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Over the past 35 years, studies conducted worldwide have revealed a
threefold increase in the incidence of thyroid cancer. Strain elastography is
a new imaging technique to identify benign and malignant thyroid nodules
due to its sensitivity to tissue stiffness. However, there are certain limitations of
this technique, particularly in terms of standardization of the compression
process, evaluation of results and several assumptions used in commercial
strain elastography modes for the purpose of simplifying imaging analysis. In
this work, we propose a novel conditional generative adversarial network
(TSE-GAN) for automatically generating thyroid strain elastograms, which
adopts a global-to-local architecture to improve the ability of extracting
multi-scale features and develops an adaptive deformable U-net structure
in the sub-generator to apply effective deformation. Furthermore, we
introduce a Lab-based loss function to induce the networks to generate
realistic thyroid elastograms that conform to the probability distribution of
the target domain. Qualitative and quantitative assessments are conducted on
a clinical dataset provided by Shanghai Sixth People’s Hospital. Experimental
results demonstrate that thyroid elastograms generated by the proposed TSE-
GAN outperform state-of-the-art image translation methods in meeting the
needs of clinical diagnostic applications and providing practical value.
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1 Introduction

Based on high-resolution B-mode ultrasound (US), thyroid nodules have been
identified as one of the most prevalent thyroid disorders, with an incidence rate of up to
67% in adults (Samir et al., 2015; Yoon et al., 2015). Differentiating between benign and
malignant thyroid nodules is crucial, as the risk of morbidity and mortality increases
with the progression of thyroid cancer. Ultrasound elastography (USE) is a noninvasive
technique that takes advantage of the changed elasticity or stiffness of soft tissues
resulting from specific pathological or physiological processes. For instance, many solid
tumors are known to differ mechanically from surrounding healthy tissues. Since
thyroid USE can complement B-mode ultrasound and fine needle aspiration (FNA) in
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assessing thyroid nodules, the combination of thyroid USE with
B-mode ultrasound for clinical diagnosis has become
increasingly popular, thereby improving the ability to
distinguish between benign and malignant thyroid nodules.

Strain Elastography (SE) was the first introduced USE technique.
During the inspection, the operator exerts manual compression on
the tissue with the ultrasound transducer (Ophir et al., 1991). The SE
device is an add-on module to the conventional ultrasound device.
When compression is applied in place, both the B-mode ultrasound
and the corresponding SE images will be displayed on the screen,
which can assist the operator in the stiffness assessment. The process
and principle of SE is shown in Figure 1.

However, there are two existing limitations on strain
elastography.

Firstly, the process of compressing is difficult to standardize in
practice and the stiffness assessment relies heavily on the subjective
judgment of operators.

Furthermore, commercially available USE modes rely on a set
of assumptions about the tissue material such as linear, elastic,
isotropic and incompressible to simplify analysis and
interpretation of imaging (Sigrist et al., 2017). However,
studies have shown that these assumptions have only held in
specific clinical scenarios and are not applicable in other imaging
applications. In principle, such assumptions violate conventional
models that describe soft tissue mechanical properties as complex
and heterogeneous materials that have both a viscous and an
elastic mechanical response when probed (Palmeri and
Nightingale, 2011).

Recently, the popularity of generative adversarial network
(GAN) has greatly promoted the development of generative
models and data synthesis techniques, as well as improved the
quality and diversity of image generation. Driven by the
increasing demand for large datasets and the desire to reduce
the cost and time for collecting and labeling, numerous studies
have introduced GAN into various medical domains, such as
gene design, drug discovery, condition record generation,
medical image processing, and elastography.

Elastogram generation can be regarded as an image translation
task that transforms an image from a source domain to a target
domain. When dealing with thyroid strain elastography, the
B-mode ultrasound serves as the source domain, whereas the
target domain involves strain elastography ultrasound. Although
there are several sophisticated models available for image

translation, applying them directly to the elastography task
presents certain challenges.

Firstly, the generated images often exhibit misalignment of
nodules compared to real images, indicating inadequate feature
extraction of crucial regions. In addition, the current models do
not adequately consider the probability distribution of SE images in
different color spaces, leading to insufficient extraction of color
features and inaccurate generation results. Moreover, the existing
translation networks lack the ability to accurately estimate the strain
at each point during compression, resulting in significant errors in
thyroid stiffness assessment.

In order to address the challenges mentioned above, we
propose a cGAN-based model called TSE-GAN, which takes
into account the nonlinearity, anisotropy, and viscoelasticity
of the thyroid during the compression process. TSE-GAN
consists of a generator and two discriminators. Specifically,
the generator contains three parts: a global generator, a local
generator, and a content revisor. The global generator focuses on
global image translation; the local generator is designed for strain
estimation on thyroid nodules; the content revisor is dedicated to
further refining the texture information in both the background
and foreground of the generated images. To authenticate the
images, we employ two discriminators that evaluate the global
and local aspects of the generated images, respectively.
Furthermore, through comparing the probability distribution
of thyroid SE images in RGB color space and Lab color space,
we find that the distribution in Lab space is more concentrated.
Therefore, our loss functions are performed in Lab space to
impose more effective constraints during the training process.
Finally, we evaluate the performance of TSE-GAN against 7 state-
of-the-art methods on a clinical dataset. The superiority of the
proposed method is supported by several qualitative and
quantitative assessments, which are discussed in detail in the
experiment section.

The contributions of this paper can be summarized as follows:

• We propose a novel method based on generative adversarial
network for thyroid strain elastography, which can transform
B-mode ultrasound images to SE images. The network adopts
a global-to-local architecture to improve the ability of
extracting multi-scale features and develops an adaptive
deformable U-net structure in the sub-generator to apply
effective deformation on the thyroid.

FIGURE 1
The process and principle of thyroid strain elastography.
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• We design a new loss function according to the unique
probability distribution of thyroid SE images in Lab space,
which aims to minimize the difference in color distribution
between the source domain images and the target
domain images.

• Qualitative and quantitative experiments are conducted on
a clinical dataset provided by Shanghai Sixth People’s
Hospital, including 1,224 pairs of B-mode ultrasound
and SE samples. Results show that the proposed model
can generate realistic images with more clear details
compared to existing methods.

2 Related work

2.1 Generative adversarial network

Generative adversarial networks (GANs) are a type of deep
learning model composed of two neural networks, namely, the
generator and the discriminator. These networks are trained in a
game-like framework, where the generator creates synthetic data
resembling real data, and the discriminator distinguishes
between real and synthetic data. The training process
involves an iterative interaction between the generator and
discriminator, aiming to improve the quality of
generated samples.

Karras et al. (2019) introduced the StyleGAN architecture,
which allows for generating images with controllable factors. It
enables the separation of different factors like hair, age and
gender, facilitating control over the appearance of the generated
output. To address GAN’s limitation in capturing consistent
geometric or structural patterns in certain categories, SAGAN
(Zhang et al., 2019) introduced a self-attention mechanism.
Such mechanism enables learning of inter-sequence
dependencies and long-range feature relationships on a global
scale, resulting in the generation of images with complex
geometric constraints. Building upon SAGAN, BigGAN
(Brock et al., 2018) was developed as a large-scale
implementation. BigGAN incorporates techniques such as
increasing batch size, truncation techniques, and controlling
model stability, allowing it to generate high-resolution images
with detailed backgrounds and rich textures.

2.2 Medical image generation

In recent years, the use of GAN networks has been explored
extensively in various application scenarios for medical images,
including denoising, reconstruction, segmentation, data
generation, detection, and classification. For instance,
(Bermudez et al., 2018), trained a GAN to synthesize T1-
weighted brain MRI images that exhibited comparable quality
to real images. (Zhao et al., 2023). proposed a new dual domain
Swin Transformer network for MRI reconstruction, which
demonstrates a substantial improvement in the network’s

feature extraction capabilities, allowing it to effectively
capture long-range dependencies in the input data.

GANs are also utilized for generating additional training data.
For example, (Painchaud et al., 2020), proposed a combination of
variation autoencoder and GAN as a framework for data
augmentation in image segmentation tasks. In short, GAN
networks are widely used in medical image research, and can
generate high-quality and reliable images.

2.3 Medical image translation

Medical image translation involves converting medical
images from one modality to another, such as MRI to CT or
PET to CT. It is a rapidly advancing field in computer vision that
aims to enhance the accuracy and efficiency of medical
diagnosis and treatment planning. MedGAN (Armanious
et al., 2020) introduced a new high-capacity generator
architecture that can be applied to various medical tasks
without requiring specific modifications for each application.
Cycle-MedGAN (Armanious et al., 2019) built upon the widely
used CycleGAN framework and incorporated new non-
adversarial cycle loss functions. This extension was
specifically designed for tasks such as PET to CT translation
and MR motion correction. TarGAN (Chen et al., 2021) utilized
a novel translation mapping mechanism to improve the quality
of the target area during the image generation process.
Additionally, it incorporated a shape controller to address
the deformation issues caused by untraceable constraints.
These features made TarGAN effective in generating whole
medical images while alleviating problems related to image
deformation.

2.4 Ultrasound elastography

Wildeboer et al. (Wildeboer et al., 2020) developed a deep
learning model to generate synthetic SWE (sSWE) images from
traditional ultrasound images. Their approach utilized a U-Net
architecture of a convolutional neural network (CNN) and
employed side-view ultrasound and SWE images from
50 prostate cancer patients for research and experimentation.
Yao et al. (Yao et al., 2023) proposed a GAN-based model to
directly translate ultrasound images into virtual endoscopic
ultrasound images. Extensive experiments were conducted to
demonstrate good visual consistency and clinical value
compared to real endoscopic ultrasound images. It is
important to note that these methods primarily focus on shear
wave imaging, which differs from strain imaging in terms of
imaging principles. Zhang et al. (Zhang et al., 2022) introduced
the AUE-Net, which was based on the U-Net architecture and
optimized using attention modules and feature residual blocks.
However, since their dataset is compression ultrasound images,
the raw data acquisition still requires manual compression
by operators.
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3 Methods

According to doctors’ clinical experience, we design an
ultrasound translation network called TSE-GAN. The translation
network is composed of a generator and two discriminators.

Detailed explanation on the architecture of the generator and
discriminator networks are delivered in Section 3.1–3.3 introduces
the loss functions employed in the proposed method.

3.1 Generator

The generator is responsible for performing transformation on
the input B-mode ultrasound image to generate a target SE image.
The architecture of the generator G is illustrated in Figure 2.

Inspired by Pix2pixHD (Wang et al., 2018), we argue that the
multi-resolution pipeline is a well-established practice in computer
vision and can effectively aggregate global and local information for
the image synthesis task. Therefore, we decompose the generator
into three parts: a global generatorGglobal, a local generatorGlocal and
a content revisor R. The global generator operates at a resolution of
256 × 256, which targets to deal with the whole B-mode ultrasound
image. Then we use a specific preprocessing method to extract the
region of interest in size of 128 × 128 (0.5× along each image
dimension), as the input of the local generator. Furthermore, we feed
the output of the whole generator into a postprocessing module,
which we called content revisor, in order to better perceive and
generate the most discriminative foreground parts and
simultaneously preserve well the unfocused objects and background.

3.1.1 Local generator
Our local generator Glocal aims to estimate the implicit strain.

Glocal consists of three parts: a convolutional encoder, a feature
fusion module, and a transposed convolutional decoder.

Given the absence of nodule annotation information in our
dataset, we adopt a pre-trained model called BTNet (Li et al., 2023)

for thyroid nodule segmentation. This approach allows us to obtain
coarse segmentation results, which are then adjusted to a uniform
resolution of 128 × 128 as inputs to the local generator.

The encoder is composed of a series of deformable convolution
residual blocks, which targets to apply geometric transformations to
thyroid nodule areas. Each deformable convolution residual block
contains two deformable convolution blocks, with a shortcut
connection. Each deformable convolution block is composed of
four layers: a convolutional layer, a convolutional offset layer, a
batch normalization layer, and an activation layer, as shown
in Figure 3B.

As is known to all, convolutional neural networks (CNNs) are
architecturally invariant to translation, which means the system can
exactly produce the same response, regardless of input shifting.
However, CNNs are inherently limited to model large, unknown
transformations and lack internal mechanisms to handle different
geometric transformations, which may cause noticeable problems
for non-rigid objects, especially soft tissues like thyroid. The
mechanical properties of the thyroid, including nonlinearity,
anisotropy and viscoelasticity, imply that different locations may
undergo varying scales or deformation during compression.
Therefore, adaptive determination of scales or receptive field sizes
is desired for precise visual recognition and localization.
Considering these reasons, we discard the commonly used
convolution blocks in the downsampling stage.

In contrast, deformable convolution (DefC) (Zhu et al., 2019)
can significantly enhance CNNs’ capability of modeling geometric
transformations by learning offset locations, and thus adaptively
decide scales of receptive field with fine localization and achieve the
deformation of different scales, shapes and orientations.

For thyroid-related tasks, using large convolutional kernels is
more effective for capturing coarse thyroid nodule areas, while small
convolutional kernels are better suited for obtaining accurate
contour details. Therefore, we further enhance our model by
employing multiscale convolutional kernels instead of single-scale
kernels. Specifically, we utilize a large convolutional kernel of size 7 ×

FIGURE 2
Architecture of the proposed generator.
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7 for the first DefC layer and employ small convolutional kernels of
size 3 × 3 for subsequent layers. Additionally, the residual design is
integrated in the deformable encoder to mitigate the vanishing
gradient problem.

The output of the encoder is then fed into nine consecutive
residual blocks to achieve underlying feature fusion.

The decoder consists of a succession of SPADE (Park et al., 2019)
residual blocks, each of which contains two spade blocks, with a
shortcut connection. Each spade block is composed of three layers: a
spatially-adaptive denormalization layer, an activation layer and a
convolutional layer, as shown in Figure 3C. The input of the
spatially-adaptive denormalization layer is combined with skip
connection feature maps, upscaled feature maps and raw input images.

SPADE provides a spatially-variant affine transformation which
is learned from the input images for modulating the activation
map. Such design can greatly eliminate the boundary artifacts caused
by instance normalization which is commonly used in style transfer
tasks. Boundary artifacts are shown in Figure 4.

3.1.2 Global generator
Our global generator Gglobal is designed to transform the

ultrasound images in a global perspective. Gglobal also consists of
three components: a convolutional encoder, a set of residual blocks
and a transposed convolutional decoder, as shown in Figure 2. The
input resolution of Gglobal is 256 × 256.

Different fromGlocal, the global encoder contains a spatial attention
module and a convolutional block. The spatial attentionmodule is used
to strengthen the feature extraction weight of the key nodule region in

the early stage of the network, so as to more fully extract the features of
the nodule and its surrounding areas. The architecture of the spatial
attention module is illustrated in Figure 3A.

In addition, the input of the first residual block is the element-
wise sum of the output feature map of the global encoder and the
output feature map of Glocal, which helps to integrate multi-scale
features given by Glocal and Gglobal.

3.1.3 Content revisor
Inspired by AttentionGAN (Tang et al., 2021), a novel

postprocessing module, called content revisor, is proposed to further
modify the foreground of the generated images and simultaneously
preserve the background of input images. The content revisor divides
the output of the whole generator into n groups, where the first n − 1
layer is foreground and the last layer is background. Then the content
information of each layer is weighted with the corresponding channel
attention to get the final output result. In this paper, n is set to 4. The
architecture of content revisor is shown in Figure 5A.

Specifically, the feature map m extracted from Gglobal is first fed
into a convolution block to generate n − 1 content masks Cf{ }n−1

f�1.
The convolution operation is performed with n − 1 convolutional

filters Wf
C, b

f
C{ }n−1

f�1. The calculation process of content masks can be

expressed as follows:

Cf � Tanh mWf
C + bfC( ), for f � 1, . . . , n − 1 (1)

Meanwhile, the feature map m is fed into a convolution block
and a channel attention module to generate the corresponding

FIGURE 3
Detailed components of the proposed generator.(A) The structure of one spatial attention block. (B) The structure of one deformable residual block.
(C) The structure of one SPADE residual block.

FIGURE 4
Artifacts that appear near the boundary (highlighted in the red box).
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attention masks Af{ }n
f�1. The architecture of the channel attention

module is shown in Figure 5B. The calculation process of attention
masks can be expressed as follows:

Amid � mWf
A + bfA, for f � 1, . . . , n (2)

Af � Softmax FC AP Amid( )( ) + FC MP Amid( )( )( ) (3)

where a convolution operation is performed with several
convolutional filters Wf

A, b
f
A{ }n

f�1. Softmax(·) is a channel-wise
softmax function used for the normalization. FC(·) represents the
full connection layer. AP(·) andMP(·) respectively represent average
and maximum pooling operations.

We then split Af{ }n
f�1 into n − 1 foreground attention masks

Af{ }n−1
f�1 and one background attention mask An along the

channel dimension.
Finally, the attention masks are multiplied by the corresponding

content masks to synthesize the target image G(x).

G x( ) � ∑n−1
i�1

Ci*Ai( ) + x*An (4)

where ∑n−1
i�1 (Ci*Ai) represents the foreground part of the generated

image, while x*An represents the background one.

3.2 Discriminator

For the discriminator in our model, we adopt the PatchGAN(23)
framework. We employ two discriminators with the same structure
but different parameters to authenticate the outputs of the global

generator and the local generator. We will refer to the discriminators
as D1 and D2, where D1 stands for the global discriminator and D2

stands for the local discriminator. The PatchGAN architecture is
specifically designed to perform local image-level discrimination,
prioritizing the capture of fine-grained details and local structures
over global image-level information. It achieves this by dividing the
input image into small overlapping patches and applying
convolutional operations independently to each patch.

The use of PatchGAN allows our model to effectively capture
and preserve intricate details at the patch level, resulting in visually
appealing and realistic generated images. By analyzing and
processing image patches individually, the model can focus on
generating high-quality textures and local variations. This
approach not only enhances the overall image quality but also
provides greater flexibility in the generation process, enabling the
synthesis of diverse and varied images with rich visual details.

3.3 Loss function

In this section, the losses of TSE-GAN are discussed. The
complete loss is a weighted sum of three losses calculated in CIE
Lab color space. Each loss is discussed in detail in the following
subsections.

The major colors of thyroid elastic images are red, blue and
green, with a few spots showing yellow, while other colors that are
common in natural images are hardly noticeable in elastic images. In
contrast to RGB space, Lab space is designed based on human’s
perception of color, more specifically, it is perceptual uniform. In

FIGURE 5
Architecture of the content revisor. (A) Content revisor. (B) Channel attention block.
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other words, if the three values L, a, and b are changed by the same
amount, the visual variation will be changed by a similar amount.
The coordinate axis L represents the luminance, while a and b
represent the opposing color dimensions. The larger the L*, the
higher the luminance. a* changes from negative to positive,
corresponding to a change in color from green to red. b* also
changes from negative to positive, corresponding to a change in
color from blue to yellow. Therefore, we visualize the probability
distribution of SE images in RGB space and Lab space. Results are
shown in Figure 6.

As shown in Figure 6, the probability distribution of thyroid SE
images in Lab space is more concentrated and the distribution
characteristics are more obvious than in RGB space. Therefore,
we calculate losses in Lab color space to strengthen the constraints
on the training process.

3.3.1 Adversarial loss
The adversarial loss is computed based on the discrepancy between

the predicted probability scores of the discriminator for real and
generated images. It is formulated using binary cross-entropy loss,
where the generator seeks to minimize this loss, while the discriminator
aims to maximize it. The adversarial loss is defined as below.

LGAN G,Dk( ) � Ex,y logDk x, y( )[ ] + Ex log 1 −Dk x, G x( )( )( )[ ]
(5)

where Dk stands for sub-discriminators (D1 for a global
discriminator, while D2 for a local discriminator). x stands for
the source image and y stands for the ground truth image. Such
discriminators aim to classify the concatenation of the source image
x and its corresponding ground truth image y as real, written asDk(x,
y) = 1, while classifying x and the generated image ŷ as fake, written
as Dk(x, ŷ) � 0.

By optimizing the adversarial loss, the generator gradually learns
to generate images that closely resemble the real data distribution,
leading to the creation of highly realistic and visually appealing
images. The adversarial training process helps the generator capture
the complex patterns and structures present in the real data,
effectively modeling the underlying data distribution.

3.3.2 Feature matching loss
To encourage the generator G to produce outputs ŷ that closely

resemble the ground truth images y, we then incorporate
discriminator feature matching loss. This loss promotes training
stability by requiring the generator to mimic real image
characteristics across various levels. This is achieved by extracting
and comparing features from several layers within the discriminator,
aiming to align these features from both genuine and generated
images. For clarity, the feature extractor at the ith layer of
discriminator Dk is referred to as D(i)

k . The feature matching loss
LFM(G, Dk) is then calculated as:

LFM G,Dk( ) � E x,y( )∑T
i�1

1
Ni

D i( )
k x, y( ) −D i( )

k x, G x( )( )���� ����1[ ] (6)

where T is the total number of layers and Ni denotes the number of
elements in each layer.

3.3.3 Color loss
In order to focus solely on the differences in brightness, contrast,

and primary colors of the image while disregarding texture and
content, we apply a Gaussian blur to the image. This blurring
process helps to eliminate small pixel differences and ensures
that the color differences are emphasized. Subsequently, we
utilize an additional convolution layer to compute the distance
between the feature maps obtained from the blurred images,
effectively expressing the color differences between them.

The color loss, denoted as the difference between images X and
Y, is computed based on the above processing steps. This color loss
term quantifies the dissimilarity in color distribution between the
generated SE image and the real SE image, allowing us to optimize
the model towards generating more visually accurate and natural-
looking color representations.

In our experiments, we evaluated different distance functions
and found that the combination of Euclidean distance and
L1 distance yields favorable results. Color loss can be written as:

Lcolor X,Y( ) � Xb − Yb‖ ‖22 + Xb − Yb‖ ‖1 (7)
where Xb and Yb are the blurred images of X and Y, resp.:

FIGURE 6
Visualization results of the probability distribution in RGB color space and Lab color space for the same SE image (serial number: 1-389365).
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Xb i, j( ) � ∑
k,l

X i + k, j + l( ) · G k, l( ) (8)

where G(k, l) denotes the Gaussian kernel with the size of k × l.

3.3.4 Complete loss
The total loss of our proposed TSE-GAN combined with the

adversarial loss, feature matching loss and color loss is as follows:

Lobj � ∑
k�1,2

LGAN G,Dk( ) + α ∑
k�1,2

LFM G,Dk( ) + βLcolor G( ) (9)

where LGAN(G,D) is the adversarial loss obtained from Eq. 5. LFM(G,
D) is the feature matching loss obtained from Eq. 6. Lcolor(G) is the
color loss obtained from Eq. 7. α is a scalar weight to regulate the
importance of LFM. β is a scalar weight to regulate the importance of
Lcolor. By solving the following Eq. 10, the optimal translation model
can be obtained.

Gp � min
G
max

D1D2

∑
k�1,2

LGAN G,Dk( ) + αmin ∑
k�1,2

LFM G,Dk( )

+ βminLcolor G( ) (10)

4 Experimental evaluations

4.1 Dataset

The dataset used in this study was provided by Shanghai Sixth
People’s Hospital, a renowned medical institution in China
specializing in the treatment of thyroid disorders. The ultrasound
images were obtained from two ultrasound units (both
MylabTwiceTM), manufactured by Esaote S.p.A. in Genoa, Italy. A
linear array probe (LA523) with a center frequency of 10 MHz was
employed for the imaging process.

According to doctors’ experience, B-mode US images and SE
images with nodule sizes ranging from 5 mm to 30 mm are valuable
for this research, while nodules with coarse calcifications or
predominantly cystic characteristics should be excluded. After
careful data cleaning, we obtained 1,224 pairs of B-mode US
images and SE images from 745 patients spanning the years
2019–2022. Among these patients, there were 213 males and
532 females, with ages ranging from 19 to 84 years. Subsequently,
the dataset was randomly divided into a training set comprising
1,129 paired images and a testing set containing 95 paired images.

4.2 Training details

All the experiments are implemented using PyTorch and
executed on a NVIDIA Tesla P100 with 24-GBVRAM. The
network is trained for 1,500 epochs and the batch size is set to 8.
The network parameters are initialized using the Xavier method,
ensuring a suitable initialization for effective training. To optimize
the network, we employ the Adam optimizer with two time-scale
update rules, with β1 set to 0.5 and β2 set to 0.999. The learning rates
for the generator and discriminator are set to 0.0002 and 0.0001,
respectively. The loss function hyperparameters α and β are assigned
values of 10 and 0.001, respectively.

In order to improve the robustness and generalization of the
model, we incorporate various data augmentation techniques into
the training process. These augmentation methods are randomly
applied to the input images with a probability of 0.5, including
horizontal, vertical, and diagonal translations of ±20 pixels,
horizontal and vertical mirror inversions and random rotations
within a range of ±15°. Furthermore, to ensure consistent input
dimensions for the model, the augmented images are randomly
cropped to a size of 256 × 256 pixels.

4.3 Evaluation metrics

4.3.1 Graphic index
Due to the lack of consensus in the scientific community

regarding the optimal evaluation metrics for assessing the
performance of generative models, we employ several traditional
image quality metrics, including Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), and Mean Squared
Error (MSE).

PSNR and SSIM are utilized as indicators of better generation,
where higher values signify superior performance. MSE is calculated
as the average squared difference between the pixel values of x and y,
where lower values signify superior performance. The calculation
formulas for these metrics are as follows:

PSNR I, G( ) � 10 · log10
MAX2

I

1
HWC

∑‖I − G ‖2
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (11)

SSIM I, G( ) � 2μIμG + c1( ) 2σIG + c2( )
μ2I + μ2G + c1( ) σ2I + σ2G + c2( ) (12)

MSE I, G( ) � 1
HW

∑HW

i
Ii − Gi( )2 (13)

where I denotes the real image, G expresses the generated image. H
and W are the height and weight of the image. C is the number of
channels. MAX2

I is the maximum pixel value of the image which is
255 here. ‖ · ‖2 stands for the Euclidean norm. μ and σ2 indicate the
mean and variance respectively. σIG is the covariance. c1 and c2 are
two variables to stabilize the division with weak denominator.

4.3.2 Elasticity assessment
To quantitatively evaluate the quality of the elastic images

generated by TSE-GAN from a clinical perspective, we utilize the
Rago criterion as the gold standard for medical assessment.

The Rago criterion, as depicted in Figure 7, employs a scale
ranging from 1 to 5 to classify the degree of nodule sclerosis. The
score is based on the ratio of blue (indicating sclerotic, inelastic
tissue) to green (representing elastic tissue) observed in the elastic
images. Score 1 denotes even elasticity in the whole nodule,
indicating a higher likelihood of benignity, while Score
5 indicates no elasticity in the nodule, implying a higher
probability of malignancy (Rago et al., 2007).

4.3.3 Specialist perceptual study
Finally, we gather all the generated images and present them to

the specialists for a visual evaluation of their authenticity and
naturalness. These visual evaluations are then combined with the
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previously mentioned scoring accuracy results to conduct a
comprehensive analysis of the performance of the TSE-GANmodel.

4.4 Results

4.4.1 Ablation study
To verify the validity of each module, we conduct an ablation

study on the Thyroid Strain Elastography dataset. Table 1 and
Figure 8 show the quantitative and qualitative experimental
results respectively.

Note that the nodule segmentation masks displayed in the
second column of Figure 8 are purely for indicating the nodule
positions in the input ultrasound images. In fact, they are not
utilized during the training process. Specifically, our training
dataset does not include any segmentation masks.

By systematically removing components of the proposed TSE-
GAN, i.e., the Content Revisor (CR), Local Generator (LG), and Lab
Loss (LL), we observed a significant degradation in the results. This
finding indicates that all of these components are crucial for
achieving optimal performance in our approach.

As shown in fourth column of Figure 8, the removal of all three
modules resulted in a significant deterioration of the generated
images. The edges of the nodules became indistinguishable.
Meanwhile, undesired light spots appeared in the images. As
shown in fifth column of Figure 8, when CR and LG modules
were removed, the blue areas became more prominent, causing
blurriness in the nodules in the first row of images. As shown in sixth
column of Figure 8, though removing the CR module alone allowed
for correct nodule localization, the translation of the blue and green
regions remained unsatisfactory. Conversely, with the full model, the
extent of nodules’ sclerosis was accurately represented, showcasing
the importance of all modules in achieving desirable results.

We also tested the effect of different loss functions on the
network training process. In this paper, feature matching loss
(LFM) and color loss (Lcolor) are introduced based on adversarial
loss (LGAN). To demonstrate the effectiveness of feature matching
loss and color loss, networks optimized with different combinations
of loss functions, including Ladv, Ladv + LFM, Ladv + LFM + Lcolor, were
compared. Quantitative results show that the proposed Ladv + LFM +
Lcolor objective function significantly outperforms the other
comparative loss functions in terms of PSNR, SSIM, and MSE
metrics. Specifically, the mean PSNR, SSIM and MSE of the
network optimized by Ladv are 28.476, 0.409 and
92.514 respectively. The mean PSNR, SSIM and MSE of the

FIGURE 7
Rago criteria of thyroid nodules. Images of lesions and surrounding tissues showing uniform green color are marked as Score 1. Images that are
green overall with a little blue aremarked as Score 2. Imageswith equal blue and green inside the lesion aremarked as Score 3. Images that are blue overall
with a little green are marked as Score 4. Images of lesions and surrounding tissues showing uniform blue color are marked as Score 5. A higher score
indicates a greater likelihood of malignancy.

TABLE 1 Ablation study of the proposed method. Full stands for proposed
model, CR stands for content revisor, LG stands for local generator, LL
stands for lab loss. ↑ means that the larger the value of the corresponding
objective index, the better the generation effect. Conversely, ↓ means that
the smaller the value of the corresponding objective index, the better the
generation effect. Bold entries represent the experiments with the best
performance.

Methods PSNR (↑) SSIM (↑) MSE (↓)
Full 28.535 0.413 91.345

Full-LG 28.476 0.409 92.514

Full-LG-CR 28.453 0.406 92.991

Full-LG-CR-LL 28.390 0.327 94.300
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network optimized by Ladv + LFM are 28.519, 0.411 and 91.836,
respectively. The mean PSNR, SSIM and MSE of our loss function
are 28.535, 0.413, and 91.345, respectively.

4.4.2 Comparisonwith state-of-the-art techniques
We choose seven commonly-used image-to-image translation

(I2IT) methods. Paired I2IT models include Pix2pix (Isola et al.,
2017), Pix2pixHD, LPTN (Liang et al., 2021) and AUE-Net (Zhang
et al., 2022), while unpaired I2IT models include CycleGAN (Zhu
et al., 2017), AttentionGAN and Qsattn (Hu et al., 2022). We then
compare them qualitatively and quantitatively in the Thyroid Strain
Elastography dataset.

Quantitative Comparison. In this subsection, we compared the
performance of TSE-GAN with the aforementioned I2IT methods.
The evaluation was conducted using three image similarity metrics
and elasticity scores.

Note that in this paper, the elasticity scores of real images and fake
images were all given by two experienced ultrasound specialists from
Shanghai Sixth People’s Hospital, who possess 12 and 24 years of
ultrasound experience, respectively. Meanwhile, to mitigate scoring
bias resulting from preconceived notions, we did not disclose the
purpose of the study or the image sources to the two specialists prior
to scoring. Additionally, the images were presented to the specialists in a
randomorder. After scoring, we calculated the accuracy of each class and
the average accuracy over the entire testing set.

The quantitative results of our experiments, focusing on image
quality, are presented in Table 2 and Table 3. As shown in Table 2,
PSNR, SSIM and MSE of the proposed TSE-GAN are 28.535, 0.413,
91.346, respectively, far exceeding the other seven models.
Furthermore, the generated images are given to the doctor for
hardness rating according to the Rago criterion. Based on

specialists’ opinions, the elastography images generated by our
model could meet the needs of clinical diagnostic applications
and provide practical value. We reviewed the cases that showed
errors from the specialists. As shown in Table 3, the scoring accuracy
was 76.5% for Score 1, 70.6% for Score 2, 71.4% for Score 3, 83.3%
for Score 4, and 85.7% for Score 5. It is worth noting that the
unstable results for Score 4 and Score 5 could be attributed to the
limited samples of these two classes. Furthermore, the accuracy for
Score 2 and Score 3 is relatively lower than the other classes. This
discrepancy may be attributed to the fact that according to the Rago
criterion, nodules classified as Score 2 and Score 3 exhibit a
combination of significant blue and green areas. Distinguishing
between these two classes becomes challenging, leading to a
higher likelihood of errors in classification.

FIGURE 8
Ablation study of the proposed method. The first column indicates the input ultrasound images. The second column indicates the segmentation
masks of the corresponding input images. The third column indicates the real SE images. The rest columns indicate the fake SE images generated by
ablation models.

TABLE 2 PSNR, SSIM, MAE metrics comparison between the proposed
model and other translation methods. Bold entries represent the
experiments with the best performance.

Methods PSNR (↑) SSIM (↑) MSE (↓)
Pix2pix 28.342 0.385 95.380

Pix2pixHD 28.467 0.395 92.740

LPTN 27.829 0.287 107.203

AUE-Net 28.369 0.313 94.652

CycleGAN 28.369 0.351 94.799

AttentionGAN 28.253 0.348 97.262

Qsattn 28.306 0.352 94.134

TSE-GAN 28.535 0.413 91.346
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Qualitative comparison. Figure 9 illustrates the qualitative
results of the TSE-GAN and other I2IT methods. It is evident
that AttentionGAN and LPTN exhibit poor generation effects, as
they struggle to accurately locate the nodules. CycleGAN, Qsattn,
and Pix2pix tend to label the entire thyroid nodules as Score 5,
failing to differentiate between the blue and green regions within the
nodules. AUE-Net, on the other hand, excessively emphasizes
texture information. Pix2pixHD shows relatively improved
results; however, it is worth noting that unwanted changes occur
in the background and other objects, as depicted by the red boxes in
the first and second rows of Figure 9. In contrast, our proposed
method outperforms these existing methods by preserving content
details and effectively translating the images into the desired
target style.

4.4.3 Specialist perceptual study
In order to evaluate the overall performance of the translation

task regarding both the realism and generation effects and to ensure

the practical applicability of our method, we invited three medical
sonographers from different hospitals to perform a user study based
on human perception. In specific, we mixed real and fake SE images
and randomly selected 100 images from them. We then presented
them to specialists to discriminate whether the image is real or fake.
The results are summarized in Table 4.

Results show that the proposed TSE-GAN achieves a mean
accuracy score of 76.3% given by three specialists for the visual
performance of realism and generation effect on the ultrasound
translation task. The results demonstrate that the proposed method
can generate realistic SE images that can confuse the
doctors’ judgment.

5 Conclusion and discussion

With the development of Strain elastography technique, the
combination of SE with B-mode ultrasound for clinical diagnosis has

TABLE 3 Elasticity assessment comparison between the proposed model and other translation methods. Second column to sixth column represent
individual accuracy for each class. The last column represents the average accuracy across the entire testing set. Bold entries represent the experiments
with the best performance.

Methods Score 1 (%) Score 2 (%) Score 3 (%) Score 4 (%) Score 5 (%) Mean_Accuracy (%)

Pix2pix 52.9 52.9 42.9 16.7 28.5 47.37

Pix2pixHD 58.8 61.7 50.0 66.7 42.9 57.89

LPTN 29.4 23.5 28.6 0.0 14.3 24.21

AUE-Net 50.0 44.1 21.4 0.0 14.3 37.89

CycleGAN 44.1 35.3 57.1 66.7 28.6 43.16

AttentionGAN 26.4 29.4 14.3 0.0 14.3 23.16

Qsattn 38.2 35.3 42.9 33.3 71.4 40.00

TSE-GAN 76.5 70.6 71.4 83.3 85.7 74.74

FIGURE 9
Qualitative results of the TSE-GAN and other I2IT methods.
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gained popularity because it can greatly improve the distinction
between benign and malignant thyroid nodules. In order to
eliminate the human element of manual compressing, and break
down the assumptions about the tissue material, including linear,
elastic, isotropic and incompressible that are commercially available
USE modes relied on, we propose a novel method called TSE-GAN,
which can generate SE images based on the specific characteristics of
thyroid elastography.

The TSE-GAN introduces an adaptive deformable U-net
structure with an effective constraint for accurate strain
estimation. It also employs a global-to-local architecture to
enhance the extraction of multi-scale features, resulting in
improved performance. Additionally, a new objective function is
designed to minimize the color distribution difference between the
source domain and target domain images, taking into account the
unique probability distribution of thyroid elastograms in the Lab
color space.

However, there are still some limitations in our study. Firstly,
TSE-GAN does not translate well for the greater tubercles.
Furthermore, since Score 2 and Score 3 are difficult to
distinguish, it is necessary to quantify the process of elasticity
scoring to reduce the influence of subjective factors. In addition,
the training effect of the local generator greatly depends on the
results given by the pre-trained segmentation model, which is
generally not ideal. Therefore, we will conduct more in-depth
research on nodule feature extraction in the future.
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