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Chinese hamster ovary (CHO) cells have a long history in the biopharmaceutical
industry and currently produce the vast majority of recombinant therapeutic proteins.
A key step in controlling the process and product consistency is the development of a
producer cell line derived from a single cell clone. However, it is recognized that
genetic and phenotypic heterogeneity between individual cells in a clonal CHO
population tends to arise over time. Previous bulk analysis of CHO cell populations
revealed considerable variation within the mtDNA sequence (heteroplasmy), which
could have implications for the performance of the cell line. By analyzing the
heteroplasmy of single cells within the same population, this heterogeneity can be
characterized with greater resolution. Such analysis may identify heterogeneity in the
mitochondrial genome, which impacts the overall phenotypic performance of a
producer cell population, and potentially reveal routes for genetic engineering. A
critical first step is the development of robust experimental and computational
methods to enable single cell mtDNA sequencing (termed scmtDNAseq). Here, we
present a protocol from cell culture to bioinformatic analysis and provide preliminary
evidence of significantmtDNA heteroplasmy across a small panel of single CHO cells.
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1 Introduction

Chinese hamster ovary (CHO) cells are the most commonly used mammalian host for the
production of recombinant proteins (Walsh andWalsh, 2022). Optimization of biopharmaceutical
production in CHOhas led to titers routinely in the 3–8 g/L range (Kelley et al., 2018). Due to their
importance in energy production, understanding the mitochondrial function in product-
producing CHO cell lines is of particular importance. While most mitochondrial proteins are
encoded by nuclear DNA, a small number of proteins are encoded by mitochondrial DNA
(mtDNA). The CHO mitochondrial genome contains 37 genes, all of which support oxidative
phosphorylation (OXPHOS). A total of 13 protein-encoding subunits are accompanied by
2 rRNAs and 22 tRNAs in a 16,283-bp plasmid-like circular structure (NCBI, 2023). mtDNA
is highly compact, with the only significant non-coding region in the D-loop (Figure 1A).

Assuming a CHO cell has typical numbers of mitochondria per cell (100–10,000), each with
2–10 copies of mtDNA, the total genome copy per cell is large (Dhiman et al., 2019). In
“homoplasmy,” all copies of mtDNA within a cell are identical; however, mitochondria can also
exist in a state of “heteroplasmy,” where mutated versions of mtDNA co-exist with wild-type
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mtDNA within the same cell and possibly even within the same
mitochondrion. De novo mtDNA mutations are common because of
the 100x greater mutation rate than for nuclear DNA (Chial, 2008),
explained by some due to the proximity to ROS (Kowaltowski and
Vercesi, 1999) and by others due to mtDNA-replication errors (Itsara
et al., 2014).

When the proportion of mutant mtDNA is above a particular
threshold, mitochondrial dysfunction can occur (Dimauro and
Davidzon, 2005). The phenotypic effect of heteroplasmic mutations
increases as the proportion of mutant mtDNA (allele frequency)
increases. Mouse models with an increasing allele frequency of a

mutation in ND5 showed increasing dysfunction in respiration,
OXPHOS, and, ultimately, ATP generation (Park et al., 2009). A
causal relationship has since been attributed to a plethora of
mtDNA mutations in a wide range of diseases, particularly in cancer
(Hertweck andDasgupta, 2017), wheremtDNAmutations are observed
in 50% of tumors (Ju et al., 2014).

A previous bulk analysis identified heteroplasmy between clonal CHO
cell populations (Kelly et al., 2017), laying a theoretical explanation for the
metabolic heterogeneity often observed in CHOcell cultures (Gilbert et al.,
2013). Single cell sequencing of mtDNA (scmtDNAseq) has previously
been carried out in non-CHO cell lines using high PCR cycle numbers of

FIGURE 1
(A) Explanation of the multi-copy nature (heteroplasmy) of mitochondrial DNA. Numbers are true for CHO cells, although they vary with the
eukaryotic cell type. (B) Method overview for scmtDNAseq. Made with BioRender.
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40 (Zambelli et al., 2017) and 45 (Maeda et al., 2020). Higher PCR cycle
numbers are associated with a greater risk of undesirable secondary
products, such as PCR artifacts (Lorenz, 2012). In a single cell mtDNA
analysis, the starting mtDNA copy number is low (<100,000); therefore,
even small contaminations can confound the accurate calling of
mutations. To call heteroplasmic mutations at a 0.015 allele frequency
(a conservative level), PCR amplification should ideally not exceed
30 cycles (Zambelli et al., 2017). Furthermore, Maeda et al. focused on
specific mutations, not the whole mtDNA genome, precluding the
identification of as yet unknown mutations. There is a real value in
novel whole mtDNA single cell analysis with a low PCR cycle number.

Here, we sought to develop an optimized method to amplify the
mtDNA and sequence from single CHO cells. To demonstrate the
method, we analyzed four single CHO cells and a bulk (multiple cells)
sample for comparison. Single cells were isolated by fluorescence-activated
cell sorting (FACS) into lysis buffer with an emphasis on simple and
reproducible gating (Figure 1B). After optimization of the lysis buffer, PCR
kit, and purification system, the cycle number for long-range PCR
(LRPCR) was kept lower (35x) than that of previously reported
methods. Importantly, this provides more confidence in low-frequency
heteroplasmy. To ensure the exclusion of contaminating nuclear
mitochondrial DNA (Numts), primers were designed to exclusively
map to CHO mtDNA and amplicons size-selected via gel
electrophoresis. By confirming mtDNA amplification by agarose gel,
we were able to improve the efficiency of our sequencing since only
successful reactionswere brought forward for library preparation. Illumina
DNA libraries were generated, and iSeq 100-derived sequencing output
was processed and analyzed using a bespoke bioinformatics pipeline.
Preprocessing was performed in Linux and data analysis in R.

2 Materials and equipment

2.1 CHO cell culture

1. 125 mL bioreactor flasks (Nalgene, 10266432).

2. Appropriate CHO cell culture medium (e.g., Gibco CD
FortiCHO, 10887640).

3. CHO cell lines of interest (e.g., Table 1).

2.2 Immunolabeling and staining

1. DPBS.
2. Nuclease-free water.
3. Trypan Blue 0.4% (Gibco, 15250061).
4. Luna II.
5. DAPI (Invitrogen, D1306).
6. Goat F(ab’)2-fluorescein anti-human IgG (Sigma Aldrich,

SAB3701254-2MG) to label IgG-producing cells if desired.
Other appropriate fluorescent stains could also be used.

2.3 FACS

1. 70% IPA.
2. FACS with appropriate lasers for DAPI and FITC detection.

Here, the BD FACSMelody was used.
3. FACS polystyrene tubes (Falcon Corning, 1018640)
4. U-bottom 96-well plates (Corning, 3799)
5. Parafilm.
6. TCL buffer (QIAGEN, 1070498).

2.4 AMPure purification

1. AMPure XP beads (10136224).
2. 70% ethanol.
3. Elution buffer (QIAGEN, 19086).
4. Sterile PCR tubes (autoclaved).
5. 0.2 mL tube magnetic stand (New England Biolabs, S1515S)
6. 10-µL multichannel pipette (optional).

2.5 Long-range PCR

Primers were designed using NCBI Primer-BLAST to
specifically bind to mtDNA and not to any known CHO nuclear
DNA sequences to minimize Numt contamination.

1. SuperFi II Plat Taq (Invitrogen, 12361010).
2. PCR thermocycler.

TABLE 1 Samples 1–4 required for single cell sorting. In these data, late exponential had a viability of 95% and dead of 5%.

Cells Growth phase Stain Function

1 Protein-producing CHO Late exponential DAPI + FITC-AB Sorting sample

2 Protein-producing CHO Dead DAPI + FITC-AB Gate live/dead cells

3 Non-producing CHO Late exponential DAPI + FITC-AB Gate FITC-negative

4 CHO Late exponential None Gate FSC and SSC; Gate FITC-positive

TABLE 2 Primer sequences for LRPCR. Other cell lines may need adaptation
of these sequences.

Primer Sequence

mt-490 F (X) 5’–GGA TTA GAT ACC CCA CTA TGC TT–3′

mt-9304 R (X) 5’–ATG CTG CGG CTT CAA ATC CG–3′

mt-9180 F (Y) 5’–ATA GCA ACA GGT TTT CAC GG–3′

mt-598 R (Y) 5′–CGC CAA GTC CTT TGA GTT TTA–3′
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3. 10-µM forward and reverse primers (Table 2) (IDT).
4. 10-mM dNTP Mix (Thermo Scientific, R0192).

2.6 Agarose gel

1. Agarose powder.
2. TAE buffer.
3. SafeView (NBS Biologicals). Ethidium bromide is an

alternative.
4. GeneRuler 1-kb Plus DNA Ladder (Thermo

Scientific, SM1333).
5. Gel Viewer/transilluminator.
6. Disposable laboratory scalpel.
7. Eppendorf tubes.

2.7 Gel purification

1. QIAquick Gel Extraction Kit (QIAGEN, 28706X4). Other gel
extraction kits could also be utilized.

2.8 Qubit

1. Qubit 4 Fluorometer (Invitrogen).
2. Qubit 1x dsDNA HS Kit (Invitrogen, Q33230).

2.9 Sequencing

1. iSeq 100 (Illumina) PE150, 8 million reads.
2. Illumina DNA Prep, (M) Tagmentation (24 samples)

(Illumina, 20018704).
3. IDT for Illumina DNA/RNA UD Indexes Set A,

Tagmentation (96 indexes and 96 samples)
(Illumina, 20027213).

4. iSeq 100 i1 Reagent v2 (300-cycle) (Illumina, 20031371).
5. PhiX v3 (Illumina FC-110-3001).

3 Methods

All steps up to the completion of the LRPCR for the four samples
(Table 1) were performed in sterile conditions (BSC). CHO-K1
immortalised cell line from the European Collection of
Authenticated Cell Cultures (ECACC)—(Cat#85051005).

3.1 PCR component storage

Since the LRPCR amplifies from <5,000 copies of mtDNA,
PCR components must have an optimal efficacy. This
was ensured by making small (20 µL) aliquots of dNTPs
(Thermo Scientific, R0192) and primers (IDT) and
storing them at −80°C. Fresh aliquots were used for each batch
of PCR performed and subsequently discarded.

3.2 CHO cell culture

CHO-GS cells were cultured in FortiCHO (Gibco CD
FortiCHO, 10887640) at 37°C, 5% CO2, 85% humidity, 1 and
25 rpm with 25-mm orbit in a shaking incubator in 125 mL
bioreactor flasks (Nalgene, 10266432). Every 3–4 days, the cells
were passaged at 0.2*10̂6 cells/mL in 30 mL media in 125 mL
culture shaking flasks. Viability was determined by Trypan Blue
exclusion using a hemacytometer (Luna II). A growth curve was
established to ensure samples were taken at the exponential cell
phase (Table 1).

3.3 DAPI stain

A working concentration of 0.1 μg/mL DAPI was determined
as optimal for CHO cells. DAPI (Invitrogen, D1306) solutions
were protected from light wherever possible. In a BSC, 10 mg
DAPI powder was completely dissolved in 2 mL sterile deionized
water to make 5 mg/mL DAPI stock solution. This was aliquoted
and stored at −20°C. The solutions have a stability period of at
least 6 months. A measure of 1 µL of the DAPI stock solution was
added to 5 mL DPBS to prepare 1 μg/mL stock 2 DAPI working
solution. A measure of 1mL of 1 μg/mL stock 2 solution was
added to 9 mL of DPBS to prepare 0.1 μg/mL DAPI
working solution.

3.4 Staining cells

Here, an AB-FITC (Sigma Aldrich, SAB3701254-2MG)
conjugate was used, which, at 4°C, can bind to IgG on the cell
membrane in the process of being excreted by the cell, as previously
demonstrated for CHO cells (Gallagher and Kelly, 2017). This
allowed the sorting of cells based on the productivity of an IgG-
based antibody. Cell samples were prepared according to Table 1.
Cells were counted using Trypan Blue exclusion (Gibco, 15250061)
and a hemacytometer (Luna II), as per the manufacturer’s
instructions. Then, 1*10̂6 of viable cells were centrifuged at
200 ×g for 5 min, and the supernatant was discarded. The cells
were washed in 1 mL of DPBS and centrifuged at 200 ×g for 5 min,
and the supernatant was discarded. This was repeated for a total of
two washes. Cells were resuspended in 1 mL of DPBS using 2 µL of
the AB-FITC. The cells were incubated at 4°C for 30 min, protected
from light. The cells were washed twice with DPBS as per steps 6 and
7 for a total of two washes. The cells were resuspended in 1 mL of
cold DPBS or cold DAPI working solution, incubated on ice for
5 min, and immediately transferred on ice to the fluorescence-
activated cell sorting (FACS) laboratory for immediate analysis.

3.5 Setting single cell gating

FACS-based sorting was implemented as it allows cells to be
chosen or discarded based on pre-defined traits, e.g., viability.
FACSMelody was set up as per the manufacturer’s instructions.
A U-bottom 96-well plate was prepared (Corning, 3799) with 5 µL of
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1x TCL buffer (QIAGEN, 1070498) in the center of each functional
well using a multichannel pipette. The plate was tapped firmly on a
flat surface to encourage the central location of the TCL buffer. The

size threshold was set to >12 µm. Using sample 4 (Table 1), voltages
were set to allow the representation of cells in an SSC-A against the
FSC-A logarithmic scale graph. Gate 1 (G1) excluded instrument

FIGURE 2
(A–F)Gating strategy to sort alive, singlet, and antibody-producing CHO cells. (G) Agarose gel illustrating the amplification of CHO cell mtDNA from
a single cell. Further included are the positive control of 1,000 cells and negative control of 0 cells. “X” and “Y” refer to the two separate halves of the
mtDNA molecule. Together, 1X and 1Y represent amplification of the whole mtDNA molecule from a single cell in two separate reactions. The red
rectangles illustrate gel extraction boundaries to exclude bands other than the desired 8.5-kb amplicon. Made with BioRender.
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noise and cell debris as per Figure 2A. Using sample 4, G1 data were
selected, and gate 2 (G2) was set using FSC-H against FSC-A as per
Figure 2B to exclude doublets. Using samples 1 and 2, gate G2 was
selected, and a range gate (G3) was set to only include live cells as per
Figures 2C, D. DAPI-positive was considered dead cells. Using
samples 1 and 3, gate G3 was selected, and a gate (G4) was set
for FITC-positive cells as per Figures 2E, F. G4 was the sorting gate
for live, singlet cells. After the gates had been set, data were recorded
for 10,000 cells to enable a good representation of the population.
Cells that fulfilled our gating strategy were sorted into wells of a 96-
well plate with lysis buffer.

We chose single cells with a high AB-FITC signal as these are the
most relevant in a biomanufacturing setting, i.e., cells with a high
specific productivity of the therapeutic antibody that they are
synthesizing and secreting.

3.6 Single cell sorting

The flow rate was kept low (<1,000 events/second) to reduce the
chance of doublets. Sample 1 was loaded with a splash shield present,
and the FACS was set to “single cell” and “96-well plate” modes.
Desired wells were selected for sorting. The lid was removed and
immediately inserted into the FACS to proceed with sorting. For the
positive control, the sort mode was changed to “purity.” After the
sorting was complete, the well plate was removed and immediately
covered with the lid. An airtight seal was created around the edges
with parafilm, and the plate was immediately placed in a −80°C
freezer for storage and to encourage further lysis. FCS files were
saved for all samples.

Stopping point: Samples can be stored for up to
6 months at −80°C.

3.7 AMPure purification

In a previous bulk analysis of mtDNA, the miniprep step
purified the plasmid-like mtDNA from contaminating linear
nuclear DNA (Kelly et al., 2017). The miniprep kit concomitantly
provided some protection against Numts since it is designed to
purify circular mtDNA away from linear nuclear DNA (Kelly et al.,
2017). Having eliminated the miniprep step, we sought to
incorporate additional protection against Numts. We performed
a BLAST search of our mtDNA amplification primer sequences
against the nuclear CHO reference genomes and found no matches,
suggesting that there are no nuclear sequences to which our primers
should bind. Furthermore, Numts tend to be shorter sequences, with
78% shorter than 500 bp in human mtDNA (Wei et al., 2022).
Therefore, we reasoned that specific gel purification of 8.5 kb
amplicons would be unlikely to be contaminated with Numts.

All steps were performed in a BSC. The subsequent LRPCR is
extremely sensitive and could potentially amplify small
contaminations. The 96-well plate was thawed at room
temperature. The 5-µL lysed sample was transferred to a labeled
microcentrifuge tube. AMPure beads were resuspended by vortexing
the bottle for 1 min. A measure of 9 µL of AMPure beads was added
per sample (if the lysed cell sample was greater, 1.8× volume of
AMPure beads was used) and pipette-mixed 10 times. They were left

at room temperature for 5 min. Tubes were placed on a magnetic
stand (New England Biolabs, S1515S) for 2 min. Keeping the tubes
on the magnetic stand, the cleared solution was removed and
discarded, leaving the beads. It was then washed with 40 µL 70%
ethanol. The supernatant was discarded, leaving the beads. The
ethanol wash was repeated. On the second wash, the remaining
ethanol was removed using a P10 pipette while carefully avoiding the
beads. The tubes were removed from the magnetic stand, and 18 µL
of the elution buffer (QIAGEN 19086) was added to the bead
aggregate and pipette-mixed 10 times or until fully resuspended.
The tubes were incubated for 5 min at room temperature and then
placed on the magnetic stand for 2 min. Eluate was split into two
8.5 µL aliquots, leaving the bead aggregate.

3.8 SuperFi II Plat Taq LRPCR

The bottleneck of our scmtDNAseq method was the DNA
amplification step. Amplification techniques that would work for
bulk sequencing proved to be incompatible with single cells:
mechanical purifications took too much of the sample, bacterial
lysis buffers did not release enough mtDNA, and components lost
effectiveness for the sensitive PCR. However, we reasoned that once
enough mtDNA was amplified, established protocols for bulk
sequencing could then be followed (Kelly et al., 2017). The
SuperFi II PCR kit (Invitrogen, 12361010) has ×300 fidelity
compared to Plat Taq, which we reasoned would give us greater
confidence in lower-level heteroplasmy. Higher fidelity also means
greater confidence in lower-level heteroplasmy.

In addition to the below LRPCR protocol, single cell samples
post-AMPure purification were diluted to 1/10, 1/100, 1/1,000, and
1/10,000 to demonstrate the limits of the high-fidelity LRPCR kit.
All steps were performed in a BSC while maintaining the samples at
all steps on ice. Fresh aliquots of primers and dNTPs were thawed at
room temperature and then stored on ice. The SuperFi II 5x Buffer
was thawed and stored on ice. DNA polymerase was maintained
at −20°C and only removed briefly when needed. The components
were briefly vortexed and centrifuged before use, except for the DNA
polymerase. mtDNA LRPCR was performed in two separate
fragments (termed X and Y). The eluate from a single cell had
been split into two from AMPure purification; one half was
amplified using X primers, and the other half, by Y
primers (Table 2).

The primers were designed using NCBI Primer-BLAST to
ensure specificity for mtDNA and no targeting of known nuclear
DNA regions in CHO reference genomes. A mastermix was
generated with 10% overage for each X primer and Y primer,
as per the example in Table 3. SuperFi II DNA polymerase was
added last by briefly removing it from the −20°C freezer to
minimize the time spent at room temperature. The mastermix
was gently vortexed, centrifuged at 500 ×g, and kept on ice. A
measure of 16.5 µL of the mastermix was added to 8.5 µL of
AMPure purified DNA. The sample was gently vortexed,
centrifuged at 500 ×g, and maintained on ice. The samples
were placed in a PCR machine and set to a PCR cycle, as per
Table 4. The reaction volume was set to 25 µL with a lid
temperature of 105°C. The cycle was run overnight. On
completion, the samples were removed and stored at 4°C.
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Stopping point: Samples can be stored at −20°C for 2 weeks.

3.9 Agarose gel

An amount of 1 g of agarose was added to 100 mL TAE buffer in
a conical flask and microwaved for 2.5 min or until fully dissolved.
The flask was left to cool to approximately 50°C. A measure of 10 µL
of SafeView (NBS Biologicals) was added, and the mixture was
poured into a gel tray with a well comb. After a brief period, the gel
cooled and hardened at room temperature. The gel was placed in a
gel box with TAE buffer just covering the gel. The loading dye was
added to all samples as per the manufacturer’s instructions. Entire
samples were loaded into gel wells with an appropriate DNA ladder
(Thermo Scientific, SM1333). The gels were run at 100 V until the
bands were 70% down the gel. The power was turned off, and the gel
was carefully placed in a gel viewer. Photographs of the gel
were taken.

Limit of detection: an 8.5-kb band was still observable when
taking a 1/1,000 dilution of a single cell (Supplementary Figure
S1A). We would expect around 100–10,000 mitochondria per cell
(Dhiman et al., 2019), implying that this method may even be
viable for single cell mitochondrial sequencing.

3.10 Gel excision

Under a gel visualizer, 8.5-kb bands were observed,
indicative of single cell reactions, as illustrated by red

rectangles in Figure 2G. UV light exposure was minimized to
limit DNA degradation. Using a new sterile disposable scalpel,
the 8.5-kb band was excised and placed in a 1.5 mL Eppendorf
tube. The blade was thoroughly cleaned with 70% IPA and then
reused. The Y single cell sample was equally isolated and placed
in a separate 1.5 mL Eppendorf tube.

3.11 Gel purification

The “QIAquick gel extraction using a microcentrifuge” protocol
was used to purify from agarose gels. Only 10 µL of elution buffer
was used to encourage a higher final concentration.

Stopping point: Samples can be stored at −20°C for 2 weeks.

3.12 Equimolar combination

The Qubit 1x dsDNA HS kit (Invitrogen, Q33230) was used to
quantify dsDNA. Kit components were allowed to equilibrate to
room temperature for 30 min. A measure of 10 µL of standard 1 was
added to a Qubit tube, and 10 µL of standard 2, to a separate Qubit
tube. Then, 190 µL of 1x buffer was added to each. Thereafter, 1 µL
of each X and Y fragment was added to the separate Qubit tubes, and
199 µL of 1x buffer was added to each. The tubes were vortexed for
2–3 s and left at room temperature for 2 min. The concentration of
standards 1 and 2 were measured using the Qubit tube (Invitrogen).
The concentration of samples was measured using the Qubit tube.
The volume required to aliquot 1 ng of the X fragment and Y
fragment from the same cell was calculated, and these volumes were
combined in a new Lo-bind tube.

3.13 Library preparation

The Illumina DNA Prep protocol was followed, using IDT for
Illumina DNA/RNA UD Indexes Set A, Tagmentation (96 indexes,
96 samples) (Illumina 20027213). Each single cell should have a
unique pair of indexes. The library quality of the cleaned-up library
was checked by running 1 µL on a TapeStation D5000 microwell.
The libraries were combined and diluted to a starting concentration
of 2 nM as per the manufacturer’s instructions.

Stopping point: Samples can be stored at −20°C for 30 days.

TABLE 3 PCR components.

Reagent Volume per rx (µL) 10x Mastermix (µL) X 10x Mastermix (µL) Y

5x Buffer 5 50 50

10 mM DNTP mix 0.5 5 5

10 µM Primer F 1 10 (X primer) 10 (Y primer)

10 µM Primer R 1 10 (X primer) 10 (Y primer)

Nuclease-free H2O 8.5 85 85

SuperFi II DNA polymerase 0.5 5 5

TOTAL 16.5 165 165

TABLE 4 PCR settings.

Step Temperature (°C) Time

1. Initial denature 94 2 min

2. (x35) Denature 94 30 s

Annealing 55 30 s

Extension 68 9 min

3. Final extension 68 10 min

4. Hold 4 Infinite hold
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3.14 Sequencing

Libraries generated using Illumina DNA Prep were compatible
with a wide range of Illumina sequencers, including HiSeq, iSeq 100,
MiniSeq, NextSeq, and NovaSeq technologies.

The iSeq cartridge and flow cell were prepared as per the
manufacturer’s instructions (Illumina 20031371). A 2% PhiX
(Illumina FC-110-3001) spike-in was added. The sample sheet
loaded onto iSeq was checked to ensure correspondence to the
sample sheet from the library preparation. The cartridge was loaded,
and the run was performed as per the manufacturer’s instructions.
After running, the data were downloaded and backed up on an
external hard drive.

3.15 Data preprocessing

GitHub repository: https://github.com/alanfoleynibrt/
SingleCellmtDNA.

The bioinformatics pipeline is available in the above GitHub
repository. Initial processing of data was performed in Linux, and
figures were generated in R. All raw FASTQ data analyzed are made
available in this pipeline. A step-by-step protocol is also provided.

Briefly, trim_galore (0.4.3) trimmed adapter sequences in
FASTQ files. Bowtie-2 (2.3.4.1) mapped reads to the
KX576660.1 CHO mtDNA reference genome. Picard (1.199)
tools identified duplicates (MarkDuplicates), added read groups
(AddOrReplaceReadGroups), and built a BAM index
(BuildBamIndex). Gatk3.8-0 realigned indels (IndelRealigner) and
recalibrated bases (BaseRecalibrator). Two separate mutation-
calling software programs were used: loFreq_star-2.1.2 and
VarScan. v2.3.9. When a mutation was called by both, it was
selected for analysis. If a mutation allele frequency was between
0.04 and 0.96, it was considered “heteroplasmic.” The potential
impact of identified mutations was predicted using snpEff. In
tandem, analysis was repeated using a shifted mtDNA reference
genome to achieve complete coverage over the D-loop region.
Unshifted mutation calls were concatenated with those from the
shifted reference sequence to provide full coverage. ggplot2 in R was
used to generate figures.

4 Results

4.1 Sample generation to demonstrate
the method

The overall aim of this project was to demonstrate a method to
analyze single CHO cells. We first confirmed that sorting 0 cells led
to no amplification of mtDNA, and amplification of our single cells
led to specific 8.5-kb bands indicative of mtDNA (Figure 2G). To
demonstrate the functionality of our workflow as a whole, we sorted
four single cells and a bulk sample (4,000 cells) into 5 µL of TCL lysis
buffer. Samples were purified, split into two equal aliquots, and
separately amplified by LRPCR, which were then visualized on an
agarose gel. mtDNA-specific bands were excised for both amplified
fragments, as indicated by the red boxes in Figure 2G. Amplicons
were recovered by gel purification. After quantifying the dsDNA

using the Qubit 1x dsDNA HD Kit, equimolar quantities of each
fragment from the same cell were added to a single tube.

For library preparation, the Illumina DNA Prep protocol
(20018705) with IDT for Illumina DNA/RNA UD Index Set A
was implemented. Each sample was separately assigned unique
indices. Separate libraries were combined, diluted to 2nM, and
loaded onto Illumina iSeq for PE150 sequencing. A 2% PhiX
library control spike-in was added. iSeq had the option to
include a “sample sheet” to which the index combinations were
added. iSeq was run to completion with an output of fastq.gz files
ready for the bioinformatics pipeline.

4.2 Bioinformatic analysis

Adapter sequences were removed from the reads, which were
then mapped against the CHO KX576660.1 mtDNA reference
genome. As was performed previously in the bulk analysis of
CHO mtDNA, PCR duplicates were identified (Figure 3A) and
removed from the analysis (Kelly et al., 2017). The range of duplicate
reads was 23.8%–29.3%, with the highest proportion in the mixed
population. Furthermore, indel realignment and base recalibration
were used to cater to the effects of indels on read mapping.

After excluding duplicate and unmapped reads, all samples had
an average sequencing depth of >1,500×–above 1,000× required for
“ultra-deep sequencing” categorization (Figure 3B). Per-base
coverage of all samples confirmed complete and even mapping of
sequencing reads (Figure 3C). The mapping indicated no strong bias
for any particular region. Together, this confirmed our scmtDNAseq
protocol had been successful. The great value of single cell
sequencing of mtDNA at such a great depth is the ability to
analyze with confidence the differences in the sequenced reads
when compared to the reference genome, i.e. mutations.
Heteroplasmy can be quantified by the proportion of mtDNA
copies that contain the mutation. For example, if 50/100 reads
contain a mutation, the allele frequency is determined as 0.5.

A total of 43 mutations were called among the four samples, of
which 17 were indels and 26 SNPs (Supplementary Figure S1B). Of
the heteroplasmic mutations in the bulk sample, the single cell
average allele frequency varied dramatically from the bulk
(Figure 4A). For example, the 5462T>C mutation was 0.05 in the
bulk but over 0.5 in the single cell average. This is likely a
consequence of the small number of single cell samples
sequenced but also suggests that some mutations may exist
sporadically at a high frequency in a small number of cells
within the population (scenario 2 in Figure 5).

To better assess the variability in the allele frequency among
single cells, we developed a list of “most variable” mutations which
must be heteroplasmic in at least two out of the four single cells.
There was a wide range of allele frequencies among the single cells
(Figure 4B). Had only bulk analysis been performed, this range of
allele frequency would not have been captured, demonstrating the
enhanced resolution possible from single cell analysis.

We next considered whether the mutations among the samples
were concordant. We generated a heatmap of mutations from all
samples, with each mutation type represented by a color
(Figure 4C). The mutations 5244TA>T and 14136T>A were
present in all samples. Considering the averaged nature of a
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bulk sample, one might expect that all the mutations present in the
single cells should be equally present in the bulk sample. However,
73% (19/26) of mutation locations were exclusively found in the
single cells but not in the bulk sample. One explanation for this is
an uneven spread of heteroplasmy among the single cells; in a
particular cell, there may be a mutation present above a 0.04 allele
frequency, but when averaged across all cells, this allele frequency
dips below 0.04. All mutations from the bulk sample were found in
at least one single cell, apart from the intragenic 3733G>A. The
lack of 3733G>A may be explained by the small number of single
cells analyzed.

4.3 Predicted phenotypic impact
of mutations

Although the presence of mutations is useful for demonstrating
intercellular diversity, their phenotypic impact may be limited by
many factors, including the mutation’s effect on, for example, the
amino acid sequence or tRNA structure. We therefore analyzed
mutations based on the predicted impact on the phenotype using
the SnpEff software tool (Figure 4D) (Supplementary Figure
S1D). Of particular interest, frameshift mutations were
observed in protein-coding genes COX1, CYTB, and ND4
(Supplementary Figure S1E). At least one frameshift mutation
was called in all samples. Only four heteroplasmic mutations
were above the 0.5 allele frequency, with most mutations present
at low levels. Mapping of mutations against the allele frequency
showed the vast majority to be in the 0.04–0.5 range
(Supplementary Figure S1F).

5 Discussion

5.1 Relevance of scmtDNAseq for the
biotechnology industry

The heteroplasmic allele frequency is the main determinant of the
clinical severity of primary mitochondrial disorders (Nissanka and
Moraes, 2020). Previous bulk analysis of CHO mtDNA identified
heteroplasmy in clones derived from the same parental host, indicating
at least three levels of heterogeneity: 1) production run to production run,
2) cell line to cell line, and 3) clone to clone (Kelly et al., 2017).

However, bulk analysis of heteroplasmy fails to identify the allele
frequency differences between individual cells in a population, which is the
main determinant of the phenotypic impact (Figure 1A). A heteroplasmic
threshold within a single cell must be passed before impairment in
OXPHOS and wider phenotypic effects (Rossignol et al., 2003). The
exact threshold is highly variable depending on themutation, cell type, and
tissue but generally ranges between 0.6 and 0.9. For example, individuals
with amtDNAmutation in 3243A>G experience diabetes and autism at a
low allele frequency of 0.1–0.3, but in individuals with a higher allele
frequency, the severity increases withmore severe encephalomyopathies at
0.5–0.9 and even perinatal lethality as the allele frequency approaches 1.0
(Picard et al., 2014). However, it is still unclear how the heteroplasmy load
among the individual cells affects the overall phenotype. Single cell analysis
is therefore critical to reveal the true phenotypic effect of heteroplasmy.

To illustrate this, consider if there was a hypothetical mutation with
a threshold of 0.7, above which phenotypic changes would manifest in
an individual cell. If bulk analysis identified this critical mutation at a
frequency of 0.1 in 1 million cells (Figure 5), three very different
conclusions could be arrived at: 1) all cells contain the mutation at a

FIGURE 3
(A) Read mapping of samples to the KX576660 CHO mtDNA reference genome. (B) Average per-base sequencing depth of each sample. (C) Per-
base coverage of four single cells and a bulk sample with correction around 0 coordinate. Made with BioRender.
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0.1 allele frequency and are, therefore, all unaffected phenotypically; 2)
10% of cells contain themutation at a 1.0 allele frequency, and therefore,
only 10% of cells are affected phenotypically, or 3) cells contain the
mutation at a variable rate (0–1.0), and therefore, the population is
affected at a variable rate.

Bearing in mind the strive for homogeneity in drug production, the
implications of these scenarios are significant. If a particular heteroplasmy

profile affected the product quality, for example, perhaps only a subset of
the cells produces the product at a high quality, in which case, the
remainder could be identified and potentially excluded to improve
bioreactor performance. Equally, perhaps a cell line could be
engineered with a favorable heteroplasmy profile to improve the
bioreactor performance. Further work is needed to understand the
link between mitochondrial heteroplasmy and cellular behavior in

FIGURE 4
(A) Comparison of bulk sample allele frequencies to the average of four single cells’ allele frequencies. The mutation must be heteroplasmic (between
0.04 and 0.96 allele frequency) in the bulk sample. (B) Violin plot of “most variable”mutationswhichmust be heteroplasmic in at least two of four single cells.
(C) Base change heatmap of heteroplasmic mutations (between 0.04 and 0.96 allele frequency) in four single cells and a bulk sample. (D) SnpEff-predicted
impact of heteroplasmic (between 0.04 and 0.96 allele frequency) mtDNA mutations of four single cells and a bulk sample. Made with BioRender.
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recombinant protein production, but single cell analysis should contribute
significantly in this regard.

Although the five samples here are demonstrative and not enough for
strong statistical conclusions, certain observations were made. The bulk
population had the lowest number of reliably detectable mutations
(Supplementary Figure S1B). All mutations in the bulk population, bar
one, were found in at least one single cell (Figure 4C). This demonstrated
the improved resolution ofmutation detection using a single cell approach.
A great range of allele frequencies in “most variable” mutations was
observed (Figure 4B), further indicating an uneven spread of
heteroplasmy among the four cells, reminiscent of scenario 3 in Figure 5.

Zambelli et al. previously compared mtDNA sequenced from
human fibroblast cells at both bulk and single cell levels (Zambelli
et al., 2017). They equally observed an uneven spread of heteroplasmy
among single cells. Strikingly, for mutations 12071T>C and 12850A>G,
the bulk allele frequency was 0.10 and 0.16, respectively, but completely
absent in all but a select few single cells at near 1.0 allele frequency. Could
this imply that in an industrial CHO cell culture, there are select
individual cells with exceptionally high allele frequency mtDNA
mutations with concomitant metabolic impairment?

High-impact mutations observed here in CYTB (Supplementary
Figure S1D) would change the encoded amino acid sequence. The
phenotypic effects of CYTB mutations are well-established in human
disease, where patients experience highly variable severities of myopathy

and muscle weakness (Blakely et al., 2005). CYTB mutations in yeast
models can cause severe decreases in respiratory function (Fisher et al.,
2004). In a bioreactor, mutated CYTB single cells (above a phenotypic
threshold) may be one of many contributing factors to the heterogeneity
observed among clonally derived CHO populations.

5.2 Incorporating heteroplasmy for clonal
populations

Clonal populations of industrial CHO cell lines start from a
single cell to encourage “genetic robustness” (Wurm and Wurm,
2017). This step could also facilitate the future selection of
favorable heteroplasmic profiles, which improve the metabolic
qualities of the bioreactor run. However, even if a clonal
population derives from a CHO cell with a favorable
heteroplasmic profile, genetic heterogeneity within clonal
populations is an inevitability due to DNA replication errors,
made more pertinent for mtDNA, owing to a greater mutation
rate than nuclear DNA (Chial, 2008).

Additionally, during mitosis, mitochondria are divided among
daughter cells (Mishra and Chan, 2014). The many divisions
throughout a standard bioreactor run could result in uneven
distributions of heteroplasmy by random chance, which may, therefore,

FIGURE 5
Representation of how the bulk analysis of heteroplasmy can obfuscate single cell orientations. Made with BioRender.
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encourage heterogeneous metabolic phenotypes. Heteroplasmic allele
frequencies have been observed to dynamically change over a human
B-lymphocyte 28-day cell culture (Zhang et al., 2019). The 15153G>A
allele frequency increased from 0.50 on day 0 to 0.78 on day 14 and then
decreased to 0.31 on day 28. In total, three mutations revealed a very
similar increase-to-decrease trend, and their 0.30–0.90 frequency
differentials are in a range likely to affect the phenotype. Therefore,
future research would benefit from analyzing the change in
heteroplasmy over the time period of a typical bioreactor run.

5.3 Technical aspects to calling
mtDNA mutations

Previously, Zambelli et al. (2017) suggested a heteroplasmy
threshold of 0.015 as sufficient when using 30 PCR cycles for
mtDNA, in line with previous single cell analyses (He et al., 2010;
Zhang et al., 2012). Zambelli et al. also compared results when using
35 cycles instead of 30, only finding differences in very low-allele
frequency mutations (>0.015). Upon this background, we considered
a greater PCR cycle number of 35, along with a higher allele frequency
cutoff of 0.04, to be sufficient. Importantly, we make no claims that our
allele frequencies are 100% accurate. Most obviously, we are only
sequencing a subset of the total mtDNA copies in each single cell,
which could lead to a sampling error. Another possible contribution to
the error could be PCR bias. We do not expect a great PCR bias due to
the Illumina library preparations as MarkDuplicates should tag
fragments with the same origin. For our LRPCR, however, there may
be some bias; for this reason, we kept the PCR cycle low at 35 cycles to
minimize this bias; however, it is important to note that decreasing the
cycle number further could have resulted in a technical limitation
because of the small starting mtDNA mass from a single cell.

This also precludes the use of “PCR-free” techniques that may better
reflect the “true” allele frequency. Nevertheless, a previous investigation
into PCR bias in mtDNA sequencing concluded that PCR-based
amplification was suitable for “generating fully accurate mtDNA
sequences” and “assessing heteroplasmy for single point mutations
with high accuracy” (Legati et al., 2021). Furthermore, they noted a
limitation in not “detecting break positions and heteroplasmy of single
large deletions.” Therefore, we expect our protocol to be sufficient for
heteroplasmic variants to a high accuracy but not large-scale deletions.

Of note, we sequenced single cells selected with a greater AB-
FITC stain. This theoretically selects for cells with greater mAb
production, which could have imparted bias in the heteroplasmic
profiles. Perhaps single cells with greater heteroplasmic burden are
more likely to exhibit metabolic impairment. Thus, our selection of
greater AB-FITC stain may have concomitantly selected for single
cells with lesser metabolic impairment. For research purposes, it
may be useful in the future to have an unbiased selection of single
cells to fully interrogate the connection of heteroplasmy to metabolic
impairment. Conversely, in terms of incorporating a selection step
for future clonal CHO populations, it may also be useful to use the
AB-FITC signal to preemptively select higher producers.

In conclusion, a reliable method to amplify and analyze mtDNA
from single CHO cells was demonstrated (scmtDNAseq). This approach
should help better understand the degree and likely impact of
heteroplasmy on recombinant protein production in CHO cells.
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SUPPLEMENTARY FIGURE S1
(A) Tapestation (4200) image of mtDNA LRPCR for dilutions of a
single cell. Negative control is 0 cells, and positive control is 10 cells.
Dilutions were made from 1/10 to 1/100,000. (B) Number of
heteroplasmic mutations (between 0.04 and 0.96 allele frequency) in
four single cells and a bulk sample. (C) Allele frequency heatmap of
heteroplasmic (between 0.04 and 0.96 allele frequency) mutations

in four single cells and a bulk sample. (D) snpEff-predicted impact
of heteroplasmic (between 0.04 and 0.96 allele frequency) mutations
in four single cells and a bulk sample. (E) Number of mutations per
gene in four single cells and a bulk sample. (F) Allele frequency
distribution of heteroplasmic (between 0.04 and 0.96 allele
frequency) mutations in four single cells and a bulk sample. Made
with BioRender.

References

Blakely, E. L., Mitchell, A. L., Fisher, N., Meunier, B., Nijtmans, L. G., Schaefer, A. M.,
et al. (2005). A mitochondrial cytochrome b mutation causing severe respiratory chain
enzyme deficiency in humans and yeast. FEBS J. 272, 3583–3592. doi:10.1111/j.1742-
4658.2005.04779.x

Chial, H. (2008). mtDNA and mitochondrial diseases | learn science at scitable.
Available at: http://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-
diseases-903 (Accessed June 5, 2023).

Dhiman, H., Gerstl, M. P., Ruckerbauer, D., Hanscho, M., Himmelbauer, H., Clarke,
C., et al. (2019). Genetic and epigenetic variation across genes involved in energy
metabolism and mitochondria of Chinese hamster ovary cell lines. Biotechnol. J. 14,
1800681. doi:10.1002/biot.201800681

Dimauro, S., and Davidzon, G. (2005). Mitochondrial DNA and disease. Ann. Med.
37, 222–232. doi:10.1080/07853890510007368

Fisher, N., Castleden, C. K., Bourges, I., Brasseur, G., Dujardin, G., and Meunier, B.
(2004). Human disease-related mutations in cytochrome b studied in yeast. J. Biol.
Chem. 279, 12951–12958. doi:10.1074/jbc.M313866200

Gallagher, C., and Kelly, P. S. (2017). Selection of high-producing clones using FACS
for CHO cell line development. Methods Mol. Biol. 1603, 143–152. doi:10.1007/978-1-
4939-6972-2_9

Gilbert, A., McElearney, K., Kshirsagar, R., Sinacore, M. S., and Ryll, T. (2013).
Investigation of metabolic variability observed in extended fed batch cell culture.
Biotechnol. Prog. 29, 1519–1527. doi:10.1002/btpr.1787

He, Y., Wu, J., Dressman, D. C., Iacobuzio-Donahue, C., Markowitz, S. D., Velculescu,
V. E., et al. (2010). Heteroplasmic mitochondrial DNA mutations in normal and
tumour cells. Nature 464, 610–614. doi:10.1038/nature08802

Hertweck, K. L., and Dasgupta, S. (2017). The landscape of mtDNA modifications in
cancer: a tale of two cities. Front. Oncol. 7, 262. doi:10.3389/fonc.2017.00262

Itsara, L. S., Kennedy, S. R., Fox, E. J., Yu, S., Hewitt, J. J., Sanchez-Contreras, M., et al.
(2014). Oxidative stress is not a major contributor to somatic mitochondrial DNA
mutations. PLoS Genet. 10, e1003974. doi:10.1371/journal.pgen.1003974

Ju, Y. S., Alexandrov, L. B., Gerstung, M., Martincorena, I., Nik-Zainal, S.,
Ramakrishna, M., et al. (2014). Origins and functional consequences of somatic
mitochondrial DNA mutations in human cancer. eLife 3, e02935. doi:10.7554/eLife.
02935

Kelley, B., Kiss, R., and Laird, M. (2018). A different perspective: how much
innovation is really needed for monoclonal antibody production using mammalian
cell technology? Adv. Biochem. Eng. Biotechnol. 165, 443–462. doi:10.1007/10_2018_59

Kelly, P. S., Clarke, C., Costello, A., Monger, C., Meiller, J., Dhiman, H., et al. (2017).
Ultra-deep next generation mitochondrial genome sequencing reveals widespread
heteroplasmy in Chinese hamster ovary cells. Metab. Eng. 41, 11–22. doi:10.1016/j.
ymben.2017.02.001

Kowaltowski, A. J., and Vercesi, A. E. (1999). Mitochondrial damage induced by
conditions of oxidative stress. Free Radic. Biol. Med. 26, 463–471. doi:10.1016/s0891-
5849(98)00216-0

Legati, A., Zanetti, N., Nasca, A., Peron, C., Lamperti, C., Lamantea, E., et al. (2021).
Current and new next-generation sequencing approaches to study mitochondrial DNA.
J. Mol. Diagnostics 23, 732–741. doi:10.1016/j.jmoldx.2021.03.002

Lorenz, T. C. (2012). Polymerase chain reaction: basic protocol Plus troubleshooting
and optimization strategies. J. Vis. Exp. 3998, e3998. doi:10.3791/3998

Maeda, R., Kami, D., Maeda, H., Shikuma, A., and Gojo, S. (2020). High throughput
single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases. Sci. Rep.
10, 10821. doi:10.1038/s41598-020-67686-z

Mishra, P., and Chan, D. C. (2014). Mitochondrial dynamics and inheritance during
cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646. doi:10.
1038/nrm3877

NCBI (2023). National center for Biotechnology information. Available at: https://
www.ncbi.nlm.nih.gov/(Accessed June 5, 2023).

Nissanka, N., and Moraes, C. T. (2020). Mitochondrial DNA heteroplasmy in disease
and targeted nuclease-based therapeutic approaches. EMBO Rep. 21, e49612. doi:10.
15252/embr.201949612

Park, J. S., Sharma, L. K., Li, H., Xiang, R., Holstein, D., Wu, J., et al. (2009). A
heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes
tumorigenesis via alteration in reactive oxygen species generation and apoptosis.
Hum. Mol. Genet. 18, 1578–1589. doi:10.1093/hmg/ddp069

Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P., et al. (2014).
Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional
reprogramming. Proc. Natl. Acad. Sci. U.S.A. 111, E4033–E4042. doi:10.1073/pnas.
1414028111

Rossignol, R., Faustin, B., Rocher, C., Malgat, M., Mazat, J.-P., and Letellier, T. (2003).
Mitochondrial threshold effects. Biochem. J. 370, 751–762. doi:10.1042/bj20021594

Walsh, G., and Walsh, E. (2022). Biopharmaceutical benchmarks 2022. Nat.
Biotechnol. 40, 1722–1760. doi:10.1038/s41587-022-01582-x

Wei, W., Schon, K. R., Elgar, G., Orioli, A., Tanguy, M., Giess, A., et al. (2022).
Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature
611, 105–114. doi:10.1038/s41586-022-05288-7

Wurm, F.M., andWurm,M. J. (2017). Cloning of CHO cells, productivity and genetic
stability—a discussion. Processes 5, 20. doi:10.3390/pr5020020

Zambelli, F., Vancampenhout, K., Daneels, D., Brown, D., Mertens, J., Van Dooren, S.,
et al. (2017). Accurate and comprehensive analysis of single nucleotide variants and
large deletions of the human mitochondrial genome in DNA and single cells. Eur.
J. Hum. Genet. 25, 1229–1236. doi:10.1038/ejhg.2017.129

Zhang, R., Nakahira, K., Choi, A. M. K., and Gu, Z. (2019). Heteroplasmy
concordance between mitochondrial DNA and RNA. Sci. Rep. 9, 12942. doi:10.
1038/s41598-019-49279-7

Zhang, W., Cui, H., and Wong, L.-J. C. (2012). Comprehensive one-step molecular
analyses of mitochondrial genome by massively parallel sequencing. Clin. Chem. 58,
1322–1331. doi:10.1373/clinchem.2011.181438

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Foley et al. 10.3389/fbioe.2024.1304951

https://doi.org/10.1111/j.1742-4658.2005.04779.x
https://doi.org/10.1111/j.1742-4658.2005.04779.x
http://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903
http://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903
https://doi.org/10.1002/biot.201800681
https://doi.org/10.1080/07853890510007368
https://doi.org/10.1074/jbc.M313866200
https://doi.org/10.1007/978-1-4939-6972-2_9
https://doi.org/10.1007/978-1-4939-6972-2_9
https://doi.org/10.1002/btpr.1787
https://doi.org/10.1038/nature08802
https://doi.org/10.3389/fonc.2017.00262
https://doi.org/10.1371/journal.pgen.1003974
https://doi.org/10.7554/eLife.02935
https://doi.org/10.7554/eLife.02935
https://doi.org/10.1007/10_2018_59
https://doi.org/10.1016/j.ymben.2017.02.001
https://doi.org/10.1016/j.ymben.2017.02.001
https://doi.org/10.1016/s0891-5849(98)00216-0
https://doi.org/10.1016/s0891-5849(98)00216-0
https://doi.org/10.1016/j.jmoldx.2021.03.002
https://doi.org/10.3791/3998
https://doi.org/10.1038/s41598-020-67686-z
https://doi.org/10.1038/nrm3877
https://doi.org/10.1038/nrm3877
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://doi.org/10.15252/embr.201949612
https://doi.org/10.15252/embr.201949612
https://doi.org/10.1093/hmg/ddp069
https://doi.org/10.1073/pnas.1414028111
https://doi.org/10.1073/pnas.1414028111
https://doi.org/10.1042/bj20021594
https://doi.org/10.1038/s41587-022-01582-x
https://doi.org/10.1038/s41586-022-05288-7
https://doi.org/10.3390/pr5020020
https://doi.org/10.1038/ejhg.2017.129
https://doi.org/10.1038/s41598-019-49279-7
https://doi.org/10.1038/s41598-019-49279-7
https://doi.org/10.1373/clinchem.2011.181438
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1304951

	A complete workflow for single cell mtDNAseq in CHO cells, from cell culture to bioinformatic analysis
	1 Introduction
	2 Materials and equipment
	2.1 CHO cell culture
	2.2 Immunolabeling and staining
	2.3 FACS
	2.4 AMPure purification
	2.5 Long-range PCR
	2.6 Agarose gel
	2.7 Gel purification
	2.8 Qubit
	2.9 Sequencing

	3 Methods
	3.1 PCR component storage
	3.2 CHO cell culture
	3.3 DAPI stain
	3.4 Staining cells
	3.5 Setting single cell gating
	3.6 Single cell sorting
	3.7 AMPure purification
	3.8 SuperFi II Plat Taq LRPCR
	3.9 Agarose gel
	3.10 Gel excision
	3.11 Gel purification
	3.12 Equimolar combination
	3.13 Library preparation
	3.14 Sequencing
	3.15 Data preprocessing

	4 Results
	4.1 Sample generation to demonstrate the method
	4.2 Bioinformatic analysis
	4.3 Predicted phenotypic impact of mutations

	5 Discussion
	5.1 Relevance of scmtDNAseq for the biotechnology industry
	5.2 Incorporating heteroplasmy for clonal populations
	5.3 Technical aspects to calling mtDNA mutations

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


