminator was exposed to a wider range of
data. This squashed the solution space of the discriminator, which
improved its ability to distinguish between real and fake samples,
resulting in more accurate guidance to Gs2r. Due to the inherent
disparities between simulation environments and real-world data, a
bijective relationship existed between simulation data and real-
world data, while these two sets of data remained independent of

each other. Consequently, this results in data derived from
simulations being totally distinct from real-world data. Therefore,
Gr2s(Gs2r(simulation)) could be considered fake data forDreal. After
convergence, the data equivalency between simulation and
Gr2s(Gs2r(simulation)) would be established.

2.2.2 Targeted regression loss
Only LGAN could hardly guarantee that the problem of mis-

mapping would not arise for paired data. An example to illustrate
the concept of the mis-mapping problem is shown herein. Consider
two sets, X and Y, where each element in X has a corresponding
element in Y based on a pre-defined mapping. Assume X = {1, 2, 3}
and Y = {a, b, c}, with the mapping 1→ a, 2→ b, and 3→ c. When
using the conventional GAN model to generate elements of Y from
X, the generator may learn mappings such as 2→ a, 3→ b, and 1→
c, which do not only align with the specific desired mapping but also
satisfies the GAN loss. In order to ensure data consistency, a specific
loss term was introduced for paired simulation and real-world data,
which can be expressed as

LTRL s2r( ) � 1
n
∑
n

i�1
Gs2r simi( ) − reali( )2,

LTRL r2s( ) � 1
n
∑
n

i�1
Gr2s reali( ) − simi( )2,

where i is the index of the data and n is the total amount of data. As
depicted in Figure 2B, LTRL was employed to ensure the consistency
of the regressed real-world and its corresponding real-world data.
Similarly, LTRL could also be calculated when the real-world data
were converted into regressed simulation data.

2.2.3 Cycle-consistency loss
To solve the problem of training generator with unpaired data

from two domains while preserving cycle consistency, CycleGAN
introduced Lcyc, which was defined as L1 loss in Zhu et al. (2017). In
this study, we modified it to L2 loss, which was more suitable for
regression tasks.

Lcyc Gs2r, Gr2s( ) � Exsim~pdata xsim( ) Gr2s Gs2r sim( )( ) − sim‖ ‖2[ ]

+ Exreal~pdata xreal( ) Gs2r Gr2s real( )( ) − real‖ ‖2[ ].

2.2.4 Two-fold approach training
Due to the presence of both unpaired and paired data types,

the proposed ImbalSim2Real scheme required a two-fold
approach for training the generator. The first-fold approach
employed LGAN + Lcyc as the loss function. This approach
used all the available data, including both paired and unpaired
data. The second-fold approach utilized only the paired data and
employed the use of LTRL as the loss function. The usage ratio of
the first fold: second fold = 2:1.

2.3 Neural network implementation

As illustrated in Figure 2C, the generator utilizes a multilayer
perceptron (MLP), consisting of 5 hidden layers with 20 nodes per
layer, connected by an activation function ReLu and a linear layer.
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The activation function of the discriminator is LeakyReLu. It is
worth mentioning that the output layer of the discriminator in the
code is a linear layer rather than a sigmoid layer, which is used for
calculating the least squares based on the framework of least squares
generative adversarial net (LSGAN) to mitigate the issue of
vanishing gradients (Mao et al., 2017). The Adam optimization
algorithm is selected as the optimizer for all schemes. The finger
joint stiffness self-sensing scheme also utilizes an MLP with five
hidden layers, each containing 20 nodes. The activation function is
ReLu, the output layer is a linear layer, and L2 loss is employed as the
cost function. Throughout the training of all schemes, the Adam
optimization algorithm is utilized. All schemes were developed using
Python 3.9.12 64-bits. The neural networks were developed using
PyTorch 1.12.1 with CUDA 11.3 support for enhanced
computational performance.

3 Experiment setting

3.1 Numerical imbalanced domain transfer
experiment setting

To investigate the capacity of the ImbalSim2Real scheme in
addressing regression-type imbalanced sim2real problems with
varying complexity domain transformations, three sets of
numerical imbalanced domain transfer experiments (numerical
experiments) were conducted between two domains: the source
domain is represented by y1 � f1(x1, x2) and the target domain
is represented by y2 � f2(x1, x2). The functional relationships
and respective data amount of the three sets are detailed
in Table 1.

Group A involves a mapping from a complex domain to another
complex domain, group B involves a mapping from a complex
domain to a simple domain, and group C involves a mapping from a
simple domain to a complex domain (the complexities of the three
sets of numerical experiments are depicted in the Supplementary
Material S2). The x1 in each group ranges from −1 to 1, with a step
size of 0.1. For x2, groups A, B, and C consist of random numbers
drawn from a uniform distribution between (0, 10), (0, 20), and
(−10,10) with four decimal places, respectively. All data were chosen
randomly. Moreover, the number of data conformed to the
following rules:

y1Number � Paired data +Havey1 noy2,

y2Number � Paired data +Havey2 noy1.

Each group underwent an initial training phase of 5,000 epochs
at a learning rate of 1e-4, followed by 5,000 epochs with a learning

rate of 1e-5. The trained ImbalSim2Real scheme was compared to a
supervised learning method trained on only paired data.

3.2 Finger joint stiffness experiment setting

3.2.1 Data collection of finger joint stiffness data
In order to verify the effectiveness of the finger joint stiffness

self-sensing framework, finger joint stiffness data in FEM software
and real-world were collected.

The actuator’s body (shown in Figure 3(A-1)) was made entirely
of Dragon Skin 10 MEDIUM (Smooth-On, Inc., US), with Kevlar™
(DuPont, Inc., US) wrapped around it using a two-dimensional
hitching technique. The dummy joint (Figure 3(A-2)) was designed
and created using a 3D printer with 20% density PLA based on our
earlier work (Kokubu and Yu, 2020). The dimensions were based on
the average size of Japanese index fingers (Department of Defense
Human Factors Engineering Technical Advisory Group, 2000).
Moreover, to represent finger joint stiffness, a torsion spring was
integrated into the joint.

For the stationary finite element simulation, COMSOL
Multiphysics® was used, and all meshes were done using
tetrahedral elements. Boundary load conditions were applied to
simulate input air pressure and the hyperelastic behavior of the
silicone sections, and a third-order Yeoh hyperelastic constitutive
model was used, with the parameters obtained from the experimental
data on Dragon skin in the Soft Robotics Materials Database
Application (Marechal et al., 2021). The elastic band material,
Smooth-on Sil 950, was modeled as a first-order Yeoh material
model with C1 = 0.34MPa (Labazanova et al., 2021) as it
underwent less deformation than the actuator. To reduce

TABLE 1 Functional relationships for three groups.

Group y1 y2 Range x2 Number
of y1

Number
of y2

Paired
data

Have y1
no y2

Have y2
no y1

A x1x2 x31 + 2 sin (x2) Random (10) 370 30 30 340 0

B x1x2
��
x2

√ − sin (x1) + ��
x23

√ + x14 Random (20) 370 30 10 360 20

C x1 + x2 x1x2 sin (x1) + (x2
3 − x2 cos (x1)) Random

(± 10)
350 50 20 330 30

FIGURE 3
(A) Prototype model, (B) Simulation model.
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computation time, symmetry boundary conditions were applied.
Additionally, gravity was added in all models. The model was
configured for measuring the bending angle (θ) (see Figure 3)
based on experiments designed in the previous work (Tarvainen
et al., 2018; Kokubu and Yu, 2020). The dummy joint was also
modeled using solid mechanics interface and hinge joint conditions.

3.2.2 Dataset preparation and training
process setting

As shown in Figure 2C, the inputs of Gs2r are simulation
angle, pressure, and stiffness values, while the output is the
regressed real-world angle. It should be noted that the
simulation and real-world pressure are the same, with a
maximum air pressure of 100 kPa and an increment of 5 kPa
per pressure level. The finger joint stiffness data in the simulation
were 0.11, 0.15, 0.2, 0.5, 0.58, 0.7, 1.03, 1.19, 1.4, 1.70, and
2.12 Nmm/° and in real world, were 0.11, 0.58, 1.03, 1.19, and
2.11 Nmm/°. These values were selected based on the range of
finger joint stiffness observed in individuals with spasticity and in
healthy individuals (Matsunaga et al., 2023). Among them, 0.11,
1.19, and 2.12 Nmm/° were selected as the training dataset, and
0.58, 1.53, and 1.03 Nmm/° were selected as the validation
dataset. Notably, 1.53 Nmm/° was absent from both the
simulation and real-world training datasets. Each dataset was
divided into two sets, Dataset_1 containing only paired data,
specifically the data on the stiffness values of 0.11, 1.19, and
2.12 Nmm/°, and Dataset_2 containing all the available data.
Datasets were run alternately during the training process.

The ImbalSim2Real scheme was trained for a total of
17,000 epochs with a learning rate of 1e-4, followed by
17,000 epochs with a learning rate of 1e-5. The ImbalSim2Real
scheme was compared to the supervised learning method training
by Dataset_1 and the original CycleGAN training by Dataset_2.
Following the successful training of the ImbalSim2Real scheme,
all simulation data were input into the trained scheme to obtain
regressed real-world data, which were subsequently utilized to
train the finger joint stiffness self-sensing scheme for a total of
10,000 epochs, with a learning rate of 1e-4.

For comparative purposes, two additional finger joint stiffness
self-sensing schemes were developed and implemented. The first
alternative scheme entailed replacing the trained ImbalSim2Real
scheme with the trained original CycleGAN, following the same
steps as previously outlined. The second alternative scheme
employed a supervised learning method, utilizing only real-world
finger joint stiffness data.

4 Results

4.1 Numerical imbalanced domain transfer
experiment results

The results of the numerical experiment are shown in Table 2,
which indicate that the proposed scheme outperforms the
supervised learning method in terms of validation MSE
(detailed results are provided in Supplementary Material S3).
Specifically, the proposed scheme decreases the validation MSE
in groups A, B, and C by 3.81, 5.21, and 29.56 times, respectively.

4.2 Finger joint stiffness experiment results

4.2.1 Finger joint stiffness Imbalanced sim2real
transfer results

The comparative analysis of training losses between the
ImbalSim2Real scheme and the supervised learning method is
illustrated in Figure 4A. The results demonstrate that both the
supervised learning and the proposed ImbalSim2Real scheme
achieve convergence, with the supervised learning method
demonstrating a faster convergence speed. Moreover, as shown in
Figures 4B–F, while the supervised learning method successfully
transforms simulation data samples in the training dataset into real-
world data, it is unable to perform such transformation when the
simulation data samples are not in the training dataset. In contrast,
the ImbalSim2Real scheme yields slightly poorer results for the data
in the training dataset but better results for the data outside of the
training dataset.

In addition, in cases where the finger joint stiffness values are
0.11, 0.58, and 1.03 Nmm/°, the angle values of simulation are
smaller than the corresponding real-world values, but this is
reversed for the stiffness values 1.19 and 2.12 Nmm/°. Since
around 73% of the training dataset cases have simulation angles
larger than their real-world counterparts, the supervised learning
method tends to learn a pattern of reducing simulation angles for
accurate real-world angle transformation. As a result, the resultant
angle values for 0.58 and 1.03 Nmm/° are smaller than the
corresponding angle values of simulation. On the other hand, the
proposed ImbalSim2Real scheme is able to capture the true pattern
of the real-world angles.

In order to quantitatively evaluate the efficacy of the
ImbalSim2Real scheme, a success rate metric, defined by the
proportion of regressed real-world angles falling within 10% of
the true real-world angles, is used to gauge successful
transformations. As shown in Table 3, the ImbalSim2Real
method attains an overall success rate of 88%, which is
considerably higher than 63% achieved by the supervised
learning method and 41% by CycleGAN. Furthermore, in
scenarios without applying any sim2real method, only 34% of the
simulation data naturally align with the real-world data. Notably, for
the data point of 1.03 Nmm/°, the simulation and real-world angles
show close similarity in Figure 4D, and the supervised learning
underestimates most angle values in simulation data in order to
optimize the training loss. In contrast, the proposed scheme avoids
this issue while maintaining data integrity. The results of the original
CycleGAN demonstrate a relatively low success rate in transforming
training data. In terms of generalizability, it performs somewhat
better than supervised learning but is significantly less effective than
the proposed ImbalSim2Real scheme.

TABLE 2 Total validation MSE of the basic numerical experiment.

Group Supervised Proposed Supervised/
proposed

A 1,092.6 286.66 3.81

B 313.9 60.2 5.21

C 8606479 291122 29.56
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4.2.2 Finger joint stiffness self-sensing
framework results

The results presented in Table 4 support a similar conclusion: the
finger joint stiffness self-sensing scheme trained through the
Imbalanced sim2real scheme reduces the estimation error by 41%
compared to the supervised learning method trained on only real-
world data. Additionally, when replacing the Imbalanced sim2real

scheme with CycleGAN, the estimation error increases by 56%.
Moreover, the proposed framework exhibits smaller standard
deviation (STD) values, indicating a more stable output. When
compared to the average MSE of 0.15 Nmm/° reported in previous
studies (Shi et al., 2020), supervised learning achieved a similar
performance, and the proposed scheme is even better, providing
further evidence of its effectiveness as a model-independent method.

FIGURE 4
(A) Convergence graph, (B) Finger joint stiffness = 0.11 Nmm/°, (C) Finger joint stiffness = 0.58 Nmm/°, (D) Finger joint stiffness = 1.03 Nmm/°, (E)
Finger joint stiffness = 1.19 Nmm/°.

TABLE 3 Successful rate for sim2real transfer for each method.

Stiffness value (Nmm/°) 0.11 (%) 0.58 (%) 1.03 (%) 1.19 (%) 2.12 (%) Total (%)

Proposed 90 90 75 85 100 88

CycleGAN 40 30 10 80 45 41

Supervised 95 25 0 100 95 63

No transfer method 25 30 75 5 35 34

TABLE. 4 Results for finger joint stiffness estimation for each method (mean ± STD).

Stiffness value (Nmm/°) 1.53 0.11 0.58 1.03 1.19 2.12 Total MSE Average MSE

Supervised learning 1.12 ± 0.49 0.16 ± 0.21 0.38 ± 0.14 0.61 ± 0.20 1.23 ± 0.17 2.06 ± 0.20 16.00 0.13

CycleGAN 0.96 ± 0.25 0.22 ± 0.27 0.40 ± 0.08 0.59 ± 0.07 1.14 ± 0.11 1.67 ± 0.28 19.60 0.16

Proposed framework 1.32 ± 0.16 0.19 ± 0.19 0.59 ± 0.06 1.06 ± 0.12 1.47 ± 0.18 1.78 ± 0.33 9.43 0.07a

aMSE of 0.15 Nmm/° reported in previous studies (Shi et al., 2020).
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5 Ablation studies

To further assess the efficacy of the ImbalSim2Real scheme,
ablation studies were conducted from three aspects: architectural
differences, sensitivity to the ratio of paired versus unpaired data,
and the impact of target domain data selection strategies.

5.1 Architectural analysis (via the group
A dataset)

The ImbalSim2Real scheme was compared not only to the
supervised learning method but also to the original CycleGAN
and a variant of CycleGAN in which the discriminator only
provided extra fake data without using a targeted regression loss
(fake-provided CycleGAN).

The results in Table 5 reveal that the proposed ImbalSim2Real
scheme has the smallest total validation MSE when converged.
Meanwhile, Figure 5 presents 3D graphs of transformation (lower
row) and projection diagrams (upper row) for different methods.

By comparing the x2 − y plane of the projection diagrams in
Figures 5B, D, despite both the supervised learning and the
original CycleGAN exhibiting the same level of large
validation MSE, the reasons are different. In Figure 5B, the
transferred domain points in the x2 − y plane are divergent
when x2 > 5. These points are considerably distant from the
target domain points, thereby contributing to the large validation
MSE. In contrast, the results of the original CycleGAN do not
diverge. As shown in Figure 5D, in the x2 − y plane, the
transferred data points cluster around the target domain
points but do not align with them when x2 > 5. The large
amount of such data results in a relatively large validation MSE.

The validation MSE in the fake-provided CycleGAN is smaller
than that of the original CycleGAN in Table 5, upon comparing
Figures 5C, D (the iterative process of the fake-provided CycleGAN
is provided in Supplementary Material S4). It is evident that the
fake-provided CycleGAN exhibits superior performance in terms of
the domain transformation, which appears more compressed and
adherent to the target domain points and compares to that of the
original CycleGAN. This can be ascribed to the augmented number
of fake data supplied to Dreal, which drives Gs2r to generate data
points that more resemble the target domain distribution.
Nonetheless, an unambiguous line (green dots form a line from
x2 = 4–6.5) can be discerned in the projection diagram (Figure 5C),
indicating suboptimal or incomplete training of Dreal in the
corresponding region. Comparing the fake-provided CycleGAN
method to the proposed scheme, it can be seen that the

improvement in unpaired data is 1.54 times and that of paired
data is 15.63 times.

5.2 Paired data sensitivity (via the group
B dataset)

To investigate the significance of paired data for domain
transformation and training convergence, we conducted
experiments which maintained a constant total amount of y2

data while controlling the ratio of paired data to unpaired y2 data.
Specifically, two ratios were considered, paired data: have y2 no
y1 = 0:30 and 10:20. It should be noticed that the training process
was performed 10 times for each ratio with 10,000 epochs.

The results in Table 6 indicate that when the data are entirely
unpaired, the performance of the ImbalSim2Real scheme is
significantly degraded. However, when the paired data points
are introduced, the ImbalSim2Real scheme essentially converges
to a similar state. Furthermore, we established a specific
convergence success index, characterized as the validation
MSE below 150, indicating convergence at the specific
mapping. In the 0:30 case, due to the inability to use LTRL,
only one group successfully converges at the specific mapping.
For the remaining nine groups, although the training loss
remains small, the validation loss is relatively large (additional
results for different paired and unpaired ratios are provided in
Supplementary Material S5).

5.3 Data selection analysis (via the group
C dataset)

To verify the impact of the dispersion of target domain data (y2

data) sampling on domain transformation, we performed
experiments with extensive selection and intensive selection of y2

data, respectively, while keeping the number of y2 data and paired
data constant (the specific details regarding the extent of the
extensive and intensive selections are provided in Supplementary
Material S6).

The results in Figure 6B demonstrate that when the source
domain is exceedingly simple and the sampled target domain data
can only represent a fraction of the distribution, the ImbalSim2Real
scheme may learn a distribution that passes through this partial
representation. On the other hand, Figures 6A, C indicate that more
extensive sampling can better reflect the overall distribution, which
is advantageous for the training process of the ImbalSim2Real
scheme. Group C inherently involves a transformation from a

TABLE 5 Total validation MSE of group A for different methods.

Proposed Supervised Fake-provided
CycleGAN

Original
CycleGAN

Original/fake-
provided

Fake-provided/
proposed

Original/
proposed

MSE
(unpaired)

284.8 1,092.2 468.3 1,244.8 2.65 1.64 4.37

MSE
(paired)

1.9 0.381 29.7 28.6 0.96 15.63 15.05

Total 286.7 1,092.6 498.0 1,273.4 2.56 1.74 4.44

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Zhou et al. 10.3389/fbioe.2024.1334643

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1334643


simple domain. The excessively simple distribution of the source
domain (only a red line in Figure 6) results in a limited supply of fake
data for Dreal, thereby limiting its capability to improve. In such

cases, if the quality of the points collected by the source domain is
poor, the learning effect of the uncollected points tends to be
greatly reduced.

FIGURE 5
(A) Proposed method, (B) Supervised learning, (C) Fake-provided CycleGAN, (D) Original CycleGAN; each with upper: Projection diagram, lower:
3D graph.
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6 Discussion

The problem of regression-type imbalanced sim2real poses a
significant challenge when deploying simulation-trained models
to real world, particularly in fields with limited real-world data,
such as medicine and healthcare. In this paper, we proposed
the ImbalSim2Real scheme and conducted detailed
comparisons with the supervised learning and the original
CycleGAN through numerical imbalanced domain transfer
experiments, finger joint stiffness experiments, as well as
ablation studies.

6.1 Compared to the supervised learning

In both the numerical imbalanced domain-transfer experiment and
the finger joint stiffness experiment, the ImbalSim2Real scheme was
compared with the supervised learning method. The findings in Tables
2, 3, 5 consistently demonstrate that, regardless of the type of the
domain transfer problem (complex-to-simple domain, complex-to-
complex domain, and simple-to-complex domain), the proposed
ImbalSim2Real scheme achieves a smaller total validation MSE than
the supervised learning method. More specifically, the supervised
learning exhibits a smaller validation MSE for paired data (within
the training dataset) while showing a larger MSE for unpaired data
(outside the training dataset). Figure 5B indicates that such low
generalization is because the supervised learning methods only rely
on paired data, thus struggling to accurately capture the target domain
distribution, especially in cases of limited data quantity. The supervised
learning method’s low data usage efficiency is the primary drawback
when paired and unpaired data are included in the same training
dataset. Additionally, as indicated in Figure 4A, the loss of the
supervised learning method decreased rapidly, indicating a risk of
overfitting, which also led to an increase in total validation MSE.

TABLE 6 ValidationMSE of group B for differentmethods (paired: unpaired).

0:30 20:10

10 times average 353,220.35 81.67

10 times variance 4.87e + 11 1,384.25

Specific convergence success index 10% 100%

FIGURE 6
(A) Extensive selection, (B) Intensive selection (C) Random selection; each with upper: Projection diagram, lower: 3D graph.
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6.2 Compared to the original CycleGAN

In both the numerical imbalanced domain-transfer experiment
and the finger joint stiffness experiment, comparisons were also
made between the ImbalSim2Real scheme and the CycleGAN, with
detailed contrasts explored in the ablation studies. According to
Figure 5D, the original CycleGAN can learn a subset of the target
domain distribution but still exhibits a large validation MSE. This
phenomenon can be attributed to two key factors, which are
identified as the ‘scarce real-world data for discriminator issue’
and the ‘specific sim2real mapping issue’.

To address the specific sim2real mapping issue, a specific
mapping constraint LTRL was introduced to the ImbalSim2Real
scheme. The results in Tables 5, 6 validate the effectiveness of this
approach. In contrast to the supervised learning method, CycleGAN
relies solely on the distribution information of paired data while
entirely neglecting to utilize the critical aspect of accurate mappings
between the source and target domains. This results in CycleGAN’s
convergence being somewhat randomly achieved, which can be
inferred through the convergence success index, as shown in
Table 6. The ImbalSim2Real scheme combines the advantages of
the supervised learning method and CycleGAN, effectively utilizing
paired data through LTRL and LGAN while fully leveraging unpaired
data via LGAN. Moreover, as shown in Figure 4A and Table 6, it is
evident that not only is there no conflict between LTRL and LGAN +
Lcyc but this combination also contributes to more stable and robust
convergence. LTRL represents a subset of the mapping sets that
satisfies LGAN + Lcyc; thus, LTRL is expected to accelerate the
convergence of LGAN + Lcyc. Additionally, due to the alternating
employment of LGAN + Lcyc and LTRL in the ImbalSim2Real
scheme, LGAN + Lcyc serves as a regularization term to prevent
overfitting caused by LTRL. Although the significance of LTRL and
paired data was demonstrated in the paired data sensitivity
experiment, the exact minimum proportion of paired data
necessary for LTRL to exhibit its effectiveness remained
unestablished, which needs to be investigated in future work.

To address the scarce real-world data for the discriminator issue,
we proposed Dreal with additional DES. The effectiveness of this
method is reflected in Table 5, where the validation MSE of the fake-
provided CycleGAN is reduced by 2.65 times compared to the
Original CycleGAN, even in the absence of LTRL. In instances,
where there are paired data to guarantee that the data distribution
has a specific limit, providingDreal with additional DES enables it to
determine which data distribution is fake, thereby further
prohibiting Gs2r from creating data comparable to the fake data
distribution. This method cannot guarantee that the final Gs2r

distribution would be correct, but it increases the likelihood of
learning a proper distribution compared to not providing DES.
Furthermore, it is well-known that the training of GAN-type models
is heavily dependent on the quality of the training data. For the
ImbalSim2Real scheme, the results of the data selection analysis
experiment (Figure 6) also demonstrate that intensive (this can be
considered low-quality since the term “intensive” suggests a reduced
likelihood of capturing the majority of distribution information)
target domain sampling yields much worse results than extensive or
random (high-quality) target domain sampling. Additionally, as
DES are from the source domain, high-quality source domain
data can also enhance Dreal’s performance. The appearance of an

unambiguous line in Figure 5C substantiates this inference. A closer
inspection of the source domain reveals the absence of sampling
points in the region traversed by the unambiguous line within the
x2 − y plane. This deficiency in the distribution of source domain
sampling points adversely affects Dreal’s training, reflecting in the
observed anomaly. Similarly, the findings in Figure 6B also verify
that when the source domain is inherently simple with limited
information, providing additional DES did not yield effective results.
Therefore, no matter whether there is an absence of certain source
domain data or the source domain lacks complexity, both scenarios
can lead to Dreal incapable of making accurate judgments. The final
ImbalSim2Real scheme only misidentifies a domain that contains
subsets similar to a portion of the target domain as the true
target domain.

In summary, the resolution of the sim2real challenge hinges
critically on both the quality and quantity of data from the source
domain, as well as from the target domain. In the realm of the
imbalanced sim2real problem, the limitations on the quantity of
target domain data necessitate the use of higher-quality data, such as
paired data or those capable of representing distribution
characteristics. In cases where high-quality sampling of the target
domain data is not feasible, it becomes essential to utilize the
available target domain data with high quality, which is the
primary motivation behind introducing LTRL. Regarding the
source domain data, while increasing its quantity, high-quality
source domain sampling points are critical for the successful
training of Dreal. The ImbalSim2Real scheme effectively
capitalizes on this characteristic, an aspect that is notably absent
in the original CycleGAN architectures.

6.3 Application to the finger joint stiffness
self-sensing framework

The proposed ImbalSim2Real scheme was used to resolve a
practical issue in a model-independent finger joint stiffness self-
sensing framework. The results of finger joint stiffness estimation in
Table 4 demonstrate that the performance of the proposed
framework is superior to the supervised learning method trained
on a scarce real-world dataset and the original CycleGAN. However,
the results of joint stiffness 1.19 and 2.12 Nmm/° are inferior to the
supervised learning due to the following possible causes: first, during
the training of the finger joint stiffness self-sensing scheme, real-
world data are not used for training; instead, the training data
consisted solely of regressed data, which included the values of
1.19 and 2.12mm/°. This implies that fine-tuning the trained model
on real-world data may provide a potential solution to address this
issue more effectively (real-world data fine-tuned results are
provided in Supplementary Material S7). Second, 1.19 and
2.12 Nmm/° were the greatest values relative to the rest of the
data; hence, their MSEs tend to be larger.

7 Conclusion

In this study, we proposed a novel ImbalSim2Real scheme. The
proposed ImbalSim2Real scheme includes a targeted regression loss
and augments fake data for enhanced domain transfer. This approach
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effectively leverages both paired and unpaired data to achieve a
specific regression-type domain transfer, even in situations with
limited available real-world data. Furthermore, we presented a
finger joint stiffness framework as an application of the proposed
ImbalSim2Real scheme.With the proposed framework, the validation
loss for estimating real-world finger joint stiffness was reduced by
roughly 41% compared to the supervised learningmethod and by 56%
relative to the CycleGAN trained on the imbalanced dataset. Future
research should concentrate on further enhancing the training
effect of Dreal in the ImbalSim2Real scheme and investigating the
potential applicability of the ImbalSim2Real scheme to high-
dimensional datasets.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

ZZ: conceptualization, methodology, software, validation,
writing–original draft, and writing–review and editing. YL:
investigation and writing–review and editing. PT: investigation
and writing–review and editing. RQ: investigation and
writing–review and editing. SK: investigation and writing–review
and editing. FM: investigation and writing–review and editing. QX:
investigation and writing–review and editing. WY:
conceptualization, funding acquisition, supervision, and
writing–review and editing.

Funding

The authors declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was partially supported by JST, the establishment of university
fellowships toward the creation of science technology innovation,
grant number JPMJFS2107, and Grant-in-Aid for Scientific
Research (B), JSPS KAKENHI, grant number 22H03450.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbioe.2024.1334643/
full#supplementary-material

References

Abascal, J. F. P. J., Ducros, N., Pronina, V., Rit, S., Rodesch, P. A., Broussaud, T., et al.
(2021). Material decomposition in spectral ct using deep learning: a Sim2Real transfer
approach. IEEE Access 9, 25632–25647. doi:10.1109/ACCESS.2021.3056150

Bhagat, S., Banerjee, H., Tse, Z. T. H., and Ren, H. (2019). Deep reinforcement
learning for soft, flexible robots: brief review with impending challenges. Robotics 8,
1–36. doi:10.3390/robotics8010004

Chen, W., Xu, Y., Chen, Z., Zeng, P., Dang, R., Chen, R., et al. (2022). Bidirectional
sim-to-real transfer for GelSight tactile sensors with CycleGAN. IEEE Robot. Autom.
Lett. 7, 6187–6194. doi:10.1109/LRA.2022.3167064

Department of Defense Human Factors Engineering Technical Advisory Group
(2000) Human engineering design data digest.

Ding, Y., Jia, M., Zhuang, J., Cao, Y., Zhao, X., and Lee, C. G. (2023). Deep imbalanced
domain adaptation for transfer learning fault diagnosis of bearings under multiple
working conditions. Reliab. Eng. Syst. Saf. 230, 108890. doi:10.1016/j.ress.2022.108890

Ding, Z., Lepora, N. F., and Johns, E. (2020). Sim-to-Real transfer for optical tactile
sensing. Proc. - IEEE Int. Conf. Robot. Autom., 1639–1645. doi:10.1109/ICRA40945.
2020.9197512

Farahani, A., Voghoei, S., Rasheed, K., and Arabnia, H. R. (2021). “A brief review of
domain adaptation,” in Advances in data science and information engineering, 877–894.
doi:10.1007/978-3-030-71704-9_65

Han, X., Zheng, H., and Zhou, M. (2022). CARD: classification and regression
diffusion models. Adv. Neural Inf. Process. Syst. 35. doi:10.48550/arXiv.2206.07275

Harms, J., Lei, Y., Wang, T., Zhang, R., Zhou, J., Tang, X., et al. (2019). Paired cycle-
GAN-based image correction for quantitative cone-beam computed tomography.Med.
Phys. 46, 3998–4009. doi:10.1002/mp.13656

Heung, H. L., Tang, Z. Q., Shi, X. Q., Tong, K. Y., and Li, Z. (2020). Soft rehabilitation
actuator with integrated post-stroke finger spasticity evaluation. Front. Bioeng.
Biotechnol. 8, 1–10. doi:10.3389/fbioe.2020.00111

Hofer, S., Bekris, K., Handa, A., Gamboa, J. C., Mozifian, M., Golemo, F., et al. (2021).
Sim2Real in Robotics and automation: applications and challenges. IEEE Trans. Autom.
Sci. Eng. 18, 398–400. doi:10.1109/TASE.2021.3064065

Jianu, T., Gomes, D. F., and Luo, S. (2022). Reducing tactile Sim2Real domain gaps via
deep texture generation networks. Proc. - IEEE Int. Conf. Robot. Autom., 8305–8311.
doi:10.1109/ICRA46639.2022.9811801

Josifovski, J., Malmir, M., Klarmann, N., Zagar, B. L., Navarro-Guerrero, N., and
Knoll, A. (2022). Analysis of randomization effects on Sim2Real transfer in
reinforcement learning for robotic manipulation tasks. IEEE Int. Conf. Intell. Robot.
Syst., 10193–10200. doi:10.1109/IROS47612.2022.9981951

Kokubu, S., and Yu, W. (2020). Developing a hybrid soft mechanism for assisting
individualized flexion and extension of finger joints. Proc. Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. EMBS 2020, 4873–4877. doi:10.1109/EMBC44109.2020.9176061

Kuang, J., Xu, G., Tao, T., and Wu, Q. (2022). Class-imbalance adversarial transfer
learning network for cross-domain fault diagnosis with imbalanced data. IEEE Trans.
Instrum. Meas. 71, 1–11. doi:10.1109/TIM.2021.3136175

Labazanova, L., Wu, Z., Gu, Z., and Navarro-Alarcon, D. (2021) “Bio-inspired design
of artificial striated muscles composed of sarcomere-like contraction units,” in 2021
20th int. Conf. Adv. Robot. ICAR 2021, 370–377. doi:10.1109/ICAR53236.2021.9659330

Lu, Y., Zhou, Z., Kokubu, S., Qin, R., Vinocour, P. E. T., and Yu, W. (2023). Neural
network-based active load-sensing scheme and stiffness adjustment for pneumatic soft
actuators for minimally invasive surgery support. Sensors 23, 833. doi:10.3390/
s23020833

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., and Smolley, S. P. (2017). “Least
squares generative adversarial networks,” in Proceedings of the IEEE international
conference on computer vision (ICCV), 2794–2802. doi:10.1080/0142569900110108

Marechal, L., Balland, P., Lindenroth, L., Petrou, F., Kontovounisios, C., and Bello, F.
(2021). Toward a common framework and Database of materials for soft Robotics. Soft
Robot. 8, 284–297. doi:10.1089/soro.2019.0115

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Zhou et al. 10.3389/fbioe.2024.1334643

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1334643/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1334643/full#supplementary-material
https://doi.org/10.1109/ACCESS.2021.3056150
https://doi.org/10.3390/robotics8010004
https://doi.org/10.1109/LRA.2022.3167064
https://doi.org/10.1016/j.ress.2022.108890
https://doi.org/10.1109/ICRA40945.2020.9197512
https://doi.org/10.1109/ICRA40945.2020.9197512
https://doi.org/10.1007/978-3-030-71704-9_65
https://doi.org/10.48550/arXiv.2206.07275
https://doi.org/10.1002/mp.13656
https://doi.org/10.3389/fbioe.2020.00111
https://doi.org/10.1109/TASE.2021.3064065
https://doi.org/10.1109/ICRA46639.2022.9811801
https://doi.org/10.1109/IROS47612.2022.9981951
https://doi.org/10.1109/EMBC44109.2020.9176061
https://doi.org/10.1109/TIM.2021.3136175
https://doi.org/10.1109/ICAR53236.2021.9659330
https://doi.org/10.3390/s23020833
https://doi.org/10.3390/s23020833
https://doi.org/10.1080/0142569900110108
https://doi.org/10.1089/soro.2019.0115
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1334643


Matsunaga, F., Kokubu, S., Tortos Vinocour, P. E., Ke, M. T., Hsueh, Y. H., Huang, S.
Y., et al. (2023). Finger joint stiffness estimation with joint modular soft actuators for
hand telerehabilitation. Robotics 12, 83. doi:10.3390/robotics12030083

Muratore, F., Ramos, F., Turk, G., Yu, W., Gienger, M., and Peters, J. (2022). Robot
learning from randomized simulations: a review. Front. Robot. AI 9, 1–19. doi:10.3389/
frobt.2022.799893

Peng, J., Huang, Y., Sun, W., Chen, N., Ning, Y., and Du, Q. (2022). Domain
adaptation in remote sensing image classification: a survey. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 15, 9842–9859. doi:10.1109/JSTARS.2022.3220875

Salvato, E., Fenu, G., Medvet, E., and Pellegrino, F. A. (2021). Crossing the reality gap:
a survey on sim-to-real transferability of robot controllers in reinforcement learning.
IEEE Access 9, 153171–153187. doi:10.1109/ACCESS.2021.3126658

Schonfeld, E., Schiele, B., and Khoreva, A. (2020). A U-net based discriminator for
generative adversarial networks. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 8204–8213. doi:10.1109/CVPR42600.2020.00823

Shi, X. Q., Heung, H. L., Tang, Z. Q., Tong, K. Y., and Li, Z. (2020). Verification of
finger joint stiffness estimation method with soft robotic actuator. Front. Bioeng.
Biotechnol. 8, 1–12. doi:10.3389/fbioe.2020.592637

Tarvainen, T. V. J., Fernandez-Vargas, J., and Yu, W. (2018). New layouts of fiber
reinforcements to enable full finger motion assist with pneumatic multi-chamber
elastomer actuators. Actuators 7, 31–18. doi:10.3390/ACT7020031

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba,W., and Abbeel, P. (2017). Domain
randomization for transferring deep neural networks from simulation to the real world.
IEEE Int. Conf. Intell. Robot. Syst., 23–30. doi:10.1109/IROS.2017.8202133

Truong, J., Chernova, S., and Batra, D. (2021). Bi-directional domain adaptation for
Sim2Real transfer of embodied navigation agents. IEEE Robot. Autom. Lett. 6,
2634–2641. doi:10.1109/LRA.2021.3062303

Wang, Y., Kokubu, S., Zhou, Z., Guo, X., Hsueh, Y. H., and Yu, W. (2021). Designing
soft pneumatic actuators for thumb movements. IEEE Robot. Autom. Lett. 6,
8450–8457. doi:10.1109/LRA.2021.3105799

Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., and Zheng, Y. (2020). Self-supervised
CycleGAN for object-preserving image-to-image domain adaptation. Lect. Notes
Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.
12365 LNCS, 498–513. doi:10.1007/978-3-030-58565-5_30

Zhang, Z., Yang, L., and Zheng, Y. (2018). Translating and segmenting multimodal
medical volumes with cycle- and shape-consistency generative adversarial network.
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 9242–9251. doi:10.1109/
CVPR.2018.00963

Zhao, W., Queralta, J. P., and Westerlund, T. (2020). Sim-to-Real transfer in deep
reinforcement learning for Robotics: a survey. 2020 IEEE Symp. Ser. Comput. Intell. SSCI
2020, 737–744. doi:10.1109/SSCI47803.2020.9308468

Zhao, Y., Jing, X., Qian, K., Gomes, D. F., and Luo, S. (2023). Skill generalization of
tubular object manipulation with tactile sensing and Sim2Real learning. Rob. Auton.
Syst. 160, 104321. doi:10.1016/j.robot.2022.104321

Zhou, Z., Kokubu, S., Wang, Y., Lu, Y., Tortos, P. E., and Yu, W. (2022).
Optimization of spring constant of a pneumatic artificial muscle-spring driven
antagonistic structure. IEEE Robot. Autom. Lett. 7, 5982–5989. doi:10.1109/lra.
2022.3162021

Zhu, J.-Y., Efros, T. P., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image
translation using cycle-consistent adversarial networks. Proc. IEEE Int. Conf. Comput.
Vis., 183–202. doi:10.1109/iccv.2017.244

Zhu, Y., Wu, X., Li, Y., Qiang, J., and Yuan, Y. (2022). Self-adaptive imbalanced
domain adaptation with deep sparse autoencoder. IEEE Trans. Artif. Intell. 4,
1293–1304. doi:10.1109/TAI.2022.3196813

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Zhou et al. 10.3389/fbioe.2024.1334643

https://doi.org/10.3390/robotics12030083
https://doi.org/10.3389/frobt.2022.799893
https://doi.org/10.3389/frobt.2022.799893
https://doi.org/10.1109/JSTARS.2022.3220875
https://doi.org/10.1109/ACCESS.2021.3126658
https://doi.org/10.1109/CVPR42600.2020.00823
https://doi.org/10.3389/fbioe.2020.592637
https://doi.org/10.3390/ACT7020031
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/LRA.2021.3062303
https://doi.org/10.1109/LRA.2021.3105799
https://doi.org/10.1007/978-3-030-58565-5_30
https://doi.org/10.1109/CVPR.2018.00963
https://doi.org/10.1109/CVPR.2018.00963
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.1016/j.robot.2022.104321
https://doi.org/10.1109/lra.2022.3162021
https://doi.org/10.1109/lra.2022.3162021
https://doi.org/10.1109/iccv.2017.244
https://doi.org/10.1109/TAI.2022.3196813
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1334643

	Addressing data imbalance in Sim2Real: ImbalSim2Real scheme and its application in finger joint stiffness self-sensing for  ...
	1 Introduction
	2 Methods
	2.1 Finger joint stiffness self-sensing framework
	2.2 ImbalSim2Real scheme
	2.2.1 Adversarial loss
	2.2.2 Targeted regression loss
	2.2.3 Cycle-consistency loss
	2.2.4 Two-fold approach training

	2.3 Neural network implementation

	3 Experiment setting
	3.1 Numerical imbalanced domain transfer experiment setting
	3.2 Finger joint stiffness experiment setting
	3.2.1 Data collection of finger joint stiffness data
	3.2.2 Dataset preparation and training process setting


	4 Results
	4.1 Numerical imbalanced domain transfer experiment results
	4.2 Finger joint stiffness experiment results
	4.2.1 Finger joint stiffness Imbalanced sim2real transfer results
	4.2.2 Finger joint stiffness self-sensing framework results


	5 Ablation studies
	5.1 Architectural analysis (via the group A dataset)
	5.2 Paired data sensitivity (via the group B dataset)
	5.3 Data selection analysis (via the group C dataset)

	6 Discussion
	6.1 Compared to the supervised learning
	6.2 Compared to the original CycleGAN
	6.3 Application to the finger joint stiffness self-sensing framework

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


