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Osteoarthritis (OA), as a degenerative disease, leads to high socioeconomic
burdens and disability rates. The knee joint is typically the most affected and is
characterized by progressive destruction of articular cartilage, subchondral bone
remodeling, osteophyte formation and synovial inflammation. The current
management of OA mainly focuses on symptomatic relief and does not help
to slow down the advancement of disease. Recently, mesenchymal stem cells
(MSCs) and their exosomes have garnered significant attention in regenerative
therapy and tissue engineering areas. Preclinical studies have demonstrated that
MSC-derived exosomes (MSC-Exos), as bioactive factor carriers, have promising
results in cell-free therapy of OA. This study reviewed the application of various
MSC-Exos for the OA treatment, along with exploring the potential underlying
mechanisms. Moreover, current strategies and future perspectives for the
utilization of engineered MSC-Exos, alongside their associated challenges,
were also discussed.
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1 Introduction

Osteoarthritis (OA) is the most common chronic degenerative joint disease, marked by
gradual deterioration of articular cartilage, subchondral bone remodeling, osteophyte
formation and synovial inflammation (Jiang, 2022). With an ageing population, OA is
emerging as a major health issue, impacting over 300 million people worldwide, more than
40% of whom are over the age of 70 (Hunter and Bierma-Zeinstra, 2019; Kolasinski et al.,
2020). An increasing number of research have indicated that articular cartilage and
subchondral bone form a functional unit that has a coherent and reciprocal effect on
the development of OA (Hu et al., 2021).

Articular cartilage consists of chondrocytes and extracellular matrix (ECM). As the
primary cellular constituents of cartilage, chondrocytes play a fundamental role in
synthesizing and maintaining ECM to preserve the structural integrity of articular
cartilage (Sophia Fox et al., 2009). Specifically, chondrocytes secrete various ECM
components, including lubricin, glycoproteins and type II collagen (COL2) fibers to
maintain a stable environment within articular cartilage (Gilbert et al., 2021).
Chondrocyte function is intricately regulated by multiple factors. Physiological loading
from joint movement and exercise is beneficial, stimulating chondrocytes to maintain
cartilage integrity (Deng et al., 2023). However, abnormal mechanical loading can lead to
cartilage degeneration. Additionally, inflammatory mediators like interleukin-1 (IL-1) and
tumor necrosis factor-alpha (TNF-α) negatively impact chondrocyte function and
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accelerate cartilage degradation (Schuerwegh et al., 2003). During
the development of OA, the homeostasis within the articular
cartilage is disrupted. Chondrocytes undergo hypertrophic
changes and abnormally secrete multiple cartilage matrix-
degrading enzymes, such as a disintegrin and metalloproteinase
with thrombospondin motifs 5 (ADAMTS5), matrix
metalloproteinase-3 (MMP-3) and matrix metalloproteinase-13
(MMP-13) (Cho et al., 2021). These matrix-degrading enzymes
sequentially degrade the cartilage matrix, leading to articular
cartilage degeneration. However, cartilage has a limited
regenerative capacity compared to other tissues such as skin or
blood vessels due to its avascular nature and low cell turnover rate
(Gilbert et al., 2021). Cartilage regeneration is a complex process
involving chondrocytes proliferation and differentiation. When the
injury occurs, mesenchymal stem/stromal cells (MSCs) can be
recruited to the specific site, which have the potential to
differentiate into chondrocytes to replace damaged tissue and are
responsible for producing the ECM of cartilage (Jablonski
et al., 2019).

Subchondral bone supplies mechanical support to cartilage and
undergoes dynamic remodeling to adapt to microenvironmental
changes (Lu et al., 2023). Compared to articular cartilage,
subchondral bone exhibits a greater capacity in response to
surrounding mechanical stress (Hu et al., 2021). In early-stage
OA, accelerated bone resorption and reduced subchondral bone
plate thickness precede obvious cartilage degeneration (Kazemi and
Williams, 2021; Hu et al., 2022). Subsequently, cartilage destruction
occurs primarily in areas where the subchondral bone plate
thickness is decreased. As OA progresses, subchondral bone
resorption rate is significantly reduced, resulting in uncoupled
remodeling of subchondral bone, which is manifested by an

abnormal thickening of the subchondral bone growth plates
(Kazemi and Williams, 2021). This is also one of the significant
pathological signs of the late stage of OA (Figure 1).

Currently, OA treatment can be categorized into two main
groups. One is early medication, including non-steroidal anti-
inflammatory drugs (NSAIDs), which are used primarily to
relieve symptoms, or glucosamine, hyaluronic acid and
chondroitin sulphate, which help protect cartilage. However, drug
treatment merely decelerates the progression of OA and may
augment the probability of adversities towards the
gastrointestinal tract and cardiovascular system (Richette et al.,
2015). Surgical treatment, such as subchondral bone
microfracture, autologous chondrocyte implantation and knee
arthroplasty, is considered when conservative treatment is
unsatisfactory (Rahmani Del Bakhshayesh et al., 2020).
Nonetheless, it is not only imposing a heavy economic burden
on individuals but also to their families and even the whole society.
Therefore, intervening early in the disease process and enhancing
damaged cartilage reconstruction are currently the primary goals of
OA treatment.

Over the past decade, cell-based therapies have rapidly emerged
as a promising approach to articular cartilage repair. Numerous
preclinical studies have shown that injecting MSCs into joint cavity
can enhance cartilage regeneration and reduce synovial
inflammation to alleviate OA progression (Desando et al., 2013).
Although a systematic review reported that MSC-based therapy
could significantly reduce pain symptoms and repair joint function
(Wei et al., 2021), there are still some challenges to clinical
implementation. For example, potential pro-tumorigenic effects,
lack of standardized cell production and ethical audit, which
have led researchers to investigate alternative approaches in the

FIGURE 1
The pathobiological network of osteoarthritis. Ageing, genetics, obesity, mechanical overload and traumatic injury are reported to be mainly risk
factors that may improve the susceptibility to OA. OA comes with various symptoms like cartilage degradation and subchondral bone remodeling.
Numerous cytokines and catabolic enzymes are associated during OA progression (Created with BioRender.com).
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field of MSC-based biological tissue engineering (Lukomska et al.,
2019). Recently, a growing number of evidence supports that MSC-
derived extracellular vesicles (MSC-EVs) play a crucial role in
intercellular communication and retain valuable properties of
parental cells (Thakur et al., 2022). Compared to cell-based
therapy, EVs show great advantages such as low immunogenicity,
good stability, no ethical controversy, easy storage and direct fusion
with target cells (Zhou et al., 2022). These attributes make EV-based
therapy as a potential substitute for MSC-based cell therapy.

EVs comprise various subtypes such as microvesicles, apoptotic
bodies and exosomes (Exos), each of which plays a unique role in
several biological processes (Srinivasan and Sundar, 2021). Among
them, exosomes have received more attention than other EVs due to
their outstanding performance (Samanta et al., 2018; Gurunathan
et al., 2019). Exosomes are membrane-bound vesicles characterized
by nanoscale dimensions (typically in the range of 30–150 nm).
They can be isolated from various bodily fluids, including blood,
plasma and saliva, and derived from a diverse range of cell varieties
such as fibroblasts, immune cells, tumour cells, chondrocytes and
MSCs (Zhu et al., 2020). Exosomes possess the capacity to deliver a
wide range of bioactive molecules, making them a potent tool for
intercellular communication and therapeutic applications.
Importantly, exosomes play a critical role in various physiological
and pathological processes, including maintaining cellular
homeostasis, regulating apoptosis and modulating inflammation
(Kalluri and LeBleu, 2020; Kim, 2022).

Recently, numerous investigations have shown that MSC-derived
exosomes (MSC-Exos) can be effectively used for tissue repair and
immunomodulation (Wang et al., 2018; Yu et al., 2022). In addition,
several systematic reviews have mentioned that MSC-Exos, as a
potential strategy for OA, can attenuate OA progression by
mitigating cartilage degradation and enhancing chondrocyte
phenotype (To et al., 2020; Zhang et al., 2021; Tan et al., 2021). A

completed clinical trial reported that 6 months after the injection of
2 mL ExoFlo (a BM-MSC-Exos product), pain was significantly
reduced and joint function improved, indicating BMMSC-Exos was
safe and effective for the treatment of OA (Dordevic M., 2020). In this
review, we summarized the applications of various MSC-Exos for OA
treatment and the underlying mechanisms. Moreover, current methods
and future perspectives for the utilization of engineered MSC-Exos,
alongside their associated challenges, were also discussed.

2 The potential mechanisms of MSC-
Exos for OA treatment

MSC-Exos, serving as vital messengers for cartilage regeneration
and intercellular communication, have shown remarkable potential
to mitigate the progression of OA by modulating various cellular
processes (Kim et al., 2020; Wu et al., 2022). They were reported to
promote chondrocyte proliferation, inhibit chondrocyte apoptosis,
reduce pro-inflammatory cytokines, modulate immune responses
and redeposit cartilage matrix (Figure 2). Exosomes derived from
various types of MSCs were used in OA-related cell and animal
experiments (Table 1). And the efficacy of exosomes is also
influenced by different sources of tissues (Li et al., 2021; Wang
et al., 2020).

2.1 Effect on cartilage repair

Cartilage faces challenges in self-repair due to its avascular
nature and limited exchange of signaling molecules, oxygen and
nutrients (Carballo et al., 2017). MSC-Exos, which target biological
processes such as proliferation and apoptosis of chondrocytes,
exhibit great capability for the treatment of OA (Xiang et al., 2022).

FIGURE 2
The potential mechanisms of MSC-Exos for OA treatment. MSC-Exos mitigate OA through stimulating cell proliferation, preventing apoptosis,
triggering anti-inflammatory responses, modulating the immune system, and preserving the ECM equilibrium (Created with BioRender.com).
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Avariety ofMSC-Exos have been employed to enhance chondrocyte
proliferation and migration, thereby promoting cartilage restoration
(Charlier et al., 2016). Zhu et al. reported that exosomes derived
from induced pluripotent stem cell-derived MSCs (iMSC-Exos) and
synovial MSCs (SMSC-Exos) could enhance the proliferation and
migration of chondrocytes, however iMSC-Exos showed a superior
effect compared to SMSC-Exos (Zhu et al., 2017). One study found
that exosomes derived from bone marrow-derived MSCs (BMMSC-

Exos) affected chondrocyte viability, proliferation and migration by
improving mitochondrial activity (Yang et al., 2022). In addition, Li
et al. proved that MSC-EVs containing circHIPK3 could enhance
chondrocyte proliferation and simultaneously suppress chondrocyte
apoptosis via combining with miR-124-3p and then targeting the
gene MYH9 (Li et al., 2021b). Furthermore, BMMSC-Exos,
delivering the lncRNA LYRM4-AS1, modulated the viability of IL-
1β-induced chondrocytes via the LYRM4-AS1/GRPR/miR-6515-5p axis

TABLE 1 The impact of exosomes sourced from various types of mesenchymal stem cells on OA.

Exosome source Cargo Biological effect References

BM-MSCs MiR-92a-3p Promote proliferation while suppress degradation of cartilage in OA model Mao et al. (2018)

MiR-136-5p Promote chondrocyte migration, reduce the degeneration of cartilage extracellular matrix in OAmodel Chen et al. (2020)

MiR-320c Promote osteoarthritis chondrocyte proliferation, downregulate MMP-13 and upregulate
SOX9 expression

Sun et al. (2019)

MiR-3960 Decrease the degradation of ECM and reduce the ratio of apoptosis in chondrocytes Ye et al. (2022)

MiR-125a-5p Alleviate chondrocytes degeneration while promote ECM secretion Xia et al. (2021)

MiR-361-5p Mitigate the damage of chondrocytes Tao et al. (2021b)

CircHIPK3 Induce migration and proliferation, inhibit apoptosis of chondrocytes Li et al. (2021b)

LncRNA NEAT1 Activate the proliferation and autophagy of chondrocytes Zhang and Jin
(2022)

LncRNA LYRM4 Regulate chondrocyte growth and reduce inflammation in OA Wang et al. (2021b)

N.D. Increase the repair of cartilage and the viability of chondrocytes Yang et al. (2022)

UC-MSCs LncRNA H19 Decrease pain level in early stage of OA via enhancing chondrocyte proliferation and matrix synthesis Yan et al. (2021)

MiR-1208 Suppress cartilage ECM degradation via decreasing level of pro-inflammatory factors Zhou et al. (2022b)

MiR-100-5p Inhibit apoptosis and ROS production in chondrocytes Li et al. (2021d)

MiRNAs Promote M2 macrophage polarization, lessen the progression of ACLT-induced OA Li et al. (2022c)

S-MSCs MiR-140-5p Promote chondrocyte proliferation and migration, delay early-stage OA progression Tao et al. (2017)

MiR-26a-5p Inhibit apoptosis and inflammation, ameliorate cartilage injury of OA Lu et al. (2021)

MiR-155-5p Promote proliferation, inhibit apoptosis and regulate secretion of ECM Wang et al. (2021b)

MiR-129-5p Decline chondrocyte apoptosis and inflammatory response Qiu et al. (2021)

CircRNA3503 Preserve the equilibrium of ECM in chondrocytes Tao et al. (2021a)

N.D. Inhibit ECM degradation Duan et al. (2021)

AT-MSCs DKK-1 Promote chondrogenesis and chondrocyte redifferentiation Gorgun et al. (2021)

MiR-338-3p Stimulate cell proliferation and inhibit cell apoptosis Li et al. (2022d)

N.D. Attenuate inflammatory micro-environment Cavallo et al. (2021)

ESC-MSCs N.D. Improve the effect on cartilage repair via cell proliferation and apoptosis Zhang et al. (2018)

N.D. Induce cartilage repair in vivo Zhang et al. (2016)

N.D. Maintain chondrocyte phenotype and alleviate cartilage destruction in vivo Wang et al. (2017)

IPFP-MSCs MiR-100-5p Suppress cartilage apoptosis, promote anabolism and prevent cartilage injury in cell and animal
experiments

Wu et al. (2019)

Urine MSCs MiR-140-5p Increase ECM secretion and enhance the ability of cell proliferation Liu et al. (2022)

MiR-26a-5p Promote cell migration and proliferation Wan et al. (2022)

MSC, mesenchymal stem cells; OA, osteoarthritis; N.D., no data; BM-MSCs, bone marrow derived MSCs; UC-MSCs, umbilical cord derived MSCs; S-MSCs, synovial MSCs; IPFP-MSCs,

infrapatellar fat pad derived MSCs; AT-MSCs, adipose tissue derived MSCs; ESC-MSCs, embryonic stem cell derived MSCs; ACLT, transection of the anterior cruciate ligament; DKK1,

Dickkopf-1; MMP-13, matrix metallopeptidase-13; SOX9, (sex determining region Y)-box 9; COX2, cyclooxygenase-2; ECM, extracellular matrix; ROS, reactive oxygen species.
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(Wang et al., 2021). Another study confirmed that human umbilical
cord-derivedMSCs exosomes (UCMSC-Exos) could effectively promote
chondrocytes proliferation andmigration (Li et al., 2022). It was reported
that MSC-Exos derived from embryonic stem cell (ESCMSC-Exos)
promoted the proliferation and migration of chondrocytes without
affecting matrix synthesis through adenosine-mediated activation of
AKT and ERK signaling pathways (Zhang et al., 2018). Additionally,
an in vitro study verified that human umbilical cord Wharton’s jelly
MSCs-derived exosomes (WJMSC-Exos) can increase chondrocyte
proliferation in a dose-dependent manner (Jiang et al., 2021).

MSC-Exos have also been illustrated to inhibit chondrocyte
apoptosis. The apoptosis of chondrocytes is associated with many
signaling pathways, particularly those involving phosphorylation. Qi
et al. noted that BMMSC-Exos promoted Akt phosphorylation while
inhibited ERK and p38 phosphorylation, consequently suppressing
mitochondrial-induced apoptosis in chondrocytes Qi et al. (2019).
Besides, Jin et al. demonstrated that BMMSC-Exos containing
lncRNA MEG-3 could mitigate IL-1β-induced chondrocyte
senescence and apoptosis, effectively inhibiting OA progression
Jin et al. (2021). Studies have shown that MSC-Exos are capable
to activate the mTOR pathway, which promotes autophagy to
inhibit apoptosis and improve chondrocyte performance (Shen
et al., 2017; Wu et al., 2019). The ratio of the anti-apoptosis gene
Bcl-2 to the apoptosis gene Bax can influence whether or not
chondrocytes undergo apoptosis (KARALIOTAS et al., 2015). It
was reported that ESCMSC-Exos elevated the levels of Survivin and
Bcl-2 expression while reduced the proportion of cleaved caspase-3-
positive apoptotic cells in vivo (Zhang et al., 2018). Additionally, a
study demonstrated that UCMSC-Exos, including miR-100-5p,
could directly target NOX4 to inhibit ROS production and
apoptosis induced by cyclic strain in chondrocytes (Li et al.,
2021). Lu et al. verified that SMSC-EVs containing miR-26a-5p
mitigated cartilage damage via inhibiting cartilage apoptosis and
directly targeting the PTEN gene in vivo Lu et al. (2021).

2.2 Anti-inflammatory response and
immunomodulation

The progression of OA is positively correlated with the degree of
inflammatory infiltration. Inflammatory cytokines are secreted, leading
to induced immune responses that play a role in OA pathogenesis and
progression. Several studies indicate that MSC-Exos possess the ability
to regulate inflammatory responses by lowering concentrations of pro-
inflammatory factors and promoting secretions of anti-inflammatory
cytokines (Hassanzadeh et al., 2023).

Macrophages and synovial cells are closely associated with the
initiation and progression of inflammation (Oishi and Manabe, 2018).
Peng et al. found that MSC-Exos could prevent macrophage ferroptosis
through the GOT1/CCR2/Nrf2/HO-1 signaling pathway and rescue
cartilage injury in OA Peng et al. (2023). Shifting of synovial
macrophages from a pro-inflammatory to an anti-inflammatory
phenotype has the potential to significantly impact the development
of the intra-articular microenvironment (Wang and He, 2022). It was
reported that WJMSC-EVs effectively promoted the polarization of
macrophages towards an M2 phenotype, thereby reducing the
inflammatory response (Joo et al., 2021). In addition, Zhang et al.
showed that ESCMSC-Exos induced a large number of

M2 macrophages to infiltrate into the synovial fluid in vivo Zhang
et al. (2018). Another study demonstrated that microRNAs (miRNAs)
in human amniotic membrane-derived MSC-EVs, such as miR-24-3p,
miR-222-3p, miR-146a-5p, miR-34a-5p and miR-181a-5p, could
influence macrophage activation states, promote M2 macrophage
polarization, and stimulate cartilage regeneration (Ragni et al., 2021).
Furthermore, UCMSC-Exos, containing miR-100-5p, miR-let-7a-5p,
miR-122-5p, miR-486-5p and miR-148a-3p, facilitate macrophage
polarization towards an M2 phenotype and attenuate the
deterioration of ACLT-induced OA (Li et al., 2022).

During the progression of OA, several pro-inflammatory factors,
including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-
1β) and IL-6, are released to accelerate the degeneration of cartilage
(Pourakbari et al., 2019; Lee et al., 2020). IL-4, IL-10 and transforming
growth factor-beta (TGF-β), acting as anti-inflammatory cytokines, are
secreted by M2 macrophages to repair the cartilage (Fernandes et al.,
2020). A study showed BMMSC-Exos regulated the levels of IL-6 and
TNF-α in chondrocytes and tissues (Jiang et al., 2021). Moreover,
exosomal miR-9-5p derived from BMMSC was proved to inhibit
SDC1 expression, further decreased IL-1 and TNF-α in ACLT-
induced OA (Jin et al., 2020). It was proved that adipose tissue-
derived MSCs exosomes (ATMSC-Exos), containing miR-145 and
miR-221, upregulated the level of IL-10 while downregulated the
expression of TNF-α and IL-6 (Zhao et al., 2020). Besides, it was
shown that SMSC-derived exosomal miR-129-5p could decrease the
inflammation in IL-1β-induced OA by inhibiting HMGB1 release (Qiu
et al., 2021).

2.3 Maintain the balance of ECM

The gradual cartilage matrix deterioration is pivotal in OA
pathology, triggering the breakdown of joint structure and
consequent damage. To promote the redeposition of cartilage ECM
and maintain cartilage integrity, it is essential to activate reparative
responses in chondrocytes and enhance the expression of genes related
to synthetic metabolism (Heard et al., 2015). The investigation into how
MSC-Exos maintain ECM balance has been conducted.

Several studies indicated that MSC-Exos could downregulate
ADAMTS-5, MMP-3 and MMP-13 expression, while upregulate the
levels of tissue inhibitors of metalloproteinases (TIMPs), COL2,
glycosaminoglycans (GAGs), and sex-determining region Y-Box 9
(SOX9) (Lozito and Tuan, 2011; Lozito et al., 2014). Cosenza et al.
and Vonk et al. reported that BMMSC-Exos could promote the
production of proteoglycan, COL2 and aggrecan, while inhibiting
the expression of MMP-13 and ADAMTS5 and the activity of
collagenase Cosenza et al. (2017), Vonk et al. (2018). Besides,
ATMSC-Exos were demonstrated to effectively improve
COL2 expression while reducing ADAMTS-5 and MMP-1, -3,
-13 expression in chondrocytes, thereby attenuating cartilage matrix
degradation in themonosodium iodoacetate (MIA)-inducedOAmodel
(Woo et al., 2020). Furthermore, Jammes et al. found that equine
BMMSC-derived exosomes induced a greater improvement in hyaline-
like matrix neosynthesis by modulating collagen levels, increasing
PCNA, and decreasing Htra1 synthesis Jammes et al. (2023).

Exosomal RNAs have shown great potential in promoting cartilage
ECM repair. It was reported that BMMSC-derived exosomal miR-320c
increased chondrocyte proliferation by increasing the expression of
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SOX9 and decreasing MMP-13 levels (Sun et al., 2019). Another study
showed that BMMSC-Exos could upregulate the levels of COL2 and
aggrecan alongside downregulate ADAMTS-5 andMMP-13 expression
by encapsulating miR-3960 (Ye et al., 2022). Moreover, BMMSC-
derived exosomal miR-125a-5p was demonstrated to alleviate
chondrocyte ECM degradation via inhibiting E2F2 in post-traumatic
OA (Xia et al., 2021). Wang et al. found that SMSC-Exos containing
miR-155-5p enhanced the secretion of ECM in chondrocytes by
negatively regulating Runx2 expression to prevent OA Wang et al.
(2021a). Zhou et al. showed that UCMSC-Exos suppressed the
degradation of cartilage ECM in OA mouse models via miR-1208,
which targeting METTL3 to decrease NLRP3 mRNA methylation in
macrophages Zhou et al. (2022a).

3 Engineering strategies of MSC-Exos
for OA treatment

Despite natural exosomes have great potential for cartilage tissue
repair, they still come with some limitations such as low yield,
circulatory stability and inadequate targeting ability, making them
insufficient for disease treatment (Kimiz-Gebologlu and Oncel,
2022). To overcome these challenges and advance the clinical
application of exosome therapy, various engineering approaches
have been developed, including cargo loading, surface modification,
changing the production environment and combination of
biomaterials, focusing on both parent cells and exosomes (Figure 3).

3.1 Cargo loading strategies of MSC-Exos

Two main strategies for loading cargo into exosomes are pre-
loading and post-loading (Xu et al., 2023). Pre-loading entails
loading cargo into parent cells before isolating exosomes,
resulting in the secretion of exosomes already loaded with cargo.
However, post-loading involves loading cargo directly into
exosomes using passive or active techniques after they have been
isolated (Elsharkasy et al., 2020; Soekmadji et al., 2020).

The enrichment of therapeutic molecules inMSC-Exos is mainly
accomplished through the overexpression of various non-coding
RNAs, including miRNAs, long non-coding RNAs (lncRNAs),
circular RNAs (circRNAs) and others. Among these, there is
extensive evidence supports that miRNAs can promote Exos-
mediated the regeneration of cartilage (Foo et al., 2021). One
study showed that miR-92a-3p-overexpressing BMMSC-Exos
promoted cartilage proliferation and reduced cartilage matrix
synthesis by targeting WNT5A and inhibiting WNT signaling
pathway (Mao et al., 2018). Zheng et al. reported that miR-212-
5p-overexpressing SMSC-Exos reduced the degeneration,
degradation and inflammation processes by targeting ELF3 in IL-
1β-induced chondrocytes Zheng et al. (2022). Another study
demonstrated that exosomes derived from miR-140-5p-
overexpressing SMSCs enhanced cartilage tissue repair and
mitigated OA progression in an animal model via the WNT
signaling pathway (Tao et al., 2017). Wen et al. showed that
exosomes derived from lncRNAs KLF3-AS1-overexpressing

FIGURE 3
Engineering Strategies of MSC-Exos for OA treatment. Various methods have been utilized to engineer ESC-Exos in order to elevate the therapeutic
effect via cargo loading, surface modification, changing the production environment and combining with biomaterials (Created with BioRender.com).
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MSCs were involved in suppressing apoptosis and autophagy of
chondrocytes via PI3K/Akt/mTOR signaling pathway (Wen et al.,
2022). In addition, Li et al. reported that circHIPK3 was observed to
directly sponge miR-124-3p and subsequently enhance the
MYH9 expression, contributing to promoting chondrocyte
proliferation while suppressing chondrocyte apoptosis mediated
by MSC-Exos Li et al. (2021b). Furthermore, SMSC-derived
exosomal circRNA3503, acting as a sponge for hsa-let-7b-3p and
hsa-miR-181c-3p, ameliorated chondrocyte apoptosis induced by
inflammation and regulated the balance of ECM synthesis and
degradation (Tao et al., 2021). Shuai et al. showed that exosomal
CircRNA0008365 enhanced the expression of SOX9 by sponging
miR-338-3p, leading to inhibition of chondrocyte apoptosis and
ECM degradation in OA Shuai et al. (2022).

Small molecule drugs and proteins can also be encapsulated
using vairous methods. In a sheep OA model, MSC-Exos loaded
with TGF-β3 and bone morphogenetic protein-6 (BMP-6) increased
cartilage repair and chondrogenesis (Ude et al., 2018; Yoo et al.,
2022). Thomas et al. revealed that exosomes loaded with WNT3a
successfully initiated WNT signaling in cartilage, contributing to
osteochondral defects repair in an OA model (Thomas et al., 2021).
Besides, Qiu et al. showed that MSC-Exos loading with curcumin
inhibited the apoptosis of OA cells via miR-143/ROCK1/TLR9 and
miR-124/NF-kB signaling pathways Qiu et al. (2020).

3.2 Surface modification strategies of
MSC-Exos

Enhancing the targeting capacity of exosomes by incorporating
specific ligands on their surface enables the precise delivery of
therapeutic cargo to the disease site, which is a critical factor for
effective treatment of OA. Zhao et al. found that chondrocyte-
binding peptide (CAP) binding subcutaneous fat MSC-derived
exosomes could particularly send miR-199a-3p into targeting cells
and deep articular tissues, which showed great effect on OA
progression (Zhao et al., 2023). And CAP-exosomes had the
potential to deliver miR-140 to chondrocytes and deep cartilage
region in vitro and in vivo, alleviating OA progression by inhibiting
cartilage-degrading proteases (Liang et al., 2020). Researchers found
that the MSC-binding peptide E7 could be fused with exosomal
membrane protein Lamp2b to construct functional exosomes (E7-
SMSC-Exos) with SMSC targeting capability, which could efficiently
induce cartilage differentiation when further combined with KGN (Xu
et al., 2021). Another study showed that ATMSC-Exos binding with
chitosan oligosaccharides (COS) facilitated regeneration of injury
cartilage and protect chondrocytes from apoptosis by regulating vital
pathways such asWNT andMAPK inOAprogression (Li et al., 2021c).
Nanoparticles combined with exosomes can have positive effects on
functions. Li et al. reported that CD90-positive SMSC-Exos-coated
nanoparticle could bind to injured chondrocytes, promote chondrocyte
regeneration, and influence M2 macrophage polarization in a rat OA
model Li et al. (2022c). In addition, by fusing CAP to Lamp2b on
exosomal surfaces and subsequently merging with liposomes, Liang
et al. found that the hybrid CAP-Exos could successfully deliver
CRISPR/Cas9 sgMMP-13 plasmids to silence MMP-13 expression,
thereby mitigating the hydrolytic degradation of ECM proteins in
the deep regions of damaged cartilage in a rat model Liang et al. (2022).

3.3 Production environment of MSC-Exos

In addition to directly increasing the content of therapeutic
molecules, altering the environment of production for MSC-Exos
also presents a favorable engineering strategy.

An effective method for generating MSC-Exos in significant
amounts is by expanding MSCs, which can be accomplished by
enlarging the available surface area for cellular proliferation (Cheng
et al., 2022). Rocha and others showed that MSC-Exos cultured using a
three-dimensional (3D) approach generated a higher quantity of
exosomes in comparison to the traditional two-dimensional (2D)
method, illustrating the advantage of the 3D method for scaling up
exosome production Rocha et al. (2019). Further study found that 3D-
Exos exhibited a 7.5-time higher yield compared to 2D-Exos. In
addition, UCMSC-Exos cultured in a 3D environment demonstrated
a notably enhanced therapeutic efficacy than their 2D counterparts
(Yan and Wu, 2020). Furthermore, Dias et al. found that a poly
(ethylene glycol) (PEG)-based microcarrier could enhance the
adhesion and expansion capabilities of human MSCs Dias et al.
(2017). Another study showed that decellularized extracellular
matrix (dECM) could provide a better microenvironment for MSC
expansion, and significantly increased miR-3473b levels in dECM-
BMMSC-Exos, which had a better ability to regenerate cartilage than
BMMSC-Exos in vivo (Zhang et al., 2023).

To adapt to the environment, cells can transmit stress-related
information by regulating the release of exosomes. Previous studies
showed that the expression of miR-135b in BMMSC-Exos could be
enhanced by TGF-β1 stimulation, leading to a decrease in the expression
of Sp1, promoting the proliferation of chondrocytes (Wang et al., 2018).
Rong et al. reported that exosomes derived from HIF-1α-induced
hypoxic BMMSCs enhanced the chondrocyte proliferation while
suppressed chondrocyte apoptosis compared to normal BMMSC-
Exos Rong et al. (2021). Additionally, hypoxia-treated ATMSC-Exos
increased collagen and proteoglycan expression in cartilage and
normalized uncoupled bone remodeling in subchondral bone
compared to the normal ADSC-Exo group in a murine OA model
(Zhao et al., 2023). Chang et al. found that hypoxia-ATMSC-Exos
improved articular chondrocyte function, alleviated articular
chondrocyte inflammation and suppressed the OA progression in cell
and animal experiments Chang et al. (2023). Another study
demonstrated that mechanical stimulation from a rotary cell culture
system could expand the exosome yield, and then enhance the repair of
cartilage defect by up-regulating LncRNA H19 in UCMSC-Exos (Yan
et al., 2021). Furthermore, Liao et al. showed that BMMSC-Exos treated
with low-intensity pulsed ultrasound inhibited inflammation and further
enhanced chondrocyte proliferation and ECM synthesis Liao
et al. (2021).

3.4 Biomaterials for MSC-Exos retention
and delivery

In OA treatment, the prevailing approach for exosome delivery is
intra-articular injection (Bousnaki et al., 2020). An increasing number
of researches are focusing on combing exosomes with biomaterials to
prolong retention time and improve therapeutic effect.

Hydrogel is a favourable biomaterial for cartilage tissue
engineering applications due to its injectability and cross-linking
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capability under UV exposure. Pang et al. reported that gelatin
methacryloyl hydrogels (GelMA) facilitated the prolonged release of
MSC-Exos and significantly enhanced their therapeutic impact on
OA Pang et al. (2023). Wan et al. applied photocrosslinking
spherical gelatin methacryloyl hydrogel to act as injectable
carriers for LRRK2-IN-1-loaded exosomes Wan et al. (2023). The
results indicated that engineered BMMSC-Exos had a superior effect
on cartilage repair in vivo. In a previous investigation, researchers
explored the application of an adhesive, injectable hydrogel inspired
by mussels, which incorporated BMMSC-Exos. They were utilized
to promote regeneration of cartilage defects and the remodeling of
the ECM (Zhang et al., 2021).

Exosomes can collaborate with bioactive scaffolds, especially ECM-
derived scaffolds, to improve capabilities of promoting cartilage repair
(Cheng et al., 2022). Jiang et al. found the regenerative effect ofWJMSC-
Exos was amplified by the incorporation of the acellular cartilage ECM
(ACECM) scaffold in a rabbit model Jiang et al. (2021a). Mechanically,
the ACECM scaffold provided a cartilage-like microenvironment that
facilitated the attachment of local cells (Sun et al., 2018). Using desktop-
stereolithography technology, Chen et al. reported that they designed an
innovative 3D-printed cartilage ECM/GelMA/exosome scaffold to
deliver MSC-Exos, which had the ability to preserve exosomes for
more than 7 days and significantly accelerated the process of cartilage
regeneration in vivo Chen et al. (2019).

4 Conclusion and perspective

MSC-Exos, as a cell-free therapy, provides an advanced strategy
for alleviating the progression of OA (Boulestreau et al., 2021; Fan
et al., 2022). The role of MSC-Exosomes in chondrocyte
regeneration, immunomodulation and ECM balance has been
extensively studied. However, current studies on MSC-Exos for
the treatment of OA are still in early stages. Most studies are
based on small animal models, necessitating validation through
large animal models before advancing to clinical research (Yu
et al., 2022). Currently, there is great variability in the
preparation of MSC-Exos, which may be affected by different
MSC sources, culture conditions, and exosomes harvesting
strategies (Gimona et al., 2021). Owing to the diverse contents
and function of exosomes, it is essential to explore the
characterization of MSC-Exos in different subpopulations and
accurately determine the content of their cargo, which may alter
the impact on the target tissue (Forsberg et al., 2020). Therefore,
more attention needs to be paid to make standardized, convenient,
and strictly controlled methods in the future. In addition, the
shortage and strict selection of MSC donors need to be taken
into account. For example, BM-MSCs are difficult to isolate and
obtain due to the surprisingly low content (less than 0.01% of the
cells in the bone marrow) (Yang et al., 2018). And bone marrow
collection is an invasive and painful procedure for donors, which
may lead them to abandon donation. As for UC-MSCs, the
infectious and familial genetic disease of pregnant woman need
to be considered (Tang et al., 2022). So, the challenge of eliminating
or inactivating pathogens while retaining the properties of exosomes
also needs to be addressed (Burnouf et al., 2019). In order to achieve
a therapeutic effect, it is necessary for MSC-Exos to carry bioactive
factors like proteins or miRNAs at a sufficient dosage and with

functional activity to elicit biological responses in target cells (Toh
et al., 2018). However, Chevillet et al. found that most exosomes did
not carry biologically significant amounts of miRNAs Chevillet et al.
(2014). Therefore, it is particularly important to increase miRNA
content by loading methods such as electroporation.

In recent years, although a variety of MSC-Exos engineering
strategies have been developed to improve therapeutic efficacy,
challenges remain. Large-scale production of MSC-Exos is still a big
challenge to be solved for clinical application. And homogenous and
high-purity exosomes are hard to obtain by existing time-consuming
and low-yield isolation techniques (Charoenviriyakul et al., 2017).
Recently, bioreactors or microfluidic platforms have been used to
increase the production of exosomes. It was reported that a
microfluidic cell culture platform was developed that could harvest
large-scale and antigen-modify exosomes in one workflow (Zhao et al.,
2019). Furthermore, it should be noted exosomes contain some
functional proteins and immune molecules, so the use of engineered
exosomes may trigger a strong response by the host immune system
and be rapidly eliminated (Lim et al., 2019). Meanwhile, many factors
including storage conditions and time, administrate path and dose affect
the biological activity and therapeutic efficacy of MSC-Exos.

To our delight, there are several clinical trials underway to evaluate
MSC-Exos therapy for OA, and another one has been completed. The
current results have shown that the use of MSC-Exos for OA treatment
is effective and safe, and has the potential to be an alternative to joint
replacement surgery. In summary, MSC-Exos is a promising cell-free
therapy for knee OA and deserves more attention.
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