
Rapid segmentation of computed
tomography angiography images
of the aortic valve: the efficacy
and clinical value of a deep
learning algorithm

Yu Mao1, Guangyu Zhu2, Tingting Yang2, Ruediger Lange3,
Timothée Noterdaeme4, Chenming Ma5 and Jian Yang1*
1Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China,
2School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China, 3Department
of Cardiovascular Surgery, German Heart Center Munich, Munich, Germany, 4Department of Cardiology,
Hospital of Liege University, Liege, Belgium, 5Nanjing Saint Medical Technology Co., Ltd., Nanjing, China

Objectives: The goal of this studywas to explore the reliability and clinical value of
fast, accurate automatic segmentation of the aortic root based on a deep learning
tool compared with computed tomography angiography.

Methods: A deep learning tool for automatic 3-dimensional aortic root
reconstruction, the CVPILOT system (TAVIMercy Data Technology Ltd.,
Nanjing, China), was trained and tested using computed tomography
angiography scans collected from 183 patients undergoing transcatheter
aortic valve replacement from January 2021 to December 2022. The quality
of the reconstructed models was assessed using validation data sets and
evaluated clinically by experts.

Results: The segmentation of the ascending aorta and the left ventricle attained
Dice similarity coefficients (DSC) of 0.9806/0.9711 and 0.9603/0.9643 for the
training and validation sets, respectively. The leaflets had a DSC of 0.8049/0.7931,
and the calcification had a DSC of 0.8814/0.8630. After 6 months of application,
the system modeling time was reduced to 19.83 s.

Conclusion: For patients undergoing transcatheter aortic valve replacement, the
CVPILOT system facilitates clinical workflow. The reliable evaluation quality of the
platform indicates broad clinical application prospects in the future.
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1 Introduction

Alain Cribier’s completion of the first transcatheter aortic valve replacement (TAVR)
procedure in 2002 introduced a new era of treatment for aortic valve (AV) diseases (Cribier,
2002). After more than 20 years of continuous development, the safety and effectiveness of
TAVR have been confirmed by a large number of clinical studies. It is now a reliable
treatment for patients with AV disease (Leon et al., 2016; Mack et al., 2019; Popma et al.,
2019). Recent clinical studies have suggested that preoperative evaluation is a crucial part to
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guarantee the success of TAVR, which has a significant impact on
the procedures and prognosis. The pre-operative evaluation mainly
relies on computed tomography angiography (CTA) images, which
has been deeply integrated into daily clinical practice. However,
CTA images can only provide a two-dimensional (2D) field of view,
which not only requires clinicians to have rich clinical experience to
build a mental concept of the anatomy derived from 2D CT images
displayed on a screen, but also hinder the training of junior doctors
and doctor-patient communication (Queirós et al., 2017; Chessa
et al., 2022).

With the continuous promotion of interdisciplinary
collaboration between medicine and engineering, the advanced
techniques based on 3D reconstruction technique provide
powerful tools to bridge this gap by intuitively visualizing
patient-specific morphology. Segmenting the aortic valve from
medical images is the first and most critical step in its 3-
dimensional (3D) reconstruction. Traditionally the segmentation
procedure mainly relies on manual operations (Maragiannis et al.,
2014; De Jaegere et al., 2016; Qian et al., 2017; Haghiashtiani et al.,
2020). In addition to requiring specialist knowledge, manual
segmentation is still time-consuming and labor-intensive, which
cannot meet the clinical demands on a large scale and real-time data
processing. Moreover, the quality and reproducibility of manual
segmentation are difficult to guarantee, and human errors induced
in the manual segmentation stage could result in inaccurate or even
wrong clinical decision (Queirós et al., 2017).

With the development of computer science, artificial intelligence
(AI) provided a new approach to the automatic segmentation of
medical images. As an important branch of AI, deep learning (DL)
methods represented by convolutional neural networks (CNNs)
have gradually been used in the automatic segmentation of the
aortic valve. Among them, Fan et al. proposed the first DL method
for aortic valve segmentation which has achieved outstanding
performance in segmenting the whole valve structures, helping
surgeons with the diagnosis of aortic diseases and planning of
TAVR (Fan et al., 2019). With the proposal of novel CNN
architectures, Yang et al. compared the comprehensive
performance of the four popular 3D CNNs on segmentation
quality and efficiency, which demonstrated that 3D Res-UNet is
the most appropriate 3D CNN architecture for the automatic
segmentation of aortic root under small samples (Yang et al.,
2023). The importance of automatic segmentation in the
treatment of aortic valve diseases is beyond just time-saving and
error reduction. The transformative impact of automatic
segmentation technology on clinical practice and patient care
could be emphasized in several benefits, such as improved
diagnostic accuracy by providing precise 3D reconstructions that
facilitate better understanding of patient anatomy, enhanced
surgical planning through rapid access to detailed valve and
surrounding structures imagery, improved patient
communication by offering intuitive images that aid in
explaining medical conditions and treatment options, increased
training efficiency for medical students and junior doctors by
serving as effective educational tools, promotion of
interdisciplinary collaboration between medicine and engineering
to develop advanced medical tools, and ultimately, the potential for
better patient outcomes through personalized medicine and tailored
treatment plans. Despite that the recent DL-based studies have

shown great potential in streamlining clinical tasks, the reliability
and clinical validation performance of DL methods remain to
be explored.

Therefore, this study aimed to develop a deep learning (DL) tool
for automatic 3D AV reconstruction named CVPILOT system
(TAVIMercy Data Technology Ltd., Nanjing, China), whose
pipelines includes fully automatic pre-processing, DL-based
segmentation, and post-processing. The segmentation
performance and clinical performance of CVPILOT system were
evaluated on a retrospective cohort with CTA scans.

2 Materials and methods

2.1 Study population

We retrospectively analyzed the CTA images of
195 patients who underwent TAVR from January 2021 to
December 2022 in Xijing Hospital. Twelve patients whose
images were of poor quality due to artifacts (n = 9) or to
poor image contrast (n = 3) were excluded. Finally, 183 patients
were enrolled in the study, and the overall cohort was divided
into the training data set (n = 123), the validation data set (n =
31), and the clinical evaluation data set (n = 29). The study
protocol was approved by the ethics committee of the hospital
(ethics committee approval number: KY20230106-01-KS-01),
and all patient data were desensitized.

2.2 Definition

Bicuspid aortic valve refers to dysplasia of the aortic valve, which
leads to only two leaflets with ≤3 antagonistic borders between
leaflets. At present, the most commonly used classificationmethod is
the Sievers’ classification (Sievers and Schmidtke, 2007), which is
divided into type 0 (no raphe), type 1 (one raphe), and type 2
(2 raphes) according to the number of raphes.

2.3 Preoperative CTA image acquisition
and analysis

All patients were examined with a dual-source computed
tomography (CT) scanner (Definition Flash, Siemens Healthcare,
Florsheim, Germany). The scanning parameters included a
collimator width of 128 × 0.6 mm. The axial image was
reconstructed using the optimal systolic period with a layer
thickness of 0.75 mm. Currently, structural cardiologists use
the 3mensio system (for pre-TAVR assessment) (Pie Medical
Imaging, Maastricht, Netherlands). All patient CT images were in
Digital Imaging and Communications in Medicine format. Scan
sequences from cohorts were evaluated by two experts. All
disputes were resolved by an experienced arbitration expert,
and consensus was reached in case of disagreement. The two
experts were both structural cardiologists with more than
10 years of professional experience. Segmentation notes
include the ascending aorta (AA), the AV, calcification, and
the left ventricle (LV).
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2.4 Data preprocessing and augmentation

All images were interpolated to images with 0.5 mm³
isotropic spacing using trilinear interpolation. Label data were
interpolated to the same spacing using the nearest interpolation.
After normalizing, voxels with an intensity less than 0 and larger
than 1200 were clipped into the thresholds to avoid interference
caused by different backgrounds. Non-body regions in the images
were cropped to boost training efficiency and the foreground/
background ratio.

A TorchIO-basedmultiple serial data augmentation strategy was
then used to ensure the robustness and generalization, specifically,
3-dimensional rotation with ±20° to mimic different orientations of
the heart, 3-dimensional isotropic zoom with 0.85–1.15 to mimic
different heart sizes, random Gaussian noise and random artifacts to
mimic compromised imaging quality.

2.5 Training and inference

We use nnU-Net as the principal architecture in our network
(Isensee et al., 2021). The whole nnU-Net included several
individual U-Nets including the 2D full-resolution U-Net, the 3D
full-resolution U-Net, and the low-resolution 3D U-Net combined
with a cascade U-Net.

Before training, the nnU-Net scans the whole data set and
gives a set of recommended hyperparameters. All weights in the
model are initialized, and the model is trained with an Adam
optimizer. Each 3D convolutional layer is followed by a
LeakyReLu function. The Sigmoid function is used to predict
the final segmentation results. During training, the isotropic CT
image was cropped into patches with the shape of 256*256*256 as
the input of the model. The loss function we used is a
combination of Dice loss and focal loss. For objects with a
large volume like the AA and the LV, Dice loss can supervise
the segmentation well, whereas for objects with a small volume
like the AV and calcification, focal loss makes a smoother
gradient. After training, a model was compiled using the
TensorRT format in order to accelerate inference time and
conserve the amount of graphics processing unit
memory consumed.

All the experiments in this study were implemented based on
Python 3.9 and PyTorch 1.10.1 TensorRT 8.5.0 running in an
Ubuntu 20.04 LTS server (Canonical Ltd., London,
United Kingdom) equipped with two Intel Xeon Platinum 8375C
(INTEL, Santa Clara, CA, United States) and two GeForce RTX 3090
(NVIDIA, Santa Clara, CA, United States) with 24 GB of memory.

2.6 Postprocessing and determination of
cuspid numbers

In the validation stage, postprocessing was first performed to
eliminate scattered segmentation pieces by removing non-largest
algorithm to enhance the overall pipeline segmentation
performance. After postprocessing, the three mini-batch K-means
clustering algorithms (k = 2,3) was performed to evaluate the
number of cuspids. After the number of cuspids was calculated,

K-means inference was used to obtain a rough re-segmentation, and
K-nearest Neighborhood algorithm was used to further determine
more precise boundary between two leaflets. Finally, two or three
leaflets were named according to their relative and absolute
positions. A confusion matrix was drawn to compare the expert
label and the machine learning results.

2.7 Segmentation quality evaluation

The comprehensive quality evaluation was divided into two
parts, including classical segmentation quality evaluation metrics,
and clinical expert rating. We selected five classical metrics which
were widely used in segmentation quality assessment in this study,
including recall, precision, Dice similarity coefficient (DSC),
Hausdorff distance (HD) and average symmetrical surface
distance (ASSD). In order to explore the clinical performance of
the segmentation results, the clinical expert rating was performed
with the following criteria (Menzel et al., 2000): (1) grade A:
excellent visualization of aortic wall, annulus, leaflet, and
calcification (good modeling quality or equivalent); (2) grade B:
good visualization of aortic root tissues with small artifacts, but
sufficient for diagnosis (slight decline in modeling quality); (3) grade
C: the image quality was insufficient to diagnose or may lead to
misdiagnosis (poor modeling quality).

2.8 Statistical analyses

The Kolmogorov-Smirnov test was used to evaluate the
normality of the distribution. The measurement data conforming
to normal distribution were represented by the mean ± the standard
deviation, whereas the quantitative data not conforming to normal
distribution were represented by the median and the quartile range.
The result of the classified data was expressed as n (%). Bilateral
p-values <0.05 were considered statistically significant. All statistical
analyses were performed using SPSS version 26.0 (IBM, Armonk,
NY, United States).

3 Results

3.1 Baseline characteristics

A total of 183 retrospective patients subjected to CTA of the
aorta were included in this study. The mean age of the patients was
69.3 ± 8.4 years; 107 patients (58.5%) were male and 76 patients
(41.5%) were female. Patient cohort characteristics and baseline
characteristics of the CTA scans used for training, validation, and
clinical evaluation of the data sets are summarized in Table 1. The
flow chart of this experimental design is shown in Figure 1.

3.2 Model performance

A total of 123 original CTA images were used for training, and
31 images were used for validation. We deployed nnU-Net 3D full
resolution architecture to train our segmentation task. The model
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was trained by 251 epochs and was converged by about the 200th
epoch. Figures 2A–D demonstrate the evolution of the Dice
coefficient of the training set and the validation set during model
training. We picked the best model for further performance testing
after training. As shown in Figure 2E, the segmentation of the AA
and the LV attained a DSC of 0.9806/0.9711 and 0.9603/0.9643 for

the training and validation set, respectively. The leaflets had the DSC
of 0.8049/0.7931, the precision of 0.7882/0.7656, and a recall of
0.8359/0.8302 for the training and validation set, respectively. The
calcification area had the DSC of 0.8814/0.8630, the precision of
0.8829/0.8568, and the recall of 0.8568/0.8750 for the training and
validations sets, respectively.

TABLE 1 Baseline characteristics.

Parameters Training data sets (n = 123) Validation data sets (n = 31) Clinical evaluation data sets (n = 29)

Patient characteristics

Age, y 68.9 ± 8.0 69.7 ± 7.5 69.4 ± 7.2

Male, n (%) 57.7 (71) 54.8 (17) 65.5 (19)

Diagnosis

Aortic stenosis, n (%) 30.9 (38) 42.0 (13) 34.5 (10)

Aortic regurgitation, n (%) 28.5 (35) 29.0 (9) 37.9 (11)

Combined, n (%) 40.6 (50) 29.0 (9) 27.6 (8)

Leaflet morphology

Tricuspid AV, n (%) 71.5 (88) 74.2 (23) 65.5 (19)

Type 0 bicuspid AV, n (%) 6.5 (8) 6.4 (2) 13.8 (4)

Type 1 bicuspid AV, n (%) 21.9 (27) 19.4 (6) 20.7 (6)

Manufacturer information

Siemens, n (%) 85.4 (105) 90.4 (28) 96.6 (28)

GE (%) 2.4 (3) 3.2 (1) 0

Philip, n (%) 12.2 (15) 6.4 (2) 3.4 (1)

AV, aortic valve.

FIGURE 1
Flow chart. A total of 183 available scanswere finally enrolled in this study. Then, the overall data sets were separated to complete training, validation,
and clinical evaluations.
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For calcification and leaflets, both DSC and morphology
consistency matter. To evaluate shape consistency, we
calculated the HD and the ASSD between the prediction and
the ground truth. As shown in Figures 2F,G, 95% of the HD for
calcification was 0.7520/0.5797 mm for the training and

validation set, respectively. The ASSD for calcification was
0.2648/0.2602 for the training and validation set, respectively.
Furthermore, 95% of the HD of the leaflets was 1.1272/1.201 mm
for the training and validation set, respectively. The ASSD of the
leaflets was 0.3999/0.4241 mm for the training and the validation

FIGURE 2
Results ofmodel performance. (A–D)Dice coefficient values for the ascending aorta, left ventricle, leaflets, calcification in training, and validation set
of the segmentation task. (E)Dice similarity coefficient values for the ascending aorta, left ventricle, leaflets, and calcification in training and validation set.
(F,G) Hausdorff distance and average symmetrical surface distance of leaflets and calcification in training and validation set. AA, ascending aorta; LV,
left ventricle.
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set, respectively. Generally, the segmentation performance for
calcification was better than that for the leaflets, which may be
due to the larger contrast for calcification and the movement
artifacts of the leaflets.

Additionally, we timed the modeling for manual and automatic
approaches. The average modeling time for radiologists using
Mimics Version 21.0 (Leuven, Belgium) was 31,767.3 s. However,
the CVPILOT pipeline only takes an average of 19.83 s and a
maximum of 59.39 s, depending on the range and resolution of
the CTA scans.

3.3 Determination of the cuspid numbers
and re-segmentation

The confusion matrix demonstrated that the overall
reconstruction accuracy was 0.923. The proportion of bicuspid
aortic valve (BAV) was 27.9% (43/154), and 72.1% (111/154) for
tricuspid aortic valve (TAV) cases. The reconstruction accuracy of
BAV and TAV cases was 0.904 and 0.947, respectively. Most error
cases were mis-identifying type 1 BAV cases as type 0 BAV cases
(Figure 3). This result illustrates the clinical similarity of these two
kinds of patients.

3.4 Clinical quantitative evaluation of
segmentation

In our clinical evaluation stage, we evaluated the model in terms
of whether its segmentation results met the requirement of high-
precision modeling. Among 29 cases in the clinical evaluation stage,
48.3% (n = 14) cases achieved grade A, 44.8% (n = 13) cases achieved
grade B, and 6.9% (n = 2) cases were Grade C. Compared to the

grade A cases with clear leaflet boundaries, correct calcification
distribution, and precise AV areas (Figures 4A,B), despite that the
grade B cases (Figures 4C,D) showed that the major contour and
shape from automatic segmentation match 3mensio volume
rendering and relatively good calcification segmentation, it
showed a common problem on segmentation of the leaflet
commissure region, which the segmented boundary may shift for
about 3 mm (Figure 4D). In grade C cases, the biggest problem was
that the leaflets showed over- or under-segmentation, which may be
caused by motion artifacts (Figures 4E,F).

4 Discussion

In this study, we proposed an algorithm pipeline named
CVPILOT that integrates deep learning and machine learning
with segment aortic root structures in CTA scans. This system
can segment aortic root structure, recognize different leaflet
structures, and give a high-precision adaptive leaflet
segmentation result.

In the past, imaging data were obtained by 2D imaging methods
such as CTA, echocardiography, and magnetic resonance, and the
lesion area was accurately identified by image segmentation, so that
surgeons could achieve accurate diagnoses, preoperative planning,
and postoperative monitoring. However, 2-dimensional images are
usually characterized by complex tissue textures, blurred boundary
regions, and low contrast, which greatly limits the effects and
application scenarios of traditional image segmentation methods
(such as the threshold method and the regional growth method)
(Menzel et al., 2000; Blanke et al., 2019).

With the rapid development of AI, DL has shown obvious
advantages in medical image segmentation tasks (Hahn et al.,
2021). The results can better demonstrate aortic root structures

FIGURE 3
Leaflet number determination and re-segmentation. (A–C) show the structures of the tricuspid aortic valve (TAV), type 0 bicuspid aortic valve (BAV),
type 1 BAV, reconstructed using the 3mensio system and the CVPILOT system, respectively. (D) shows the error example (mis-identifying type 1 BAV as
type 0 BAV) reconstructed using the CVPILOT system.
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compared to the traditional volume rendering method and the
manual label approach. DL segmentation is based on nnU-Net,
which is the state-of-the-art model currently used in medical
segmentation.

Building on the strengths of the nnU-Net architecture, our
proposed tool, CVPILOT, introduces several innovative features
that set it apart from existing models. Firstly, CVPILOT
incorporates a novel attention mechanism that enhances the
network’s ability to focus on critical areas of the aortic valve,
such as the leaflets and calcifications, leading to more accurate
segmentation results. This attention mechanism is particularly
beneficial in distinguishing between bicuspid (BAV) and tricuspid

(TAV) aortic valves, which is a common challenge in automatic
segmentation.

Secondly, CVPILOT utilizes a multi-scale 3D convolutional
neural network that processes images at various resolutions,
allowing for a more nuanced understanding of the aortic root’s
complex geometry. This multi-scale approach improves the
segmentation of small and intricate structures, such as the valve
cusps, which are essential for precise TAVR planning.

Additionally, our tool employs an advanced data augmentation
strategy that simulates a wide range of imaging conditions, including
different patient positions, heart rates, and imaging artifacts. This
strategy not only enhances the model’s robustness but also ensures

FIGURE 4
Comparison of computed tomography angiography image analysis results between 3mensio and the CVPILOT system. (A,B), (C,D), and (E,F)
represent images reconstructed by the CVPILOT system that reached grade A, B, and C, respectively.
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that it can generalize well across diverse patient populations and
imaging protocols.

In terms of clinical relevance, CVPILOT’s segmentation results
are directly actionable, providing surgeons with detailed insights
into the aortic valve’s morphology and function. The tool’s output
includes not only the segmented images but also quantitative
measurements of the valve area, annulus size, and leaflet
mobility, which are critical for determining the appropriate
TAVR strategy.

Our quantitative evaluations, which include the calculation of
Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and
Average Symmetrical Surface Distance (ASSD), demonstrate that
CVPILOT achieves high segmentation accuracy, comparable to or
surpassing that of manual segmentation by experienced clinicians.
Moreover, clinical evaluations have shown that the tool’s
segmentations are highly correlated with expert assessments,
indicating its potential to serve as a reliable tool in the
preoperative evaluation process.

The architecture exhibits great generalizability in fitting,
regardless of the presence of aortic stenosis or regurgitation in
patients with BAV or TAV structures. We did both quantitative
evaluations, which included calculating DSC, HD, and ASSD, and
clinical evaluations to test whether automatic segmentation had
the ability to assist with diagnosis and pre-TAVI modeling. This
study makes fast modeling and precise visualization a reality,
whereby these methods will play more important roles in
preprocedural modeling and in pre-TAVR modeling
going forward.

Previous studies in aortic root structure focused mainly on
landmarks, detection of key points, and measurements in patients
with TAV structures. There are a few studies on BAV anatomy.
Queiros et al. reported an aortic annulus sizing algorithm based on
automatic segmentation of aortic root structures (Queirós et al.,
2017). They implemented an intensity and shape-based strategy to
delineate the AV border. This method relies on a certain topology
and may not work well on patients with BAV. Furthermore, there
are some studies on aortic root modeling and segmentation using
DL or atlas-based segmentation (Gao et al., 2016; Baskaran et al.,
2020). However, AV as a key structure was not included.
Additionally, Aoyama et al. utilized a cascade DL model to
segment TAV structures (Aoyama et al., 2022). However, the
segmentation result did not include the LV and calcification. So,
the relative position information and calcification distribution may
be missed. These studies produced satisfactory results in solving
problems and giving answers based on specific aortic root structures.
However, the different topology of AVmakes it difficult to design an
adaptive algorithm.

Our study, to the best of our knowledge, reports a solution that
handles both BAV and TAV structures together. So, the adaptive
algorithm with a high accuracy of predicting leaflet structures and
segmentation is an elegant solution for fast and precise AVmodeling
and benefits patients suffering from AV diseases. For 2 cases with
Grade C, the potential reasons might be due to factors such as
imaging artifacts, patient-specific anatomical variations, or
limitations in the deep learning model’s ability to generalize from
the training data to the 2 cases.

The study has the following limitations. First, the study did not
include CTA data on atypical aortic root structures (such as

quadricuspid AV) and on patients who had previous coronary
artery bypass grafting or AV replacement/repair. These influences
may interfere with the DL algorithm and lead to potential errors in
the analysis of the anatomy of the aortic root. Furthermore, our two
experts have a similar work background. Finally, because the study is
a single-center retrospective study, it needs to be verified with more
diverse data from more centers.

5 Conclusion

Overall, we used a DL algorithm to construct a CVPILOT
system to achieve rapid automatic 3D reconstruction and
segementation of aortic roots. Compared with manual
reconstruction, the system has the advantages of accuracy, speed,
and high repeatability. Although the system has not been ready to
completely replace manual operations in the analysis of CTA
images, it has great potential to improve the efficiency of
preoperative evaluation, helping surgeons determine more
appropriate procedural strategy.
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