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Gene expression is a fundamental process that regulates diverse biological
activities across all life stages. Given its vital role, there is an urgent need to
develop innovative methodologies to effectively control gene expression. Light-
controlled gene expression is considered a favorable approach because of its
ability to provide precise spatiotemporal control. However, current light-
controlled technologies rely on photosensitive molecular tags, making their
practical use challenging. In this study, we review current technologies for
light-controlled gene expression and propose the development of label-free
light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
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1 Introduction

Light-controlled technologies have enabled researchers to control gene expression with
spatiotemporal precision, leading to remarkable advancements in fundamental biological
research and medical and pharmaceutical applications (Ryu et al., 2021; Jia and Sletten,
2022). This approach is ideal for studying biology because traditional methods that rely on
chemical inducers or genetic modifications have inherent limitations in terms of specificity,
reversibility, and control of the timing and location of gene expressions (Khalil, 2020;
Ziegler et al., 2022). Photosensitive molecules have beenmodified into nucleotides, peptides,
and small molecules to control in vivo and in vitro gene expression (Hoorens and
Szymanski, 2018). Classically, ultraviolet (UV) light has been the main light source for
activating photosensitive molecules because of its high energy and wide range. However,
UV light exhibits shallow penetration in tissues and damages biological molecules, making
it less ideal for biomedical applications (Sharma and Friedman, 2021). The recent
development of visible light-reactive molecules has led to improvements in
biocompatibility and expanded applications for cells (Dong et al., 2015; Weinstain
et al., 2020). Moreover, much weaker light, such as near-infrared light (NIR), is
promising for controlling biological activities due to less damage of biological molecules
and better light penetration in tissues (Feng et al., 2021; Chen et al., 2020).

Although light-controlled gene expression-modulating technologies have become
favorable for the regulation and study of biological systems, there are challenges. One
of the challenges in conventional approaches is the requirement for the chemical
conjugation of photosensitive molecules to target biological molecules. Specifically,
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researchers need to examine the target biological molecule structure
and select suitable photosensitive molecules for the target process, as
well as design a protocol for photosensitive molecule attachment
that can yield a sufficient amount of the high-purity product.
Another challenge is that the addition of photosensitive
molecules for regulating gene expression using cell-free systems
or living cells may interfere with enzyme activity, necessitating
system optimization. For example, an appropriate laser power
has to be chosen because a weak power may not trigger a
photoreaction and a strong power can damage biological
molecules, potentially leading to undesired photocatalysis.
Therefore, optimization of parameters such as the chemical
components and incubation conditions is necessary.

Themain requirements of light-controlled gene expression within a
completely natural and untreated system are a chemical component
that can uniquely absorb the excitation light and that the light itself does
not damage biologicalmolecules. Considering these, a wavelength in the
range of mid-infrared (mid-IR) to terahertz would be desirable because
this range of light is absorbed in molecular vibration modes, which are
specific to the molecules themselves. In this study, to aid the
development of label-free light-controlled gene expression regulation
systems, we review the potential of using mid-IR–terahertz wavelengths
for regulating gene expression for fundamental research and practical
applications. First, we discuss how light can interact with materials as
the underlying concept in light-regulated technologies and introduce
the common photosensitive molecule modification approaches,
including photocages and photoswitches. Second, we outline the use
of visible light and the NIR region for activating photosensitive DNA/
RNA, proteins, and small molecules for regulating gene expression and
discuss the challenges of the current light-controlled technologies, not at
the life level, but at the basic conceptual level. Finally, we introduce the
recently developed light-controlled technology utilizing mid-IR and
terahertz wavelengths and address the challenges of this approach.

2 Photosensitive molecules:
photocages and photoswitches

2.1 Role of light and photosensitive
molecules in gene expression regulation

Light is an electromagnetic wave that can interact with the
molecules in the medium that it traverses (Gutzler et al., 2021). Light
can be specifically made to interact with photoactive molecules to
modulate gene expression (Hoorens and Szymanski, 2018). Upon
the absorption of light, these molecules undergo specific
photochemical reactions including cleavage and crosslinking,
leading to chemical modifications, bond formation, and changes
in their molecular structure (Tavakoli and Min, 2022). Light-
controlled technologies provide a non-invasive approach to study
and manipulate gene expression with high precision and selectivity.
In this approach, a wide range of light can be applied, from UV to
NIR and beyond. The photochemical reaction mechanism depends
on the wavelength of light: UV and visible light (200–900 nm) leads
to electronic transitions, while mid-IR/terahertz light
(2.5 µm–3 mm) results in vibrational transitions, affecting
intramolecular/intermolecular vibrations (Figure 1A). Two
common strategies have been developed using photosensitive

molecules: photocages and photoswitches. The following sections
describe these strategies. For the ideal design of photosensitive
molecules, the following characteristics are required (Singh et al.,
2021): first, photosensitive molecules should show high light
absorption at wavelengths that are not absorbed by or are not
damaging to other biological molecules. In addition, the
photoreaction should show high efficiency. Second,
photosensitive molecules should have low intrinsic activity and
should be stable in the reaction medium before light irradiation.
Third, the by-products of the photoreaction should be transparent to
the photoreactive trigger light to suppress other competitive
reactions that may interfere with the designed photoreaction, and
they should not react with molecules in the reaction medium.
Furthermore, some photochemical reactions undergo several
steps that involve excited/ground-state intermediates; therefore,
the detailed mechanism of the photochemical reactions should be
studied to understand the correct light irradiation.

Gene expression involves various biological processes, including
transcription, where the DNA sequence of a gene is copied into
complementary RNA, and translation, where messenger RNA
(mRNA) serves as a template to assemble amino acids into
polypeptide chains to form proteins. Proteins act as enzymes that
modulate cellular metabolism and chemical reactions. Although
light itself does not play an active role in this process, it can,
with the assistance of photosensitive molecules, regulate a wide
range of biological processes, including enzymatic activity. Figure 1B
shows an example of this concept using photosensitive molecules of
DNA, RNA, and proteins for light-controlled gene expression,
which is further reviewed in Section 3.

2.2 Photocage

A photocage is a photoremovable protective molecule that
blocks the bioactivity of the biological molecule to which it is
conjugated. Photocage molecules absorb specific wavelengths of
light, typically in the UV or visible range, and undergo a
photoreaction that results in their removal or cleavage. This
process releases the bioactive molecules and initiates their
bioactivity. Popular photocages include boron–dipyrromethene
(BODIPY), heptamethine cyanine (Cy7), and coumarin.

BODIPY is a fluorescence dye commonly used in bioimaging for
biological studies and medical applications because it has low
biotoxicity, is highly stable in various medium conditions, and
has outstanding optical properties, such as high quantum yield,
high absorption coefficient, narrow fluorescence spectrum, and long
fluorescence lifetime (Singh et al., 2021). Additionally, structural
modifications of BODIPYs can tune the absorption band to include
the NIR region (Liu et al., 2019). However, the photolysis of some
BODIPYs occasionally results in reduced photoreactivity (Singh
et al., 2021), and real-time monitoring of the released active
biomolecules is not feasible (Paul et al., 2019). Figure 2A shows
an example of the photochemical reaction of BODIPY, where light
irradiation initiates the cleavage of the cargo, resulting in a
carbocation intermediate with a solvent-assisted nucleophilic
attack (Peterson et al., 2018). A variety of BODIPY derivatives
have been discussed in previous reviews (Singh et al., 2021; Cheng
et al., 2023; Bobrov et al., 2021). Various types of caging groups can
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be used to create BODIPY photocages depending on the specific
application and desired photorelease mechanisms. Some caging
groups that are commonly attached to the BODIPY core include
carboxylic acid, amine, alcohol, thiol, halide, xanthane, and phenol
(Vohradská et al., 2018; Dockalova et al., 2020; Sitkowska
et al., 2018).

Cy7 is another dye that is frequently used in bioimaging because
it binds to biological molecules, including DNA, RNA, and proteins
(Luciano et al., 2019; Rozovsky et al., 2019; Šmidlehner et al., 2018).
The advantages of Cy7 are its low toxicity, low background
absorbance interference, and high NIR light absorption
(Yamamoto et al., 2019). Some Cy7 derivatives have been
engineered to function in vivo by developing NIR-absorbing
photocage molecules that are less harmful to tissues (Alachouzos
et al., 2022; Janeková et al., 2022). The general photoreaction of the
Cy7 photocage is shown in Figure 2B, where photooxidative cleavage
at the C-C bond and hydrolysis result in the release of the caged
molecule (Weinstain et al., 2020; Gorka et al., 2014).

Coumarins are widely used because they can be easily synthesized
and rapidly released from substrates. As an example, the reaction of a
photoactivatable phosphate-releasing group using 7-methoxycoumarin
derivatives is shown in Figure 2C (Tavakoli and Min, 2022; Givens and
Matuszewski, 1984). Using structural modifications, the photophysical
properties of coumarins such as quantum yield and aqueous solubility
can be improved (Bardhan and Deiters, 2019). The advantages of
coumarin are its high absorption coefficient, high photoresponse
efficiency, fast photolysis kinetics, and suitability for engineering
two-photon experiments. Typically, coumarins can be connected to
caging groups such as carbonates, alkoxides, carbamates, thiols,
sulfonates, azides, halides, phosphates, and carboxylates (Weinstain
et al., 2020).

2.3 Photoswitch

Photoswitches are photochromic molecules that undergo
reversible conversion between two or more stable states under

light irradiation. This photochemical isomerization process
involves structural changes that result in distinct differences in
the UV–visible absorption spectra of the isomeric states, making
them photochromic. Mostly, photoswitch molecules show positive
photochromism, with the generated species showing a higher
maximum absorption (λmax) than the initial state (Bouas-Laurent
and Dürr, 2001). However, when the initial molecules undergo
bleaching upon photoisomerization, the photoswitch molecules
show negative photochromism. Examples of such photoswitch
molecules include azobenzenes, stilbenes, and spiropyrans.

Azobenzene is a well-studied photoswitch that exists in two distinct
isomeric states: trans and cis (Axelrod et al., 2022; Volarić et al., 2022).
They are widely used in biological applications because of their ease of
synthesis, high quantum yield, low photobleaching, high
photostationarity, and fast isomerization (Fuentes et al., 2020).
Notably, trans-azobenzene is approximately 10 kcal/mol more stable
than cis-azobenzene. The UV–visible absorption of trans-azobenzene
exhibits two maximum peaks: a strong absorption peak near 320 nm
due to a π–π* transition and a weaker peak absorption near 440 nm
related to an n−π* transition (Gelabert et al., 2023; Kuntze et al., 2021).
cis-azobenzene has a stronger absorption band of the π–π* transition
near 400 nmand two shorter absorption bands at 280 and 250 nm (Dias
et al., 1992). Absorption near 320 nm induces the rotation of the
nitrogen double bond, leading to the formation of the non-polar cis
isomer, whereas absorption at 440 nm is associated with trans-to-cis
isomerization through various pathways (Giles et al., 2021). Figure 3A
shows the structures of trans- and cis-azobenzene (Cattaneo and
Persico, 1999). Thermal stimulation or visible light irradiation can
induce a switch from the cis to trans isomer, which requires
~95 kJ mol−1 of activation energy (Garcia-Amorós et al., 2018).

Stilbene is another photoswitch molecule that undergoes
trans–cis isomerization (Villarón et al., 2021). It is a hydrocarbon
comprising two phenyl rings connected by an ethylene (–CH=CH–)
bridge that forms a central double bond. The photoisomerization
mechanism of stilbene has been reported to be slightly different from
that of azobenzene. The main reason is that the excited state of the
trans-stilbene, initiated through the π−π* transition, is metastable

FIGURE 1
(A) Light wavelength for the excitation of electron transition, intramolecular vibrations, and intermolecular vibrations. (B) Overview of the basic
biological process underlying gene expression and possible pathways for light-controlled gene expression.
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(Han et al., 2002). Isomerization of unsubstituted stilbene occurs
under irradiation near 300 nm, resulting in the formation of the cis
isomer. An example of this transition is shown in Figure 3B. The
thermal cis-to-trans reisomerization requires 41–46 kcal/mol, which
cannot be achieved at room temperature. In terms of biological
applications, the disadvantage of stilbene is its irreversible
cyclization and oxidization to the cis isomer.

Spiropyran undergoes a photochromic reaction under UV
irradiation, which induces heterocyclic cleavage at the C-O bond,
leading to the formation of a zwitterionic structure, as shown in
Figure 3C, an example of the transition pathway (Kortekaas and
Browne, 2019). This isomerization process produces a significant
polarity shift (8–15D) (Mukherjee et al., 2022; Shiraishi et al., 2023).
More importantly, this process is reversible upon thermal
stimulation and photochemical activation under visible light
irradiation (>460 nm). The importance of spiropyran is that
photoisomerization causes a significant change in polarity, which
influences its hydrophilicity/hydrophobicity (Wang et al., 2021).
Spiropyran has been reported to strongly interact with certain
biological molecules (Keyvan Rad et al., 2022; Ali et al., 2019).

2.4 Challenges in using
photosensitive molecules

There are many candidates for photosensitive molecules that can
be attached to target molecules. However, the challenge lies in the
need to use specific attachment reactions, which limits the number
of available pairs of photosensitive molecules and target molecules,
or to implement tag modification. For example, prior to attachment,
many photoswitch molecules are pre-labeled with protein tags such
as SNAP tags, which can fuse with any target protein (Leng et al.,
2017). Additionally, the modification process can be quite time-
consuming. As an example, we analyzed the duration of
photosensitive molecular modification based on protocol journal
papers by picking up all related processes, as shown in Figure 4
(Becker et al., 2018; Cheong et al., 2024; Coelho et al., 2020; Conic
et al., 2018; Erlendsson et al., 2019; Fields et al., 2019; Forero-
Quintero et al., 2022; Gáspár et al., 2018; Horii et al., 2017; Kajimoto
and Nakamura, 2018; Klena et al., 2023; Koch et al., 2021; Luo et al.,
2023; Mai-Morente et al., 2021; Mazzucco et al., 2020; Mu et al.,
2019; Munson and Ganley, 2016; Paweletz et al., 2022; Rawat and

FIGURE 2
Reaction pathways of different photocage molecules. (A) BODIPY, (B) heptamethine cyanine (Cy7), and (C) 7-methoxycoumarin derivatives.
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Sharma, 2024; Remenyi et al., 2019; Roberts et al., 2018; Sharma
et al., 2019; Tanimizu, 2015; Teng et al., 2019; Tronnet and Oswald,
2018; Udupa et al., 2022; Wirth et al., 2020; Xu and Liu, 2019; York

and Milush, 2015). The results indicate that the entire process,
including preparation and related procedures, typically takes at least
a day, with some cases requiring even more time.

Additionally, light absorption by photosensitive molecules is
limited (Welleman et al., 2020). For practical use, sufficient light
penetration through the cells and tissues without causing damage is
ideal. Nevertheless, most photosensitive molecules have not yet been
engineered to operate at longer wavelengths, such as NIR light (Jia
and Sletten, 2022).

Furthermore, some photosensitive molecules show inherent
poor water solubility, which might cause biomolecular
aggregation and result in interference with gene expression
(Deng et al., 2021; Poryvai et al., 2022; Berdnikova, 2019). For
instance, traditional BODIPY dyes dissolve only in organic
solvents, which is why, to date, tremendous efforts have been
made to improve their water solubility by introducing
hydrophilic groups such as phosphonates, quaternary
ammonium salts, and sulfonates (Koh et al., 2019; Mao et al.,
2020; Zhou et al., 2020).

Finally, the development of a new photosensitive molecule
design is likely serendipitous (Deng et al., 2021; Dcona et al.,
2020). Therefore, laborious efforts are often required to develop
photosensitive molecules that are suitable for any untried gene
expression system of interest (Buglioni et al., 2022; Roßmann
et al., 2023).

3 Current light-controlled gene
expression technology

In this section, we review how light irradiation can be used to
control gene expression. As shown in Figure 1B, light irradiation can
activate photosensitive DNA/RNA, proteins, and small molecules
that influence gene expression; these categories are discussed in the
following sections.

FIGURE 3
Reaction pathways of different photoswitch molecules. (A) Azobenzene, (B) stilbene, and (C) spiropyran.

FIGURE 4
Summary of time required for photosensitive molecular
modification, obtained from references (Becker et al., 2018; Cheong
et al., 2024; Coelho et al., 2020; Conic et al., 2018; Erlendsson et al.,
2019; Fields et al., 2019; Forero-Quintero et al., 2022; Gáspár
et al., 2018; Horii et al., 2017; Kajimoto and Nakamura, 2018; Klena
et al., 2023; Koch et al., 2021; Luo et al., 2023; Mai-Morente et al.,
2021; Mazzucco et al., 2020; Mu et al., 2019; Munson and Ganley,
2016; Paweletz et al., 2022; Rawat and Sharma, 2024; Remenyi et al.,
2019; Roberts et al., 2018; Sharma et al., 2019; Tanimizu, 2015; Teng
et al., 2019; Tronnet and Oswald, 2018; Udupa et al., 2022; Wirth et al.,
2020; Xu and Liu, 2019; York and Milush, 2015).
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3.1 DNA/RNA-based light-controlled gene
expression

The photocontrol of gene expression using nucleic acids is
typically facilitated by photosensitive molecule-modified DNA or
RNA, as shown in Figure 1B. There are two main strategies for this
approach: light-induced gene activation and light-induced
knockdown using photocage molecule-modified oligonucleotides.

Active light control of transcription and translation has been
demonstrated by modifying oligonucleotides with photocage
molecules. The modifications in the oligonucleotides can be
introduced into the phosphate backbone, Watson–Crick face, or
nucleotide base. For example, gene expression in cells and synthetic
cells has been controlled using photolabile groups on the phosphate
backbone of the DNA and RNA modified with photosensitive
molecules, including coumarin (Kaufmann et al., 2023; Ando
et al., 2001), 2-nitroveratryl bromide (Hartmann and Booth,
2023), and thioether-enol phosphate (Feng et al., 2017; Wang
et al., 2016). Other than at the DNA backbone, psoralen cross-
linking at the Watson–Crick face of the DNA promoter impedes the
unwinding of the double helix, resulting in the blocking of the
transcription process (Figure 5A) (Stafforst and Stadler, 2013;
Stadler and Stafforst, 2014). Photosensitive molecules can also be
introduced at nucleotide bases. Nucleotides modified with
photosensitive molecules, such as benzophenones (Anhäuser
et al., 2020), diethylaminocoumarin (Menge and Heckel, 2011),

2-nitrobenzyl bromide (Chakrapani et al., 2020), and 6-
nitropiperonyloxymethyl group (Lee et al., 2021), have been
integrated into DNA or RNA templates for light-controlled
transcription and translation. When photoswitch molecules are
modified into DNA/RNA, they can reversibly regulate the
transcription and translation processes based on light irradiation.
For instance, photoswitch molecules, including azobenzene (Tian
et al., 2016; Xing et al., 2015; Dudek et al., 2018), stilbenes (O’Hagan
et al., 2019; O’Hagan et al., 2020), arylstilbazolium (Czerwinska and
Juskowiak, 2012), and 8-pyrenylvinyl deoxyguanosine (Ogasawara,
2018), which contain G-quadruplexes in a hyperstable state, can
effectively inhibit transcription and translation processes. Light
irradiation induces an unstable state, allowing activity, and
additional light irradiation in the unstable state recovers
hyperstable G-quadruplexes.

One approach to knock down gene expression is to use
photocage-modified antisense oligonucleotides (ASOs), which are
short single-stranded nucleotides that specifically bind to target
DNA or RNA to stop transcription and translation. Modification
of ASOs with 2-nitrobenzyl-caged thymidines has been shown to
cause the photoactive knockdown of cancer-related genes (Govan
et al., 2013; Tang et al., 2007; Sakamoto et al., 2014) and
developmental genes (Tallafuss et al., 2012; Deiters et al., 2010).
The inclusion of 2-nitrobenzyl can be achieved in the base-pairing
region, nucleobase, and backbone of the complementary strand.
Circularized ASOs can also be formed with photocleavable linkers,

FIGURE 5
(A) Selective activation of psoralen-cross-linked DNAwith UV and blue light (Stafforst and Stadler, 2013). (B) Photoactivation of siRNAs with red light
for a non-toxic cellular approach (Meyer and Mokhir, 2014). (C) Spatiotemporal control of gene expression using photocaged T7 RNA polymerase
(Hemphill et al., 2013). (D) Light-responsive nanocarrier for precise CRISPR-Cas9-mediated gene editing (Pan et al., 2019). (E) Spatiotemporal control of
gene expression using riboswitches and photocaged ligands (Walsh et al., 2014). All figures have been adapted with permission from JohnWiley and
Sons Copyright (2013) and (2014), American Chemical Society Copyright (2013), and Springer Nature Copyright (2019).
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such as coumarin- (Yamazoe et al., 2014), 2-nitrobenzyl- (Yang
et al., 2018), quinoline- (O’Connor et al., 2019), and Ru-BEP
(Griepenburg et al., 2015), which allows the control of gene
expression using light irradiation. Another approach is to use
small interfering RNAs (siRNAs), which are approximately
20 base pairs of dsRNAs, that specifically suppress gene
expression by destroying mRNA. By attaching 2-nitrobenzyl on
the phosphate backbone and 5′ or 3′phosphate termini of siRNAs,
light-controlled knockdown could be achieved in zebrafish (Blidner
et al., 2008), mammalian cells (Zhang L. et al., 2018), and HeLa cells
(Yu et al., 2018; Kala et al., 2014). When a 9-alkoxyanthracenyl
fragment as an O2-sensitive moiety is incorporated in photocage
molecules, the selectivity of the activation wavelength can be tuned
by attaching photosensitizers to the 3′-terminus (Figure 5B) (Meyer
and Mokhir, 2014). The use of light-responsive nanoparticles (NPs)
is also a common approach for spatiotemporally manipulating
siRNA functions. Typically, irradiation with NIR light triggers
the release of thiol-modified siRNAs attached to gold NPs,
resulting in the NIR-controlled knockdown of gene expression in
cells (Huang et al., 2015; Riley et al., 2018; Braun et al., 2009). In
addition, siRNA/mPEG-b-P(APNBMA) NPs containing
o-nitrobenzyl moieties have been engineered to initiate siRNA
release post-UV light irradiation (Foster et al., 2015).

3.2 Protein-based light-controlled gene
expression

Photocontrol of proteins can affect the regulation of DNA/RNA
synthesis or activity and the direct activation of protein function, as
shown in Figure 1B, using photosensitive molecule-
modified proteins.

The specific incorporation of amino acids with photosensitive
molecules is required to generate photosensitive molecule-modified
proteins in cells (Arbely et al., 2012; Chou and Deiters, 2011). One
approach to demonstrate this incorporation is to select an amber
stop codon as the insertion site for amino acids with photosensitive
molecules (Wang et al., 2012; Neumann, 2012). Examples of this
approach include the modification of a nitrobenzyl group on RNA
polymerases to allow light-controlled gene expression in cells, as
shown in Figure 5C (Hemphill et al., 2013; Chou et al., 2010).
Additionally, other light-activated gene-editing tools, such as Cre
recombinases (Edwards et al., 2009) and zinc finger (ZF) nucleases
(Chou and Deiters, 2011), have been engineered by modifying
o-nitrobenzyl on essential residues in catalytic sites, enabling
activation upon light irradiation (Chou and Deiters, 2011; Luo
et al., 2016). By fusing the GIGANTEA (GI) protein with the ZF
protein, blue light irradiation induces heterodimerization between
the GI and the light–oxygen–voltage (LOV) domain, which assists
the transcriptional activation domain VP16 in initiating the
transcription of the gene of interest (Polstein and Gersbach,
2012). Similarly, when the light-sensitive cryptochrome 2 (CRY2)
protein is fused with transcription activator-like effector (TALE)
proteins, blue light-induced conformational changes in
CRY2 recruit a CIB1–effector domain, which exerts the active
control of transcription in the same endogenous genome
(Konermann et al., 2013). Furthermore, 2-nitrobenzyl-modified
tamoxifen is used in light-controlled Cre systems to effectively

regulate gene expression in cells (Inlay et al., 2013). Optical
dimerization of the CRY2–CIB system has been widely used to
reconstitute the split recombinase of Cre and Flp, which enables
gene expression control in cells (Cautereels et al., 2024) and mouse
brains (Jung et al., 2019).

The CRISPR-Cas9 system is also a well-known gene editing
tool that can delete, replace, or insert any part of the genome
sequence and has been extensively explored for the light-
activated control of gene expression. Light-activated control of
the CRISPR-Cas9 system has been achieved by engineering light-
responsive Cas9 (Hemphill et al., 2015), gRNA (Moroz-Omori
et al., 2020; Jain et al., 2016), and transcription factors (Shao
et al., 2018). An example of an engineered Cas9 nuclease is the
incorporation of a 2-nitrobenzyl-modified lysine amino acid,
which reversibly affects gene function (Hemphill et al., 2015).
As shown in Figure 5D, when Cas9 is bound to lanthanide-doped
upconversion NPs by a 2-nitrobenzyl photocage, NIR irradiation
produces local UV light, resulting in a photocleavage reaction
and the release of the CRISPR-Cas9 system (Pan et al., 2019).
Other candidate proteins, such as light-activated
phosphorylation (Nguyen et al., 2018), dimeric green
fluorescent protein (Zhou et al., 2018), and cyclic diguanylate
monophosphate signaling cascades (Shao et al., 2018), have also
been reported for use in light-activated CRISPR-Cas9 systems.

3.3 Small-molecule-based light-controlled
gene expression

In addition to DNA, RNA, and proteins, small-molecule
compounds are also general candidates for the photoreactive
control of gene expression. Popular small molecules include
nucleotides, peptides, and ligands. Nucleotides are the basic
building blocks that constitute DNA and RNA; thus, the
photocontrol of nucleotides is a straightforward approach for
controlling gene expression. In this regard, [7-(diethylamino)
coumarin-4-yl]methyl (DEACM)-modified ATP and 2-
nitrobenzyl-modified UTP/GTP have been demonstrated as
molecules to photocontrol the transcription reaction in vitro
(Shao et al., 2018; Pinheiro et al., 2008). The modification of
ligands with 2-nitrobenzyl and azobenzene, which effectively
interact with DNA/RNA, is a useful approach for controlling
gene expression (Walsh et al., 2014; Young et al., 2009; Paul
et al., 2021). An example molecule is theophylline, which can
specifically bind to the mRNA riboswitch; the photocontrol of
gene expression could be achieved by modifying theophylline
with 2-nitrobenzyl (Figure 5E) (Walsh et al., 2014). The binding
affinity of tamoxifen and cyclophen to the estrogen receptor (ER)-
binding domain can be utilized for photoactive regulation by
modifying tamoxifen and cyclophen with 2-nitrobenzyl,
coumarin, and cyanine derivatives (Zhang W. et al., 2018; Wong
et al., 2017; Cruz et al., 2000). The tetracycline (Tet) system in
mammalian cells is controlled by nitrobenzyl-modified doxycyclines
(Cambridge et al., 2006). Many other small molecules, such as
coumarin-modified cAMP-response element-binding protein
(CREB) inhibitor (Imoto et al., 2020) and 2-nitrobenzyl-modified
ecdysone and nuclear hormones (Link et al., 2004; Lin et al., 2002),
have also been engineered to regulate gene expression in cells.
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3.4 Challenges with current light-controlled
gene expression approaches

To understand the nature of cells, photosensitive molecules can
be used to probe fundamental aspects, such as molecular reactions,
molecular kinetics, and live cell dynamics. However, the
introduction of photosensitive molecules into cells or cell-free
systems might influence molecular activity, thereby biasing the
outcomes of the study. For example, exogenous photosensitive
molecules in live cells can potentially harm normal cellular
activities, including unintended effects on cell behavior, signaling
pathways, and cellular homeostasis (Chen et al., 2022). Some
photosensitive molecules may exhibit cytotoxic effects that affect
cell viability and overall cellular health (Dcona et al., 2020).
Therefore, researchers must carefully assess the concentration
and exposure time required to minimize cytotoxicity.

As mentioned in Section 2.4, the introduction of photosensitive
molecules is also a lengthy process. As shown in Figure 6, which
summarizes the total time required for molecular introduction into
cells using electroporation based on protocol journal papers by
picking up all related processes, the process can be done within a
day. However, in certain cases, it can take a significantly longer time
(Alfastsen et al., 2021; Biase and Schettini, 2024; Chan et al., 2023;
Clements et al., 2024; Crestani et al., 2022; Denoth-Lippuner et al.,
2022; Egashira et al., 2023; Flumens et al., 2023; Gao et al., 2022;
Gesuita et al., 2022; Heinz et al., 2020; Lankford and Hulleman,
2024; Laprie-Sentenac et al., 2023; Lax et al., 2022; Layden et al.,

2021; Li et al., 2023; Ling et al., 2022; Meka et al., 2024; Nagahama
et al., 2021; Nomura et al., 2020; Sakamoto et al., 2022; Sanketi et al.,
2023; Skruber et al., 2021; Turchetto et al., 2020; Wang et al., 2020;
Williams and Sauka-Spengler, 2021; Wilson et al., 2020; Wu et al.,
2023; Xu et al., 2021; Xu et al., 2020; Zhou et al., 2021).

Furthermore, achieving high specificity and selectivity for target
molecules can be challenging. Ideally, photosensitive molecules
should interact only with the intended targets; however, off-target
effects may occur, leading to the misinterpretation of the
experimental results (Laczi et al., 2022). Moreover, efficient
delivery of light-sensitive molecule-tagged biomolecules to
specific locations in live cells is required to achieve the desired
control of gene expression (Deng et al., 2020).

In addition, light irradiation can induce cellular stress and
damage, which is known as phototoxicity. This is particularly
relevant in live-cell imaging studies, in which prolonged exposure
to light may lead to alterations in cellular behavior (Talone et al.,
2021). Different cell types respond differently to photosensitive
molecules (Powell et al., 2018). It is important to consider the
specific characteristics of the cell type under investigation and
validate the applicability of the chosen photosensitive molecule to
the cell system of interest. The above discussion highlights that the
development of light-regulated translation technologies requires
addressing many challenges through enormous efforts, testing,
and optimization to improve the effectiveness of the
methodologies (Welleman et al., 2020).

4 Use of mid-IR–terahertz light for
label-free light-controlled gene
expression

Based on the challenges discussed above, we propose that mid-
IR and terahertz light can be used as solutions for light-controlled
gene expression regulation; this section discusses this proposal
in detail.

4.1 Potential for using mid-IR–terahertz
light for gene expression regulation

In principle, as described in Section 2.1, mid-IR and terahertz
light (2.5 μm–3 mm) has a strong interaction with intramolecular/
intermolecular vibrations (López-Lorente et al., 2016; Tonouchi,
2007; Ma et al., 2019; Hoshina et al., 2020). Therefore, mid-IR and
terahertz light has been used as light sources for imaging with high
special selectivity and sensitivity and molecular detection (Jain et al.,
2020). For example, mid-IR photothermal imaging is an emerging
technology that can effectively excite the target vibration modes in
biological molecules. This results in local property changes, such as
the refractive index, molecular volume, and vibration modes, and
monitoring these changes allows a high spatial resolution with low
photodamage to biological molecules (Samolis et al., 2023; Ishigane
et al., 2023).

Since mid-IR and terahertz light can interact with specific
molecular vibrations, the irradiation of these light sources can
influence biological molecular activity; thus, there is potential to
control specific gene expression. The strong light energy at this

FIGURE 6
Summary of time required for electroporation, obtained from
references (Alfastsen et al., 2021; Biase and Schettini, 2024; Chan et al.,
2023; Clements et al., 2024; Crestani et al., 2022; Denoth-Lippuner
et al., 2022; Egashira et al., 2023; Flumens et al., 2023; Gao et al.,
2022; Gesuita et al., 2022; Heinz et al., 2020; Lankford and Hulleman,
2024; Laprie-Sentenac et al., 2023; Lax et al., 2022; Layden et al., 2021;
Li et al., 2023; Ling et al., 2022; Meka et al., 2024; Nagahama et al.,
2021; Nomura et al., 2020; Sakamoto et al., 2022; Sanketi et al., 2023;
Skruber et al., 2021; Turchetto et al., 2020; Wang et al., 2020; Williams
and Sauka-Spengler, 2021; Wilson et al., 2020; Wu et al., 2023; Xu
et al., 2021; Xu et al., 2020; Zhou et al., 2021).
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wavelength can influence molecular activity in a label-free
manner (Morichika and Ashihara, 2022; Park et al., 2018;
Windhorn et al., 2002). However, to the best of our
knowledge, mid-IR and terahertz light has not yet been
commonly used for the light control of gene expression. One
of the reasons for this is the high light absorption of water in this
wavelength range, which leads to an increase in ambient
temperature and hampers biomolecular activity (Holmstrom
and Nesbitt, 2010; Ashwood et al., 2020). A short-pulse laser
can break this fundamental barrier because cyclical ultrashort-
term heating and cooling suppress the increase in ambient
temperature (Toda et al., 2019; Zhang et al., 2019).
Interestingly, when analyzing the energy of mid-IR and
terahertz light (2.5 µm–3 mm), which corresponds to 7.95 ×
10−20 to 6.62 × 10−23 joule/photon, the energy of biological
processes, such as hydrolysis of a peptide bond (−1.39 × 10−20

to −2.78 × 10−20 joule/molecule), ATP hydrolysis (−5.21 ×
10−20 joule/molecule), and folding energies of RNA secondary
structures (−2.78 × 10−20 to −1.11 × 10−19 joule/molecule), is not
very different (Jia et al., 2021). In Figure 7A, Morichika et al.
(2019) showed that the irradiation of a plasmonic structure using
a mid-IR pulse laser enhanced the localized light field, resulting
in CO dissociation of n-hexane mediated by vibrational ladder
climbing (Morichika et al., 2019). Other plasmonic studies have
showed that strong mid-IR light in a plasmon nanocavity
perturbs a few-nm-thick shell of water, predicting the mid-IR
and terahertz light interaction with the molecular reaction
(Chikkaraddy et al., 2022). Even without plasmonic
enhancement, pulsed mid-IR light can selectively induce
vibrational excitation, allowing the activation energy barriers
to be overcome and facilitating ground-state reactions with

minimal heat generation in Figure 7B (Stensitzki et al., 2018).
This can result in bimolecular alcoholysis reactions, bidirectional
tautomerization of thiotropolone, and the formation of urethane
and polyurethane (Stensitzki et al., 2018; Heyne and Kühn, 2019;
Nunes et al., 2020).

Although understanding the detailed mechanism of mid-IR and
terahertz light irradiation on live cells is complicated, Toyama et al.
(2022) showed that strong pulsed-light irradiation of E. coli cells in
the mid-IR absorption region can affect their growth rate and
survival. Furthermore, the much weaker energy of terahertz light
influences the biological molecular activities. Recently, Sugiyama
et al. (2023) discovered that the irradiation of pulsed terahertz light
on proteins enhances hydrophobic hydration, leading to an increase
in the number of hydrogen bonds at the hydration layer in Figure
7C, suggesting that even terahertz light can influence gene
expression (Sugiyama et al., 2023). Although previous reports did
not show clear findings, some previous studies have already
predicted the influence of protein activity and expression (Sun
et al., 2021). For example, Tan et al. found the downregulation of
SYN expression in primary hippocampal neurons and
PSD95 expression in cortical neurons under 0.16–0.17-THz
irradiation, with a positive correlation with the exposure time
and laser power (Zhi et al., 2019).

4.2 Challenges associated with mid-
IR–terahertz light technology

Although some previous studies have shown the effect of mid-IR
and terahertz light at the molecular level and presented some
molecular reactions, many challenges remain for the active

FIGURE 7
(A) Plasmonic enhanced mid-IR light field dissociation of CO of n-hexane (Morichika et al., 2019). (B) Selective vibrational excitation-induced
ground-state reactions by mid-IR light (Heyne and Kühn, 2019). (C) Terahertz light promoting the hydrophobic hydration around the protein (Sugiyama
et al., 2023). All figures have been adapted with permission from American Chemical Society Copyright (2019) and Springer Nature Copyright
(2019), (2023).
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utilization of these wavelengths of light. First, the vibrational mode
of molecules is influenced by a variety of factors, such as
temperature, humidity, and substrates. Thus, an absorption
spectrum shift of target biological molecules can occur in the
environment, and researchers may need to calibrate the
excitation wavelength. Second, as mentioned above, water
absorption of mid-IR and terahertz light is quite high
(100–104 cm−1); therefore, limited light penetration might be a
critical issue when target samples are a large volume of biological
molecules or tissues (Prahl, 2017). Third, instruments and optical
elements for the mid-IR and terahertz regions are often expensive
and not widely available for commercial purchase, necessitating
researchers to develop a setup if cost considerations come into play.
Fourth, targeting specific molecules is required to obtain absorption
spectrum profiles using Fourier-transform infrared spectroscopy,
which requires the preparation of a large volume of purified
biological samples.

5 Conclusion

Here, we provide an overview of light-controlled gene
expression and propose a label-free light control approach using
mid-IR and terahertz light. First, we explain the interaction between
light and the materials, offering insights into the selection of
appropriate wavelengths. Second, we introduce common
techniques for modifying photosensitive molecules, such as
photocages and photoswitches, and review previous studies on
light-controlled gene expression via the manipulation of
photosensitive DNA/RNA, proteins, and small molecules. In
addition, we discuss the technological challenges associated with
the current technologies utilizing photosensitive molecules for the
regulation of gene expression. Looking ahead, we explore the
exciting prospect of extending label-free light-controlled
technologies using the mid-IR and terahertz wavelength ranges,
which are traditionally limited by water absorption, in biological
applications. Because it allows the photocontrol of gene expression
without any photosensitive molecular tag, this uncharted territory
shows potential for groundbreaking innovations in the field of gene
expression, contributing to medical and pharmaceutical
development.
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