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Introduction: Chronic osteomyelitis is a complex clinical condition that is
associated with a high recurrence rate. Traditional surgical interventions often
face challenges in achieving a balance between thorough debridement and
managing resultant bone defects. Radiomics is an emerging technique that
extracts quantitative features from medical images to reveal pathological
information imperceptible to the naked eye. This study aims to investigate the
potential of radiomics in optimizing osteomyelitis diagnosis and
surgical treatment.

Methods: Magnetic resonance imaging (MRI) scans of 93 suspected
osteomyelitis patients were analyzed. Radiomics features were extracted
from the original lesion region of interest (ROI) and an expanded ROI
delineated by enlarging the original by 5 mm. Feature selection was
performed and support vector machine (SVM) models were developed
using the two ROI datasets. To assess the diagnostic efficacy of
the established models, we conducted receiver operating characteristic
(ROC) curve analysis, employing histopathological results as the reference
standard. The model’s performance was evaluated by calculating the
area under the curve (AUC), sensitivity, specificity, and accuracy.
Discrepancies in the ROC between the two models were evaluated using
the DeLong method. All statistical analyses were carried out using Python,
and a significance threshold of p < 0.05 was employed to determine statistical
significance.

Results and Discussion: A total of 1,037 radiomics features were extracted from
each ROI. The expanded ROI model achieved significantly higher accuracy
(0.894 vs. 0.821), sensitivity (0.947 vs. 0.857), specificity (0.842 vs. 0.785) and
AUC (0.920 vs. 0.859) than the original ROI model. Key discriminative features
included shape metrics and wavelet-filtered texture features. Radiomics analysis
of MRI exhibits promising clinical translational potential in enhancing the
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diagnosis of chronic osteomyelitis by accurately delineating lesions and identifying
surgical margins. The inclusion of an expanded ROI that encompasses perilesional
tissue significantly improves diagnostic performance compared to solely focusing
on the lesions. This study provides clinicians with a more precise and effective tool
for diagnosis and surgical decision-making, ultimately leading to improved
outcomes in this patient population.

KEYWORDS

chronic osteomyelitis, radiomics, MRI, diagnostic accuracy, surgical decisionmaking,
shape features, region of interest

1 Introduction

Chronic osteomyelitis has long been recognized as one of the
most challenging diseases in themedical field, often referred to as the
“second cancer” (Zhang et al., 2019; Masters et al., 2022). Despite the
refined antimicrobial activity of new-generation antibiotics and the
efficacy of surgical intervention, the recurrence rate of chronic
osteomyelitis remains as high as 20%–30% (Conterno and
Turchi, 2013; Chastain and Davis, 2019; Zeitlinger, 2019; Wang
X. et al., 2023).

Accurate diagnosis of chronic osteomyelitis is essential, as
misdiagnosis can lead to the worst outcomes due to differences
in treatment approaches. Magnetic Resonance imaging (MRI), with
its excellent contrast between bone and soft tissue, is currently one of
the most valuable tools for diagnosing chronic osteomyelitis.
However, relying solely on MRI can be challenging for
differentiating diseases with similar radiographic features, such as
bone tuberculosis and osteosarcoma. These conditions often present
with bone marrow edema, soft tissue masses, and inflammatory
changes, which may overlap in imaging characteristics, thus
complicating differential diagnosis and potentially affecting
subsequent treatment strategies. Furthermore, once a definitive
diagnosis is made, thorough debridement is necessary, as
incomplete debridement can lead to recurrent infections (Bosse
et al., 2002). Therefore, relying on intraoperative judgment based on
experience, experienced orthopedic surgeons have increasingly
adopted expanding debridement as the preferred approach.
However, this practice can result in extensive bone defects, which
pose a significant challenge during the postoperative period (Heng
et al., 2023). On the other hand, narrowing the debridement area
increases the risk of infection recurrence. Thus, it seems challenging
to strike a balance between the two approaches. Moreover, even with
the expansion of the debridement area, there are instances where
chronic osteomyelitis still recurs, highlighting the limitations of
current interventional approaches and the harsh reality faced in
clinical practice (Hotchen et al., 2020).

Radiomics, an emerging diagnostic and adjunctive imaging
technique, has witnessed rapid development in recent years,
offering hope in addressing this issue (Huang et al., 2016; Witt
et al., 2020; Bera et al., 2022; WangW. et al., 2023). High throughput
radiomics transforms traditional medical images into highly reliable,
reproducible, and non-redundant data that can be mined for
valuable information by extracting and analyzing a large volume
of advanced and quantitative image feature data. These extracted
features provide insights into pathological and physiological
phenomena that are not readily discernible by the naked eye in

chronic osteomyelitis, particularly in terms of structural damage and
alterations in image texture (Gillies et al., 2015; Huang et al., 2016;
Bera et al., 2022; Cuce et al., 2023). Currently, this technique is
primarily applied in the classification and prediction of various
cancers (Lambin et al., 2017; Hassani et al., 2019). Its high diagnostic
accuracy can also be leveraged to reduce the misdiagnosis rate of
chronic osteomyelitis by mining big data from radiographic images
and facilitating early diagnosis and treatment.

For orthopedic surgeons, the future potential primary advantage
of this technique lies in optimizing surgical decision-making. The
infected area and its extent can be accurately determined by analyzing
preoperative imaging data and establishing precise three-dimensional
reconstruction images combined with machine learning and image
segmentation techniques. The development of expanded detection
technology provides the foothold for optimal debridement in cases of
osteomyelitis (Wu et al., 2021), which involves improving the
discrimination of the primary lesion area and defining a reliable
and safe zone based on “artificial intelligence” judgments. This
approach can assist in preoperative planning and optimizing
debridement strategies, allowing surgeons to treat patients more
accurately and efficiently while ensuring complete removal of
infected tissue and minimizing bone damage. To achieve the
previously stated objectives, we first need to determine whether
radiomics technology is sufficiently effective in diagnosing chronic
osteomyelitis by assessing the combined area of lesions visible to the
naked eye and their surrounding expanded regions (potential lesions).

Herein, we sought to develop an imaging-based osteomyelitis
diagnosis model using radiomics analysis by comprehensively
analyzing and extracting features from patient MRI data and
evaluating its accuracy and reliability in determining the nature
and extent of lesions. This approach could facilitate diagnosis and
surgical decision-making, achieving a breakthrough in treating
chronic osteomyelitis.

2 Materials and methods

2.1 Data collection

A retrospective analysis was conducted on the clinical and imaging
data of 93 patients with an initial diagnosis suspected to be chronic
osteomyelitis of the long bones (Figure 1) who attended the First
Affiliated Hospital of XinjiangMedical University from January 2016 to
May 2022. The study population comprised predominantly of males
(n = 63/93, 67.7%), with a mean age of 35.5 (range: 19–67 years).
Inclusion/exclusion criteria: Patients with a high suspicion of having

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Jia et al. 10.3389/fbioe.2024.1315398

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1315398


chronic osteomyelitis of the long bones and requiring surgical
intervention were included. These patients had well-established bone
marrow infection persisting for more than 10 weeks, and the diagnosis
was based on intraoperative histopathological examination or at least
two sites with the same pathogen cultured or well-defined sinus tracts
directly connected to the long bones, excluding cases with specific
infections such as mycobacteria. The medical records of patients
diagnosed with chronic osteomyelitis of the long bones included the
following data: gender, age, anatomical site of infection, intraoperative
microbiological culture results, treatment strategies, serum biomarkers,
and MRI images after admission. Patients who were pregnant,
breastfeeding, had metal implants, or were diagnosed with acute
osteomyelitis, Charcot disease, diabetes, or chronic osteomyelitis in
non-long bone locations were all excluded from the study. Moreover, if
a patient had multiple medical records (multiple hospitalizations), only
the most relevant record related to chronic osteomyelitis of the long
bones was retained for analysis. Based on retrospective pathological
analysis, the study ultimately included 48 patients with chronic
osteomyelitis and 45 patients with non-chronic osteomyelitis. The
Ethics Committee of The First Affiliated Hospital of Xinjiang
Medical University approved the study with an informed consent
exemption (K202308-11). Patients’ personal information was
anonymized and de-identified prior to analysis.

2.2 MR scanning method

The patient image was acquired by a 1.5T MR scanner
(SIEMENS). The following scanning parameters were used: T1WI
TR 600 ms TE 9.5 ms; T2WI TR 3000 ms TE 88 ms; FS T2WI

TR3600 ms TE 83 ms, FOV320 mm, matrix: 256 × 256. All
patients underwent routine scanning, including T1-weighted
sequences, T2-weighted sequences, and a T2-based short tau
inversion recovery (STIR) sequence. Scans were performed in the
coronal, sagittal, and axial planes according to the location of lesions,
with a slice thickness of 4 mm and an interslice gap of 0.4 mm.

2.3 Lesion segmentation and radiomics
feature extraction

2.3.1 Image selection
MRI images of selected patients were extracted from the Picture

Archiving and Communication Systems (PACS). The images were
reviewed by a radiologist with over 10 years of musculoskeletal
imaging diagnostic experience. T1-weighted images (T1WI)
exhibited low signal intensity, whereas T2-weighted images
(T2WI) and Short Tau Inversion Recovery images displayed high
signal intensity for bone marrow inflammation. The presence of
complete sequences without artifacts was confirmed before
proceeding with image delineation.

2.3.2 Lesion and perilesional area delineation
1) Lesion delineation was performed using 3D Slicer (version

5.3.0) software, simultaneously outlining both the outer contour and
bounding box of the lesion. 2) Using the STIR sequence based on the
MRI T2 sequence as a reference, the region of interest (ROI) was
delineated in the coronal plane. 3) Manual delineation was
conducted on each lesion plane while avoiding areas of necrosis
and hemorrhage, with an emphasis on comprehensive coverage of

FIGURE 1
Macroscopic photo of a patient with chronic osteomyelitis.
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the lesion substance. 4) Semi-automatic delineation was applied to
the original region of interest (original ROI), displaying the lesion on
the image, as well as the lesion area expanded by 5 mm (expanded
ROI) from the original ROI. Subsequent manual adjustments were
made to confirm the delineation scope, preventing any extension of
the delineation beyond the bone structure. 5) For lesions with
unclear borders, distinct high-signal areas were delineated. 6) In
the case of multiple lesions, only the largest lesion was delineated.
The results of lesion and perilesional area delineation are illustrated
in Figure 2. 7) The delineation and review of the Regions of Interest
(ROIs) were conducted by two radiologists, each boasting over a
decade of expertise in musculoskeletal imaging diagnostics.

2.3.3 Raiomics feature extraction
In this study, radiomics feature extraction was conducted using

the pyradiomics module within the 3D Slicer software. A total of
1,037 features were automatically extracted for each ROI,
encompassing various categories of features, including shape,
firstorder, glcm, glszm, gldm, glrlm, and ngdtm. Furthermore,
wavelet filtering and Laplacian of Gaussian (LoG) filtering
techniques were applied. Wavelet filtering was applied to
iteratively break down the initial image into various scales,
thereby extracting valuable insights across diverse levels. In
contrast, LoG filtering functioned as an edge enhancement filter,
predominantly highlighting areas with significant variations in gray
levels. By manipulating the sigma parameter in the LoG filtering
process, we could regulate the prominence of texture characteristics.
Smaller sigma values were employed to enhance intricate texture

intricacies, while larger sigma values highlighted textural attributes
on a broader scale (Lambin et al., 2012; van Griethuysen et al., 2017).

2.4 Statistical analysis

We used Python (ver 3.9.13) to process the two sets of radiomics
features extracted from 3D Slicer, encompassing both the original
and expanded ROI. Initially, data standardization was executed on
the two datasets through a standardized method. The patient cohort
was subsequently randomly partitioned into a training set and a
testing set, maintaining a ratio of 7:3. Following this, dimensionality
reduction was implemented on the extracted radiomics features via
t-test, least absolute shrinkage and selection operator (LASSO)
regression analysis, and the SelectKBest classifier.

The support vector machine (SVM) model was employed for
modeling the kernel functions of both the original and expanded
ROIs. The dimensionality-reduced features were employed for
classification tasks. To assess the diagnostic efficacy of the
established models, we conducted receiver operating
characteristic (ROC) curve analysis, employing histopathological
results as the reference standard. The model’s performance was
evaluated by calculating the area under the curve (AUC), sensitivity,
specificity, and accuracy. Discrepancies in the ROC between the two
models were evaluated using the DeLong method (DeLong et al.,
1988). All statistical analyses were carried out using Python (ver
3.9.13), and a significance threshold of p < 0.05 was employed to
determine statistical significance.

FIGURE 2
Osteomyelitis outlined using 3Dslicer. (A,F)Osteomyelitis in the proximal-medial tibia on the coronal view of the STIR sequence. (B,G)Osteomyelitis
outlined within original ROI. (C,H)Osteomyelitis outlined within expanded ROI. (D,I) 3Dmodel of osteomyelitis reconstructed from original ROI. (E,J) 3D
model of osteomyelitis reconstructed from expanded ROI.
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3 Results

3.1 Radiomics feature extraction

Utilizing the pyradiomics module within the 3D Slicer software,
feature extraction was conducted separately on the original ROI and
the expanded ROI, yielding a total of 1,037 features. Following
feature selection through t-tests and the LASSO method, 16 and
11 features were retained for the original and expanded ROI,
respectively.

Figures 3A,B illustrate the feature selection results, displaying the
LASSO-driven selection of lesion texture features. To further reduce
feature dimensionality and construct the SVM model, optimal
polynomial degrees of 2 were determined during the
hyperparameter grid search for SVM. The cost variables for the
original ROI and the expanded ROI were set at 0.5 and 3.05,
respectively, with scaling variables of 0.15 and 0.0625. Subsequent
feature refinement was performed using the SelectKBest classifier,
which employs statistical methods such as the chi-squared test,

F-test, or mutual information to evaluate the relationship between
each feature and the target variable. Features are ranked and selected
based on the magnitude of the computed statistic (Bisong, 2019). By
applying the SelectKBest classifier, we ultimately identified the top
10 features for the original and expanded ROI. Figures 4A,B depicts the
feature weights selected for the original and expanded ROIs. The
correlations between features within the original and expanded ROIs
are visually represented through heatmap matrices in Figures 5A,B,
respectively. All coefficients of total feature values were less than 0.7,
implying the absence of collinearity among the features. The feature
selection process underscores the significance of all gathered parameters
as pivotal predictive elements for machine learning algorithms.

3.2 Comparison of model performance
between original ROI and expanded ROI

The original ROI model demonstrated an excellent diagnostic
performance with an accuracy of 0.821, sensitivity of 0.857, and

FIGURE 3
Texture feature selection using t-tests and selection operator (LASSO) for radiomics. (A) Original ROI texture feature selection. (B) Expanded ROI
texture feature selection.
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FIGURE 4
The features weight selected for original and expanded ROIs. (A) Features weight within the original ROI. (B) Features weight within the
expanded ROI.

FIGURE 5
The correlation matrix heatmap. (A) Original ROI correlation matrix heat map. (B) Expanded ROI correlation matrix heat map.
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specificity of 0.785. Nonetheless, the expanded ROI model exhibited
higher accuracy (0.894), sensitivity (0.947), and specificity (0.842),
significantly outperforming the SVM model based on the original
ROI radiomics features (Table 1). As depicted in Figures 6A,B, the
expanded ROI model’s predictive performance was significantly
superior to the original ROI (AUC value 0.920 vs. 0.859).
DeLong’s test confirmed a significant difference between the two
approaches (Z = 3.336, p < 0.001), indicating the enhanced
diagnostic efficacy of the expanded ROI model.

4 Discussion

MRI stands out for its absence of electromagnetic radiation,
swift examination times, and exceptional contrast depiction between
bone and soft tissues. Beyond its capacity for multi-directional
imaging, MRI boasts superior sensitivity in pinpointing lesion
locations and extents compared to X-rays and CT scans
(Hatzenbuehler and Pulling, 2011; Acikgoz and Averill, 2014).
Furthermore, contrast-enhanced MRI can effectively delineate
abscesses and sinus tracts related to chronic osteomyelitis, thus
improving diagnostic precision. However, the utilization of
gadolinium-based contrast agents presents iatrogenic hazards to
patients. While MRI currently plays a pivotal role in osteomyelitis

diagnosis, significant challenges remain for clinical diagnostics (Lee
et al., 2016; Wong et al., 2019). In cases of chronic osteomyelitis,
MRI reveals distinct patterns with low signal intensity on T1WI and
high signal intensity on T2WI and STIR sequences. Additionally, the
surrounding soft tissues often exhibit edema, inflammatory
alterations, and localized osteolysis. However, distinguishing
chronic osteomyelitis from conditions like osteosarcoma and
osteotuberculosis which present very similar imaging features on
MRI, can be challenging on plain MR scans. In this context,
radiomics becomes particularly important since it can extract
countless quantitative features from MRI images, dynamically
observe lesions and their microenvironments in a non-invasive
manner, discover a large amount of information hidden in MR
image layers to predict clinical endpoints or lesion properties and
provide possibilities for a comprehensive assessment of lesion
heterogeneity (van Griethuysen et al., 2017; Muraoka et al.,
2022), as well as providing more possibilities for precise guidance
of the surgical scope. Studies have shown that the microenvironment
around the lesion has important biological significance in terms of
lesion growth, cell migration, inflammation, and other aspects
(Lambin et al., 2012). However, most radiomics studies of
osteomyelitis have focused on the lesion itself, and the
perilesional area has not been comprehensively explored (DeLong
et al., 1988). Integrating radiomics features extracted from the
perilesional area could improve lesion predictive diagnostic
efficiency and offers extensive prospects for precise surgical scope
guidance by incorporating microtexture intricacies and
multifaceted data.

Although previous studies have evaluated osteomyelitis using
MRI (Oda et al., 2018; Iwasaki and Muraoka, 2020; Massel et al.,
2021), there is limited research on the application ofMRI radiomics in
assessing chronic osteomyelitis. Therefore, further research and
exploration in this field are valuable. In this study, we constructed
two different regions of interest for osteomyelitis: the original ROI
based on the lesion area of osteomyelitis and an expanded ROI

TABLE 1 Diagnostic performance comparison between original ROI and
expanded ROI models.

Original ROI model Expanded ROI model

Accuracy 0.821 0.894

Sensitivity 0.857 0.947

Specificity 0.785 0.842

AUC 0.859 0.920

FIGURE 6
Comparison of model performance. (A) AUC of the original ROI. (B) AUC of the expanded ROI.
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expanding 5 mm beyond the original. Subsequently, two SVMmodels
were developed using these ROIs to assess the diagnostic performance
of MRI radiomics in osteomyelitis diagnosis. SVM, a supervised
learning algorithm, endeavors to identify a hyperplane within the
feature space that maximizes the classification of distinct classes of
data points, thereby facilitating effective classification. In our study,
SVM demonstrated effective applicability; MRI radiomics-based
osteomyelitis diagnosis achieved enhanced sensitivity compared to
previous studies on MRI’s diagnostic performance in osteomyelitis.
For instance, compared to Hulsen et al.’s study (Hulsen et al., 2022),
the sensitivity increased from 0.780 to 0.857, consistent with Hirotaka
et al.’s findings regarding MRI radiomics’ robust diagnostic
performance in pyogenic osteomyelitis (Muraoka et al., 2022).
Expanding the original ROI by 5 mm resulted in the SVM model
yielded marked enhancements in accuracy (0.894 vs. 0.821),
sensitivity (0.947 vs. 0.857), specificity (0.842 vs. 0.785), and AUC
value (0.920 vs. 0.859), attributed to the fact that not all osteomyelitis
lesions manifest as high signal areas inMRI images, and subtle lesions
beyond the high signal region might remain imperceptible to the
naked eye. Importantly, the radiomics-based SVMmodel can identify
these subtle features accurately, improving diagnotic accuracy. Our
findings are consistent with the widely accepted perspective that
eradicating osteomyelitis necessitates expanding the surgical scope
(Lazzarini et al., 2002; McNally et al., 2022; Wu et al., 2023). Our
results indicate that expanding the delineation range from 0 to 5 mm
substantially enhanced MRI radiomics’ diagnostic performance in
osteomyelitis, providing valuable insights for osteomyelitis surgical
scope guidance.

Differentiating healthy tissue from non-viable tissue during
early-stage surgery is inherently complex. Therefore, recognizing
the significance of early, thorough debridement is widely
acknowledged (Li et al., 2020). Eckardt et al. initially proposed
aggressive debridement, akin to managing giant cell bone tumors,
for chronic osteomyelitis treatment (Eckardt et al., 1994). Some
scholars even advocate treating it like malignancy (Simpson et al.,
2001), consistent with our findings. Thus, applying radiomics
techniques to accurately determine lesion extent holds significant
practical benefits for patients, impacting short-term surgical
outcomes and long-term disease control and prognosis.

After applying t-tests and LASSO-based feature extraction, the
original ROI model retained 16 features, while the expanded ROI
model retained 11. The potential drawbacks of excessive features,
including increased false discovery rates, overfitting, and diminished
model generalization efficacy, have been highlighted (Kumar et al.,
2012; Gillies et al., 2015). To mitigate these risks and enhance model
accuracy, the SelectKBest classifier was employed, further reducing
feature dimensionality to 10 for both models.

Based on our feature selection, the original ROImodel highlighted
Elongation, Major Axis Length in the shape features, and the
Minimum feature in the first-order statistical features as optimal
descriptors for characterizing the texture attributes within the
osteomyelitis region. In contrast, within the expanded ROI model,
the waveletfilter’smaximum correlation coefficient (MCC) feature and
sphericity from the shape-related feature set emerged as the most
informative in delineating the textural characteristics of the expanded
osteomyelitis suspicious area. In the original ROI model, Elongation
and Major Axis Length encapsulate the primary directional
characteristics of the region of interest’s shape and the length of its

primary axis within the enclosed ellipsoid. Elongation assesses the
extent to which the ROI’s shape appears elongated, while Major Axis
Length quantifies the principal dimension of the ROI. During
osteomyelitis imaging, a lesion can lead to anomalous enlargement
and morphological alterations within the adjacent bone marrow
architecture. This often manifests as an elongated lesion region with
an irregularly expanded shape, collectively indicating the structural
attributes of the bone and the extent of osteomyelitis infiltration (He
et al., 2021). Utilizing the Minimum feature within the first-order
statistical features primarily assesses the minimum grayscale intensity
within the lesion region. In cases where the original ROI exclusively
encompasses the osteomyelitis area displaying high signal intensity on
the MRI image, the overall image’s minimum grayscale value tends to
be elevated. Conversely, the expanded ROI’s delineation encompasses
regions outside the lesion, often represented by darker areas on the
MRI image. This inclusion leads to a comparatively lower overall
minimum grayscale value, resulting in the reduced significance of the
Minimum feature. Meanwhile, sphericity quantifies an object’s
resemblance to a perfect sphere, with lower values indicating
deviation towards irregularity. In the context of the expanded ROI
model, sphericity emerges as a pivotal discriminatory feature, reflecting
the extent of roundness within the lesion area in relation to a spherical
shape (Priya et al., 2021) Its prominently negative weight might stem
from the indistinct boundaries and unevenness of the expanded ROI,
resulting in a modified shape. Additionally, the MCC feature linked to
the wavelet filter is a gray-level co-occurrence matrix (GLCM)
component, signifying the intricacy of texture patterns (Su et al.,
2023). Given the broader delineation of regions within the
expanded ROI model, implying heightened textural complexity
compared to the original ROI, the MCC feature was more
prominent in the expanded ROI model.

Across the original and expanded ROI models, the shape feature
retained a notably substantial weight ratio among all the screened
features. Previous studies have effectively employed shape features
in delineating tumor aggressiveness (Limkin et al., 2019). Similar to
the invasive characteristics exhibited by tumors, osteomyelitis also
demonstrates comparable aggressiveness. Shape features possess a
unique capability in assessing bone erosion, which can effectively
differentiate chronic osteomyelitis from other conditions in
magnetic resonance imaging.

The application of radiomics ensures a relatively high level of
accuracy in differentiating between residual lesions in chronic
osteomyelitis, such as infected tissue, inflammatory tissue, and
edema, despite their similar high signal intensity on imaging.
Implementing an expanded lesion detection strategy can be
likened to providing young doctors with a vantage point on the
accomplishments of experts, reflecting the inevitable trajectory of
rapid artificial intelligence advancement. However, it should be
borne in mind that despite the immense potential of radiomics
technology, its effective utilization still hinges on the expertise and
experience of medical professionals for thorough analysis and
interpretation. Radiomics technology functions as a
supplementary tool, and doctors must still integrate elements like
clinical history, physical examinations, and other supplementary test
outcomes to arrive at the ultimate diagnosis and treatment decisions.

Our study has several limitations. Firstly, it is a retrospective
study, potentially subject to information bias. Secondly, our discussion
solely pertains to the impact of MRI radiomics on the diagnostic
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efficacy of osteomyelitis. Thirdly, comparing radiomics features with
imaging morphological characteristics is necessary. In our future
research, we plan to construct a fusion model based on both
radiomics and morphological features to further explore and
validate their combined diagnostic value. However, previous
studies have shown that certain clinical factors, such as a history
of previous wounds (Lavery et al., 2009) and microbial infections
(Bury et al., 2021), may also influence the qualitative diagnosis of
osteomyelitis. Therefore, in future research, integrating clinical
features with radiomics may become an expanded focus to provide
a more comprehensive disease diagnosis and treatment guidance.
Additionally, further research is needed to investigate the extent of
expanded delineation in conjunction with radiomics, aiming to
achieve optimal accuracy, sensitivity, specificity, and other
information. We also plan to explore additional radiomics models,
such as random forest models and logistic models, to compare the
diagnostic performance of different models and identify the most
suitable radiomics model for osteomyelitis diagnosis.

5 Conclusion

MRI radiomics-based methods yielded promising results for
diagnosing chronic osteomyelitis, especially when utilizing an
expanded ROI model that enhances diagnostic accuracy. With
further validation from larger-scale, high-quality studies in the future,
this approach can potentially become a valuable tool for guiding surgical
interventions in chronic osteomyelitis, providing accurate diagnosis and
precise localization of the affected lesion areas, ultimately optimizing
surgical decision-making and improving patient outcomes.
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