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The term “peri-implantitis” (peri-implantitis) refers to an inflammatory lesion of
the mucosa surrounding an endosseous implant and a progressive loss of the
peri-implant bone that supports the implant. Recently, it has been suggested that
the increased sensitivity of implants to infection and the quick elimination of
supporting tissue after infection may be caused by a dysregulated peri-implant
mucosal immune response. Macrophages are polarized in response to
environmental signals and play multiple roles in peri-implantitis. In peri-
implantitis lesion samples, recent investigations have discovered a
considerable increase in M1 type macrophages, with M1 type macrophages
contributing to the pro-inflammatory response brought on by bacteria,
whereas M2 type macrophages contribute to inflammation remission and
tissue repair. In an effort to better understand the pathogenesis of peri-
implantitis and suggest potential immunomodulatory treatments for peri-
implantitis in the direction of macrophage polarization patterns, this review
summarizes the research findings related to macrophage polarization in peri-
implantitis and compares them with periodontitis.
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1 Introduction

Since Brånemark first made dental implants available in the 1960s, they have been the norm
for those with edentulism and missing teeth (Brånemark et al., 1969; Brånemark et al., 1977;
Albrektsson, Brånemark, Hansson and Lindström, 1981). However, peri-implantitis (PI) is an
increasingly serious biological complication of oral implantology. Its prevalence increases with
the duration of the implant (French, Ofec and Levin, 2021; Obreja et al., 2021). The term “peri-
implantitis” (PI) refers to an inflammatory lesion of the mucosa surrounding an endosseous
implant and a progressive loss of the peri-implant bone that supports the implant (Renvert,
Persson, Pirih and Camargo, 2018). According to reports, it affects between 5% and 37% of
implants and between 11% and 53% of patients (Fransson, Lekholm, Jemt and Berglundh, 2005;
Roos-Jansåker, Lindahl, Renvert and Renvert, 2006; Renvert, Roos-Jansåker, Lindahl, Renvert
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and Rutger Persson, 2007; Koldsland, Scheie and Aass, 2010; Rinke,
Ohl, Ziebolz, Lange and Eickholz, 2011).

Although the clinical and radiological manifestations of PI and
periodontitis share many features, there are key differences in their
clinical progression, histological features, and microbial composition,
suggesting different pathogenesis (Carcuac and Berglundh, 2014). By
using 16S pyrosequencing, Kumar et al. discovered that the peri-implant
microbiome differs greatly from the periodontalmicrobiomewith regard
to both health and illness. Peri-implantitis is a microbiological
heterogeneous infection predominantly brought on by Gram-negative
bacteria (i.e., the dominant species are not the same in each individual)
and is not as complex as periodontitis (Kumar et al., 2012).

When PI samples were compared to periodontitis samples, the
region of inflammatory infiltration was more than twice as large in
the PI samples, and there were also considerably more macrophages
and plasma cells in the PI samples overall (Carcuac and Berglundh,
2014). In both PI and periodontitis lesions, plasma cells and
lymphocytes predominate. However, PMN and macrophages take
more percentage in PI than in periodontitis (Esposito et al., 1997;
Gualini and Berglundh, 2003; Berglundh, Gislason, Lekholm,
Sennerby and Lindhe, 2004; Berglundh, Zitzmann and Donati,
2011; Carcuac and Berglundh, 2014). The periapical tissue goes
through a “self-limiting” process when the ligature is removed in
which the connective tissue capsule divides the ICT from the bone in
periodontitis, whereas in the peri-implant tissue, the ICT extends to
the bone crest (Berglundh, Zitzmann and Donati, 2011).

Implants dysregulate the immune response in the peri-implant
mucosa (PIM), as shown by the development of a mouse model of

dental implants and experimental PI (Pirih et al., 2015; Koutouzis,
Eastman, Chukkapalli, Larjava and Kesavalu, 2017; Tzach-Nahman,
Mizraji, Shapira, Nussbaum and Wilensky, 2017; Heyman et al., 2018;
Heyman et al., 2022). This “dysregulated homeostasis” or inflammatory
condition of the PIM may be the cause of the implant’s greater
vulnerability to infection and the swift elimination of supporting
tissue after infection (Carcuac and Berglundh, 2014).

Notably, Macrophages become polarized while responding to
environmental signals, with M1 macrophages playing a role in
bacterially-induced pro-inflammatory responses and M2 macrophages
in inflammation regression and tissue repair (Yu et al., 2016; Palevski
et al., 2017). Studies have shown an increase in polymorphonuclear
leukocytes (PMN) and macrophages in PI lesions compared to
periodontitis. Additionally, PI lesion samples revealed a notable rise
in M1 macrophages (Fretwurst et al., 2020). This kind of macrophage
polarization feature could partially explain the faster progression of PI
in humans compared to periodontitis. It is consistent with the finding
that PI advances more quickly than periodontitis because there is an
increased quantity and density of PMN and macrophages (particularly
M1) in the peri-implant lesions (Dionigi, Larsson, Carcuac and
Berglundh, 2020). Studies on the function of macrophage polarization
in the onset of PI and periodontitis have gradually risen in recent years
(Figure 1). This review summarizes the research results related to
macrophage polarization in PI and compares them with periodontitis
in an attempt to deepen the understanding of the pathogenesis of PI and
propose possible immunomodulatory therapies for PI in the direction of
macrophage polarization patterns. This will improve our knowledge of,
capacity to avoid, and manage PI.

FIGURE 1
An overview of how polarizedmacrophages contribute to the incidence and growth of PI. The progressive and retreating phases of inflammation are
dominated, respectively, by the M1 and M2 phenotypes of macrophages. M1 primarily serves a pro-inflammatory role, releasing a number of pro-
inflammatory substances such (NOS)2, TNF-α, IL-1, IL-6, IL-12, and MMPs and collaborating with Th1 and Th17 cells. In addition, M1 type activates
osteoclasts and causes resorption of alveolar bone; M2 type primarily functions as an anti-inflammatory, carrying out tissue repair via a variety of
anti-inflammatory factors, such as (Arg)1, IL-4, IL-10, IL-13, and TGF-β, mainly synergizes with Th2 cells, and activates osteoblasts to promote bone
regeneration.
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2 Overview of the polarization of
macrophages

Macrophages were first recognized for their phagocytic abilities.
They also contributed to host-microbe equilibrium, antigen
presentation, mobilization of immune defense mechanisms, and
resistance to bacterial infection (Sun X. et al., 2021). Although
several attempts have been made to classify macrophages, the most
widely accepted classification has been the mononuclear phagocytic
system (MPS). There are also other functional classifications of
macrophages, for example, binary classification of inflammatory
states classifies macrophages into activated macrophages and
alternatively activated macrophages (AAM) (Gordon and Martinez,
2010; Sica and Mantovani, 2012; Wynn, Chawla and Pollard, 2013).

Macrophages can adjust to a variety of activation states that fall
under the M1/M2 phenotypes of macrophage polarization in order to
support immune activity and maintain tissue homeostasis (Martinez,
Sica, Mantovani and Locati, 2008). The pro-inflammatory cytokines
TNF-γ, interleukins IL-1, IL-6, and IL-12, as well as a high volume of
reactive nitrogen and oxygen intermediates, are all produced by
M1 macrophages after being primed by the interferon IFN-γ. These
responses encourage Th1 responses with potent bactericidal and
antitumor activity. IL-4 or IL-13 can prime M2 macrophages, which
then express high levels of a metabolic marker called arginase (Arg) 1,
the differentiation cluster CD206, and the anti-inflammatory cytokine
IL-10, thereby dampening the inflammatory response to preserve tissue
homeostasis, thereby attenuating the inflammatory response to
maintain tissue homeostasis. The repression of parasites, stimulation
of tissue remodeling, advancement of tumors, and immunomodulatory
actions are all facilitated by M2 macrophages. Table 1 summaries the
polarization types, characteristics and basic functions of macrophages.
In summary, M1 macrophages have a role in bacterial killing and
inflammation, whereas M2 macrophages are primarily involved in
tissue homeostasis, suppression, inflammatory regression, and tissue
healing (Morris, Singer and Lumeng, 2011; Sica and Mantovani, 2012).

The development of numerous inflammatory disorders, including
infections, obesity, and cancer, is characterized by an imbalanced M1/
M2 ratio (Wynn et al., 2013). Obesity, atherosclerosis, diabetes, allergies
and asthma, autoimmunity, and cancer are a few examples of chronic
diseases that are linked to specific macrophage polarization profiles
(Sima and Glogauer, 2013). It has been proven that macrophages can
become functionally polarized in vivo, both in healthy and unhealthy
circumstances. Pregnancy, embryogenesis, and the preservation of
normal conditions in particular tissues (such as the testis and fat
tissue) are all included in the former. Included in the latter are
cancer, vascular disease, infection, chronic inflammation, tissue
healing, and metabolism (Sica and Mantovani, 2012).

3 Polarization of macrophages in
periodontitis

As the sixth most common disease in the world, periodontitis is a
common condition that affects many people. In its extreme stages, 10%
of adult population are affected (Larsson et al., 2022). It is a chronic
infectious illness characterized by microbial-related and host-mediated
inflammation, which is brought on by the persistent breakdown of
supportive periodontal tissues, which is started by plaque biofilm

(Tonetti, Greenwell and Kornman, 2018). A considerable number of
animal experiments and human studies have shown increased
polarization of M1 macrophages in periodontitis (Table 2). In mice
infected with Porphyromonas gingivalis (Pg), an animal investigation
found that M1 macrophages dramatically expanded in the gingival
tissue (Lam et al., 2014). M1 macrophages increased higher than M2 in
the periodontitis group compared to the healthy control group,
according to research by Yu T et al. on animals. Additionally,
periodontal tissue affected by periodontitis showed an increase in
the M1 inflammatory factors TNF-α and IL-1β as well as the
M2 inflammatory factor IL-10 (Yu et al., 2016). Another human
study showed that M1 macrophages increased in periodontitis
compared to healthy controls (Higuchi, Sm, Yamashita, Ozaki and
Yoshimura, 2020). However, when periodontitis worsens, the
macrophage phenotype may alter. M1 is enhanced during the
inflammatory phase while macrophage phenotype polarizes towards
the M2 type during the recovery stage (Gonzalez et al., 2015; Viniegra
et al., 2018; Zhou et al., 2019; Wu X. et al., 2020).

3.1 M1 macrophage polarization in
periodontitis

Numerous M1 macrophages are present at the sites of bone
degradation in chronic osteolytic disorders, such as various types of
arthritis and periodontitis. These macrophages contribute significantly
to disease-induced bone resorption by producing inflammatory
cytokines including IL-1β and TNF-α and activating osteoclasts
(Arend and Dayer, 1990; Stashenko, Jandinski, Fujiyoshi, Rynar
and Socransky, 1991; Metzger, 2000; Górska et al., 2003;
Andrukhov et al., 2011; Shaddox et al., 2011). Clinical outcomes
may be enhanced by antagonist therapy that lowers TNF-α and IL-
1β levels (Zwerina, Redlich, Schett and Smolen, 2005; McInnes and
Schett, 2007). By employing IL-1β and TNF-α antagonists or knocking
down the IL-1 receptor and TNF receptor, alveolar bone resorption in
mice with experimental periodontitis was also decreased (Assuma,
Oates, Cochran, Amar and Graves, 1998; Graves and Cochran, 2003).
Additionally, gingival crevicular fluid IL-1 levels were found to be
lower, IL-10 levels were higher, and bone resorption activity was lower
when periodontal treatment was effective (Holmlund, Hänström and
Lerner, 2004; de Lima Oliveira et al., 2012).

Matrix metalloproteinases (MMPs), which are involved in the
breakdown of the extracellular matrix, are just one of the significant
proteases that M1 macrophages release in addition to cytokines in
the advancement of periodontal disorders (Franco, Patricia, Timo,
Claudia and Marcela, 2017). MMPs are produced as a result of the
inflammatory cytokines TNF-α, IL-1, and IL-6, all of which are
highly expressed in diseased periodontal tissue (Stashenko et al.,
1991; Irwin and Myrillas, 1998; Irwin, Myrillas, Traynor, Leadbetter
and Cawston, 2002), some of these MMPs are also associated with
increased M1/M2 ratios during disease (J. Yang et al., 2018).

3.2 M2 macrophage polarization in
periodontitis

Widespread expression of the M2 macrophage’s IL-10 in
inflamed periodontal tissue is linked to tissue healing, a
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reduction in periodontitis severity, and a reduction to inflammation
(Lappin, MacLeod, Kerr, Mitchell and Kinane, 2001; Garlet,
Martins, Fonseca, Ferreira and Silva, 2004; Garlet, 2010). In

IL-10 deficient animals, which were more vulnerable to
Pg-induced alveolar bone loss, its protective effect was also
demonstrated (Sasaki et al., 2004). Additionally, TGF-β is

TABLE 1 The polarization types, characteristics and basic functions of macrophages (Sima and Glogauer, 2013; Sun X. et al., 2021).

Phenotypes Stimuli Special surface
receptor

Cytokines Basic function

M1 LPS MHC II IL-1β Stimulates the endothelium of vessels

TNF-a CD86 Makes lymphocytes active

IFN-γ CD80 Localized deterioration of tissues

GM-CSF Enhances effector cell accessibility

Generation of IL-6

IL-6 Activation of lymphocytes

Increased synthesis of antibodies

Stimulates the synthesis of acute-phase proteins

TNF-α Enhances the permeability of the vascular endothelium

Enhanced fluid drainage to lymph nodes

Enhanced entrance of IgG, complement, and cells into tissues

Metabolite mobilization

CXCL8/IL-8 Chemotactic factor that attracts T-cells, basophils, and
polymorphonuclear neutrophils to the infection site

Degranulates, mobilizes, and activates polymorphonuclear neutrophils

IL-12 Triggers the activation of natural killer cells

Stimulates the development of CD4+ T cells into T-helper 1 cells

IL-23 Stimulates the generation of interferon gamma and T-helper 17 memory
T-cell proliferation

CCL2/monocyte
chemotactic protein-1

Attracts T-cells, monocytes, basophils, immature dendritic cells and
natural killer cells

CXCL9 Involved in T-cell trafficking

CXCL10 Attracts natural killer cells and T-cells

Signals through CXCR3

M2 IL-4 MHC II IL-1R antagonist Acts as a natural antagonist of IL-1 function

IL-13 CD86 IL-10 Inhibits the production of pro-inflammatory cytokines, including
granulocyte–macrophage colony-stimulating factor, TNF-α, IFN-γ, IL-2,
and IL-3IC + TLR/IL-1R

agonists
CD206

TGF-β1 Inhibits cell growthIL-10
Glucocorticoids

SRs

Anti-inflammatory

Induces switch to IgA production

Insulin-like growth
factor-1

Stimulates fibroblast proliferation and survival

CCL17 Attracts T-cells and macrophages

CCL18 Attracts lymphocytes, immature dendritic cells and monocytes

CCL22 Attracts T-helper 2 cells and other CCR4-expressing cells

CCL24 Attracts T-helper 2 cells
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regarded as one of the most significant cytokines involved in the
upkeep of the M2 phenotype, which suppresses the synthesis of
endogenous NO (Vodovotz, Bogdan, Paik, Xie and Nathan, 1993),
and is crucial for the recruitment of bone marrow mesenchymal

stem cells (MSCs) during tissue regeneration (Fu et al., 2019). By
releasing IL-4, IL-10, IL-13, and TGF-β throughout the
inflammatory process, M2 macrophages counteract the M1 type
macrophage response, control inflammation, and aid in tissue repair

TABLE 2 Studies related to macrophage polarization in periodontitis.

Author & year Article type Polarization
markers

Possible regulatory pathways Results

M1 M2

Lam et al. (2014) Animal study
(mice)

CD86 CD206 — Pg infection causes functional/inflammatory
M1 macrophage infiltration of gingival tissue and
alveolar bone resorption. M1 macrophages
(CD86+), but not M2 macrophages (CD206+), are
the predominant macrophage phenotype in
gingival infiltration

Gonzalez et al. (2015) Animal study
(Rhesus
monkeys)

M1 gene
profiles

M2 gene
profiles

— Age and periodontitis cause a large rise in
macrophages. The M1 phenotype is the most
common rise in older, particularly in tissues with
periodontitis

Yu et al. (2016) Animal study (NOS)-2 CD206 In the setting of periodontitis, a multitude of
signals, such as pro- and anti-inflammatory
cytokines upregulated in the macrophages

themselves, as well as M1-stimulating (IFN-γ)
and M2-stimulating (IL-4) cytokines

upregulated in T-helper cells, may combine to
generate a macrophage phenotype

In the periodontal tissues, the periodontitis group
had a 14-fold increase in M1 type, a 4-fold rise in
M2 type, and an improved M1/M2 ratio (p < 0.01)
in comparison to the control group. Increased
M1 andM2macrophage phenotypes were linked to
periodontal inflammation; the transition from
M2 to M1 may be a major mechanism generating
periodontal tissue damage, including alveolar bone
loss

Viniegra et al. (2018) Animal study
(mice)

TNF-α IL-10 — M2 activation, partly via direct action on
osteoblasts, promotes bone repair during healing of
periodontal lesions. In osteolytic illness,
immunomodulation of macrophages to polarize
them toward the M2 type stimulates bone growth

TGF-β

CD206

Zhou et al. (2019) Human study iNOS CD206 — The periodontitis group had considerably higher
levels of TNF-α, IFN-γ, IL-6, and IL-12, along with
a larger M1/M2 ratio and a greater number of
M1 cells when compared to the control group

Wu et al. (2020b) Human study CD86 CD163 Akt2/JNK1/2/c-Jun Akt2/miR-155–5p/DET1/
c-Jun

Inhibition of Akt2 promotes macrophage
M2 polarization and rescues periodontitis-induced
bone loss

Ahmad, Naqvi,
Valverde and Naqvi

(2023)

Animal (mice)
and Human

study

iNOS ARG1 LncRNA MALAT1/microRNA-30b MALAT1 functions and is expressed
antagonistically with miR-30b, another non-coding
RNA. MALAT1 knockdown favors the
M2 phenotype, while miR-30b overexpression
encourages M2 polarization

STAT1 STAT3

TNF-α CCL2

ARG2 IL-10

(Wu, Wang, Chen,
Wang and Gu, 2023)

Animal study
(mice)

CD86 CD206 PTEN/Akt1/Akt2 M2 polarization is induced in macrophages by
PTEN inhibition, while M1 polarization is
promoted by PTEN overexpression. PTEN
inhibitor therapy prevented alveolar bone
resorption and markedly decreased the local
inflammatory state in mice

(Yang et al., 2023) Animal studu
(mice)

iNOS CD206 IL-37/NLRP3 In the gingival tissues of periodontitis-stricken
mice, IL-37 markedly decreased the number of
iNOS + cells while increasing the number of
CD206+ cells.By preventing the activation of the
NLRP3 inflammasome and facilitating the
polarization of M1/M2 macrophages, IL-37
stopped the advancement of periodontitis

Li et al. (2023a) Animal study
(mice)

iNOS Arg-1 MicoRNA-126/MEKK2 By controlling the MEKK2 signaling pathway,
miR-126 inhibits macrophage M1 polarization and
stops alveolar bone resorption in individuals with
diabetic periodontitis
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and wound healing (Mosser and Edwards, 2008; Wynn and
Vannella, 2016).

3.3 Potential pathways for macrophage
polarization in the etiology of periodontitis

M1 macrophages and Th1/Th17 lymphocytes are more
prevalent than M2 macrophages and Th2/Treg lymphocyte
subsets in active periodontal diseases compared to both of these
cell types (Cavalla and Hernandez, 2022).

Through interactions with other immune cells, it has been
demonstrated that macrophage polarization plays a role in the
etiology of periodontitis: (1) macrophage-PMN-monocyte crosstalk:
during inflammation, M1 macrophages locally recruit PMN to clear
pathogens.Monocytes emerge after PMN recruitment and are activated
as M2 macrophages to remove apoptotic PMN and other debris; (2)
macrophage-lymphocyte crosstalk: M1 type macrophages activated by
LPS, TNF-α, and IFN-γ produce IL-23, which stimulates Th17 cell
infiltration. An inflammatory amplification loop is created when a
Th17 cell releases IL-17 (a pro-inflammatory cytokine that promotes
PMN recruitment and activation), IL-1, IL-6, TNF-α, MMPs, and
RANKL. The decoy receptor osteoprotegerin and RANKL, a
significant pro-osteoclastic mediator, are necessary for the coupling
of bone resorption and creation (Sima and Glogauer, 2013).

4 Relationship between implants and
dysregulated immune responses in the
peri-implant mucosa (PIM)

Animal experiments based on a murine implant model have
shown that the titanium implant itself promoted peri-implant
inflammation and dysregulated mucosal homeostasis. Langerhans
cells, the primary antigen-presenting cells of the oral epithelium,
were hampered in their ability to mature, which was a result of the
implant’s release of titanium ions. Titanium dental implants
disrupted the immunological control of the PIM by impairing
the growth of oral Langerhans cells (Heyman et al., 2018).

In peri-implant tissue biopsies, a reduction in inflammatory cell
density was seen as healing time increased, so it is thought that the
onset and regression of inflammation is a characteristic of PIM
healing (Tomasi et al., 2016). This occurrence might be the PIM’s
transitional immunological state before it returns to a homeostatic
level resembling healthy gingival tissue. However, inflammatory
infiltration of the PIM had been reported in implants that did
not show clinical signs related to inflammation even 6 months after
implant insertion, as found in animal studies (Pongnarisorn et al.,
2007). Determining whether the PIM reaches a “normal” steady
state, as it does in the gingiva, is therefore uncertain, suggesting the
possibility that the PIM develops an alternative immune
homeostasis. Given that the peri-implant tissue is more
“inflamed” than the normal gingiva based on Th17/Treg
homeostasis, this theory could explain why the implant is more
susceptible to infection (Heyman et al., 2022). As mentioned
previously, M1 macrophages and Th1/Th17 lymphocyte subsets
are more prevalent than M2 macrophages and Th2/Treg
lymphocyte subsets in active periodontal diseases (Cavalla and

Hernandez, 2022). Thus, although the role played by macrophage
polarization in the immune dysregulation of peri-implant tissues has
not been fully investigated, it can be hypothesized that its role should
not be underestimated.

Additionally, utilizing a mouse dental implant model,
Heyman et al. discovered that dental implants were able to
promote dysbiosis of the oral microbiota and increase
inflammation and bone loss in the remote teeth in addition to
locally raising inflammation and bone loss. It was not entirely
clear which mechanisms induced the promotion of bone loss at
the remote site. The Th1 immune response, represented by IFN-
γ, may yet be implicated in this process, according to findings of
cytokine production and lymphocyte infiltration in the gingiva
(Heyman et al., 2020). The possibility of M1 macrophages
contributing is also raised by this.

5 Polarization of macrophages in peri-
implantitis

Currently, there are only several studies investigating
macrophage polarization in PI. No consensus has been reached.

It was reported earlier that the number of M1 macrophages
present was similar between the periodontitis and PI groups,
although higher than that of healthy controls (Karatas et al.,
2020). M1 and M2 expression in PI samples did not show any
statistically significant differences (Galarraga-Vinueza, Obreja,
Khoury, et al., 2021a).

However, research from the previous 2 years revealed that PI
had much more M1 macrophages than periodontitis did. In
comparison to periodontitis samples, it was discovered that PI
samples showed a much greater degree of inflammatory cell
infiltration and a significantly higher number of M1 macrophages
(Dionigi et al., 2020; Fretwurst et al., 2020). M2 macrophage counts,
however, did not significantly differ between the two illnesses
(Fretwurst et al., 2020). M1 macrophage levels were also
noticeably greater in advanced PI cases (i.e., radiographic
marginal bone loss >50% of implant length, PI severity
classification (Monje et al., 2019)), and a significant association
between higher M1 macrophage expression and deeper probing
depth was found (Galarraga-Vinueza, Obreja, Ramanauskaite, et al.,
2021b). Table 3 summarizes the literature related to macrophage
polarization in human PI in recent years.

5.1 M1/M2 polarization in regulating
osteoclast and osteoblast functions

It is now believed that the large number of macrophages and
elevated M1 macrophages observed in PI lesions indicate a strong
immune system response to local factors that increase tissue
destruction. The histological data in the literature are consistent
with the progression of PI disease observed in the clinic (Derks et al.,
2016; Fretwurst et al., 2020). The higher expression of
M1 macrophages may be associated with a “destructive”
inflammatory response and significant peri-implant osteolysis in
advanced PI cases (Garlet and Giannobile, 2018; Zhuang et al., 2019;
Fretwurst et al., 2020).
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TABLE 3 Studies related to macrophage polarization in peri-implantitis.

Author & year Sample size Inclusion criteria
of patients with PI

Polarization
markers

Results

Number of patients with
periodontitis

Number of
patients
with PI

M1 M2

Fretwurst et al. (2016) — 12 Severe peri-implant disease with indication for
explantation included radiographic bone loss of more
than two-third of the implant length, suppuration,
mobility, or cortical bone perforations

PGM-11 — M1 macrophages were few overall in the
specimens, and immunohistological analyses
revealed that they concentrated in regions with
higher amounts of the metals titanium and iron

Karatas et al. (2020) 15 15 2017 World Workshop (Berglundh et al., 2018) iNOS — In comparison to periodontitis and PI specimens,
peri-implant mucositis showed reduced iNOS
expression, with no differences found in the
former two

Fretwurst et al. (2020) 7 7 2017 World Workshop (Berglundh et al., 2018) iNOS CD206 M1 macrophage population was significantly
increased in PI samples compared to periodontal
disease samples (p < 0.01); M2 macrophage
polarization showed similar levels in both (p >
0.05). In comparison to periodontitis specimens,
the area and density of iNOS-positive cells in PI
specimens were higher

Dionigi et al. (2020) 40 40 severe peri-implantitis:The subjects in this group
demonstrated ≥1 implant with peri-implant bone
loss ≥3 mm and a peri-implant probing pocket
depth ≥7 mm, with bleeding on probing and/or
suppuration (Carcuac and Berglundh, 2014)

iNOS — The area and density of iNOS-positive cells in PI
specimens were greater than in periodontitis
specimens

Galarraga-Vinueza, Obreja, Ramanauskaite,
et al. (2021a)

— 20 the presence of at least one screw-type (one- or two-
part) titanium implant diagnosed with peri-
implantitis and indicated for surgical peri-implantitis
treatment

CD80 CD206 M1>M2 (p = 0.01)

CD68 CD68

Galarraga-Vinueza, Obreja, Khoury, et al.
(2021b)

— 14 2017 World Workshop (Berglundh et al., 2018) CD80 CD206 M1>M2 (p = 0.16)

aLegend: PGM-1: Glucose phosphate metastase-1. WorldWorkshop (Berglundh et al., 2018): (1) Presence of bleeding and/or suppuration on gentle probing. (2) Increased probing depth compared to previous examinations. (3) Presence of bone loss beyond crestal bone

level changes resulting from initial bone remodeling. Epidemiological studies need to take into account the error of measurements in relation to assessments of bone level changes. Bone loss should be reported using thresholds exceeding the measurement error (mean

0.5 mm).
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Through the secretion of cytokines that activate osteoclast
precursors and encourage Th1 responses, M1 contributes to the
activation of osteoclasts. Concurrently, M1 contributes to the
generation of cytokines that are thought to be important for
bone resorption, including PGE2, IL-1β, TNF-α, IL-6, and IL-12.
PGE2 is the most potent inducer of periodontal bone resorption
among them. It also facilitates a number of detrimental processes in
the alveolar bone, including reducing osteoblast viability and
mineralization and promoting the development of osteoclasts
(Oka et al., 2007; Ruiz-Heiland, Yong, von Bremen and Ruf,
2021). LPS stimulates M1’s expression of IL-1β, and TNF-α and
IL-1β together stimulate M1’s synthesis of IL-1β to support
osteoclast activation and differentiation (Ruiz-Heiland et al.,
2021); TNF-α also causes T cells and B cells to produce RANKL
(Becerra-Ruiz, Guerrero-Velázquez, Martínez-Esquivias, Martínez-
Pérez and Guzmán-Flores, 2022). Furthermore, IL-6 causes
osteoclasts to break down the extracellular matrix and create
MMPs, which eventually results in alveolar bone resorption
(Figueiredo et al., 2020).

As was previously noted, TGF-β is regarded as one of the key
cytokines in the preservation of the M2 phenotype and is crucial for
bone marrow MSC recruitment during tissue healing (Fu et al.,
2019). M2 also expresses high levels of IL-10 (Zhou et al., 2019),
which helps to partially explain its role in the formation of new bone.
The excessive effects of IL-10 and IL-4 on the healing process appear
to be related to the downregulation of proinflammatory cytokines
and MMP as well as the stimulation of osteoblasts. M2 secretes
BMP-2, which speeds up osteogenesis (Liang, Wang,Wu andWang,
2021). To sum up, M2 secretes anti-inflammatory and repair
mediators, including TGF-β, IL-4, IL-10, and vascular endothelial
growth factor, which in turn suppress proinflammatory cytokines
and encourage tissue regeneration and homeostasis restoration. The
M2-induced local microenvironment promotes osseointegration
and angiogenesis (Park, Silvin, Ginhoux and Merad, 2022).

5.2 Titanium particles and foreign body
reactions in peri-implant tissues

The presence of foreign bodies is thought to be strongly
associated with PI, and they cause a dysregulated immune
response in the peri-implant tissues. These foreign bodies are
mainly titanium and dental adhesives (Wilson et al., 2015).
Successive studies have reported cases of post-implant titanium
allergy or peri-implant mucosal reactive lesions, and metallic-like
particles and cells suggestive of allergic reactions, such as eosinophils
and PMN, have been observed histologically. Available data
suggested that titanium particles were present in more than 90%
of PI lesions (Shafizadeh, Amid, Mahmoum and Kadkhodazadeh,
2021). Several in vitro studies have confirmed that microns or
nanoparticles of titanium implant alloys may be cytotoxic and
enhance pro-inflammatory responses (Okuda-Shimazaki, Takaku,
Kanehira, Sonezaki and Taniguchi, 2010; Cai et al., 2011; Irshad
et al., 2013; Pettersson et al., 2017). A significant inflammatory
reaction was seen in soft tissue biopsies near implants when titanium
particles were present (Schlegel, Eppeneder and Wiltfang, 2002;
Olmedo et al., 2012; Wilson et al., 2015). There was considerable
evidence that debris, titanium ions, and particle shedding could lead

to sterile peri-implant inflammation and implant failure
(Revell, 2008).

Histological biopsies of human PI samples revealed that
M1 macrophages accumulated in areas of increased titanium and
iron concentrations (Fretwurst et al., 2016). It has been discovered
that titanium particles cause macrophages to react similarly to LPS,
and the resulting inflammatory response fuels osteoclast-mediated
bone tissue destruction. In vitro and in vivo gene expression,
secretome profiling, fluorescence activated cell sorting (FACS),
and other analyses on macrophages revealed that M1 polarization
occurs in response to titanium particles. However, all of their assays
were performed during the early inflammatory phase. Inflammation
regression was observed in some tissues in vivo after 6–8 weeks,
indicating that M1 and M2 macrophages may be distributed more
dynamically and intricately over time (Eger et al., 2018).

To study the impact of various titanium particle sources on
macrophage polarization, Eger et al. used a mouse calvarial model
(Eger, Sterer, Liron, Kohavi and Gabet, 2017). The findings
demonstrated that there was no noticeable difference in
M2 macrophage numbers between the experimental and control
groups. However, mice exposed to titanium particles produced by
machined (M) or sandblasted and acid-etched (SLA) processes had
considerably more M1 macrophages (Eger et al., 2018).

In vitromacrophage cultures revealed similar results. TNF-α, IL-
1β, and IL-6 mRNA expression in macrophages increased (up to a
3.5-fold rise) when TiO2 particles were added to the culture medium
(Ramenzoni, Fluckiger, Attin and Schmidlin, 2021). Titanium ions
in physiological solutions induced the release of IL-1β via activating
inflammatory vesicles in human macrophages (Pettersson et al.,
2017), and all these cytokine profiles were characteristic of
M1 polarization.

In conclusion, immune dysregulation can be found in PI. The
most common phenomenon is the polarization of macrophages, but
related studies are still lacking. The difficulty of creating an animal
model is a significant factor in the paucity of data regarding the
etiology of PI. PI lesion tissue is not easily available may also be
responsible for it. In addition, Regarding the indicators of M1/
M2 polarization, there is currently no definite agreement in the
macrophage polarization literature (Fretwurst et al., 2020). Research
is still needed in the area of choosing more precise molecular
markers to distinguish M1/M2 macrophages (Galarraga-Vinueza,
Obreja, Ramanauskaite, et al., 2021a).

6 Immunoregulatory therapy for peri-
implantitis linked to polarized
macrophages

One should not undervalue the role that macrophage
polarization plays in the clinical management of periodontitis
and PI. It is currently thought that the major goal of macrophage
polarization therapy is to get macrophages to polarize toward the
M2 macrophages in order to reduce inflammation, encourage tissue
repair, and produce anti-inflammatory benefits (Sun et al., 2021;
Whitaker, Hernaez-Estrada, Hernandez, Santos-Vizcaino and
Spiller, 2021). Promoting macrophage polarization from M1-type
to M2-type by immunomodulatory therapy to promote bone
regeneration has been successfully attempted in diabetic fracture
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healing models, and in bone-related diseases including osteoarthritis
(OA), osteoporosis (OP), and bone defects (Whitaker et al., 2021;
Wang et al., 2023). Macrophage polarization immunomodulatory
therapy for periodontitis is currently a hot topic, but those therapies
regarding PI are currently rare.

The current literature on regulating macrophage polarization as
a therapeutic target for periodontal disease can be summarized as
follows: (1) anti-cytokine therapy: when anti-TNF-α therapy was
used in combination with mechanical debridement, periodontal
parameters showed a tendency of improvement (Pers, Saraux,
Pierre and Youinou, 2008; Mayer, Balbir-Gurman and Machtei,
2009; Ortiz et al., 2009). Therapeutic blocking of IL-1 receptors
dramatically reduced local inflammatory cell infiltration, osteoclast
activation, and bone resorption in an animal model of periodontitis
(Assuma et al., 1998; Delima et al., 2001); (2) pharmacological
treatment: when used systemically, rosiglitazone inhibited bone
resorption during inflammation, increased bone regeneration
during the repair of periodontitis, and polarized macrophages
toward the M2 macrophages (Di Paola et al., 2006; Hassumi
et al., 2009; Viniegra et al., 2018). Other drugs that affect
macrophage polarization include PPARγ agonists
(thiazolidinediones) (Charo, 2007; Stienstra et al., 2008; Lu et al.,
2011), zoledronic acid, statins (Fujita et al., 2010), trabectedin
(Germano et al., 2010); (3) cell therapy: isolated polarized
M2 macrophages had the potential to initiate the regression of
periodontal disease inflammation (Sima and Glogauer, 2013); (4)
gene knockout: It has been shown that local injection of AKT
inhibitors decreased the M1/M2 ratio and reduced alveolar bone
resorption in mice with periodontitis, and that in vitro knockdown
of Akt2 hindered M1 polarization and enhanced M2 polarization

(Zhuang et al., 2019; Wu et al., 2020). The polarization of
M1 macrophages was also decreased by TET1 knockdown
because it prevented the NF-κB signaling pathway from being
activated (Huang, Tian, Li and Xu, 2019).

Surface modification of titanium may influence macrophage
polarization (Figure 2). Successfully synthesising IL-23R non-
competitive antagonist nanocoatings on titanium surfaces,
Pizarek et al. discovered that the coatings inhibited the IL-23/
17A pathway, which is a source of inflammation, and polarized
macrophages to the M2 phenotype in vitro cellular studies (Pizarek,
Fischer and Aparicio, 2023). In a recent study, it was discovered that
by modifying macrophage polarization, a surface modification
technique using peptide coatings might reduce chronic inflammation
and further increase osseointegration around the implant material (Bai
et al., 2020). By interfering with integrin-α2β1 and integrin-αvβ3,
peptide-modified titanium implants might successfully reduce peri-
implant inflammation in wear particle models and induce macrophage
polarization to a pro-healingM2 phenotype.With the use of tetravalent
3,4-dihydroxy-L-phenylalanine (DOPA) and Arg-Gly-Asp (RGD)
sequences, this catecholic peptide with mussel-inspired structure was
created. The mussel adhesion mechanism allowed for the easy
apposition of this peptide to the surface of medical titanium
materials, enhancing osteoblast adherence and fostering osteogenesis
of titanium implants even under inflammatory circumstances (Guo
et al., 2022).

In addition, MSC therapy has great potential in preventing and
treating peri-implantitis. Li et al. used a hydrogel loaded with
gingival-derived MSCs and injected it into the peri-implant area
of a rat model of early implant placement and found that it was
effective in improving epithelial closure around the implant and

FIGURE 2
Surfacemodification technique of titanium related toMacrophage polarization in periodontitis and peri-implantitis. Surfacemodification of titanium
may influencemacrophage polarization. Bymodifyingmacrophage polarization, surfacemodification techniquemight reduce chronic inflammation and
further increase osseointegration around the implant material.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Li et al. 10.3389/fbioe.2024.1291880

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1291880


promoting M2 macrophage polarization. This would aid in
preventing the growth of peri-implantitis (Li et al., 2023).
However, the precise molecular processes and signaling pathways
of interactions between epithelial cells and macrophages have not
yet been clarified.

Nevertheless, the majority of inflammatory disease treatments,
including those for periodontitis, are palliative and only offer
temporary relief. The idea of immunomodulatory nanosystems
(IMNs) may be able to solve this issue (Ahamad et al., 2021).
The main IMNs for macrophage polarization-associated
periodontitis include nanomaterials, exosomes, and periodontal
drug retardants (Sun et al., 2021). Table 4 summarizes the
immunomodulatory treatment strategies for macrophage
polarization-associated periodontitis in recent years. Possible
therapeutic strategies related to macrophage polarization in PI
are less studied, but the current research in the periodontal field
may provide some new directions for future research.

7 Conclusion

Animal experiments based on a murine implant model have
shown that the titanium implant itself promoted peri-implant
inflammation and dysregulated mucosal homeostasis. Titanium
ions that were released from the implant acted as a mediator in
this process. It is currently thought that the onset and resolution of

inflammation is a characteristic of PIM healing, but it is unclear
whether the PIM achieves a “normal” stable state as in the gingiva,
suggesting the possibility that the PIM develops alternative immune
homeostasis. The available data indicate that macrophage
polarization plays a significant role in the dysregulation of peri-
implant immunity, despite the fact that the mechanisms behind this
dysregulation are not fully understood.

Macrophage polarization has a complex and extensive variety of
roles, with M2 macrophages primarily involved in tissue homeostasis,
suppression and regression of inflammation, and tissue repair, and
M1 macrophages promoting bacterial death and increasing
inflammation. Although studies related to macrophage polarization
in PI are not sufficiently thorough, the available literature suggests that
the higher expression of M1 macrophages in PI compared to
periodontitis may be associated with a “destructive” inflammatory
response and significant peri-implant osteolysis in patients diagnosed
with advanced PI. Furthermore, macrophage polarization toward the
M1 phenotype may be caused by micron- or nano-sized particles of
typical titanium implant alloys.

The ability to control immune homeostasis has been tentatively
shown in some studies to be a promising therapeutic strategy. This is
accomplished by carefully examining the mechanisms of action of
various cytokines and mediators that regulate macrophage
polarization and by controlling the ratio of macrophages with
different polarization phenotypes to achieve a good balance
between immune defense and tissue homeostasis.

TABLE 4 Materials used in Immunomodulatory therapies related to Macrophage polarization in periodontitis.

Methods Author & year Materials

Nanomaterials Ni et al. (2019) 45 nm gold nanoparticles (AuNPs)

Garapaty and Champion (2019) ligand presentation on rods

Wu et al. (2020a) modified zirconia surface

Sun et al. (2021b) cerium@Ce6 multifunctional nanocomposite

Wang et al. (2021) antioxidant drug quercetin onto nano-octahedral ceria

Yang et al. (2021) micro/nanomesh

Ming et al. (2023) sericin-hydroxyapatite nanoparticles (Se-nHA NPs)

Xiao et al. (2023) liposome-encapsulated indocyanine green (ICG) and rapamycin drug-delivery
nanoparticle (ICG-rapamycin)

Wang et al. (2023a) AuAg-procyanidins (AuAg-PC)

Huangfu et al. (2023) resveratrol (RES)-20(S)-protopanaxadiol (PPD) (RES@PPD NPs)

Chato-Astrain et al. (2023) dexamethasone-loaded titanium micro particles (TiP) (Dex-TiP)

Exosomes Wang et al. (2019) exosomes secretion of periodontal ligament cells (PDLs)

Curtale, Rubino and Locati (2019) MicroRNAs: Mir-146a, Mir-125a and Mir-145–5p

Shen et al. (2020) dPSC-ExO-chitosan hydrogel (dPSC-ExO/CS)

Nakao et al. (2021) exosomes secretion of gingival tissue-derived MSCs

He, Zhang and Lin (2021) microrNA-125A-5P

Luo et al. (2023) CXCR4-miR126-Exo

Deng et al. (2023) Bio-GelMA@Bio-EX hydrogels-Exo

Drug retardants Zhuang et al. (2019) controlled-release microparticles (MPS)
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However, the need for an experimental model and an
unambiguous agreement on the markers to distinguish M1 from
M2 polarization, which permits careful examination of this crucial
issue, still exists. For further research, more PI lesion tissue needs to
be gathered. The treatment options for PI macrophage polarization
are few and will likely require more research in the future.
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