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Dynamic assessment of cerebral blood flow (CBF) is crucial for guiding
personalized management and treatment strategies, and improving the
prognosis of stroke. However, a safe, reliable, and effective method for
dynamic CBF evaluation is currently lacking in clinical practice. In this study,
we developed a CBF monitoring system utilizing electromagnetic coupling
sensing (ECS). This system detects variations in brain conductivity and
dielectric constant by identifying the resonant frequency (RF) in an equivalent
circuit containing both magnetic induction and electrical coupling. We evaluated
the performance of the system using a self-made physical model of blood vessel
pulsation to test pulsatile CBF. Additionally, we recruited 29 healthy volunteers to
monitor cerebral oxygen (CO), cerebral blood flow velocity (CBFV) data and RF
data before and after caffeine consumption. We analyzed RF and CBFV trends
during immediate responses to abnormal intracranial blood supply, induced by
changes in vascular stiffness, and compared themwith CO data. Furthermore, we
explored amethod of dynamically assessing the overall level of CBF by leveraging
image feature analysis. Experimental testing substantiates that this system
provides a detection range and depth enhanced by three to four times
compared to conventional electromagnetic detection techniques, thereby
comprehensively covering the principal intracranial blood supply areas. And
the system effectively captures CBF responses under different intravascular
pressure stimulations. In healthy volunteers, as cerebral vascular stiffness
increases and CO decreases due to caffeine intake, the RF pulsation
amplitude diminishes progressively. Upon extraction and selection of image
features, widely used machine learning algorithms exhibit commendable
performance in classifying overall CBF levels. These results highlight that our
proposed methodology, predicated on ECS and image feature analysis, enables
the capture of immediate responses of abnormal intracranial blood supply
triggered by alterations in vascular stiffness. Moreover, it provides an accurate
diagnosis of the overall CBF level under varying physiological conditions.
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1 Introduction

Stroke represents a significant global health threat, as evidenced
by its high mortality and morbidity rates (Feigin et al., 2022).
Numerous clinical guidelines recommend the control of vascular
risk factors as the primary strategy for mitigating the impact of
stroke (Suzuki et al., 2021). Clinical studies have shown that the
immediate implementation of systemic thrombolysis and
mechanical thrombectomy can significantly improve functional
outcomes in cases of acute ischemic stroke (Fan et al., 2022;
Nogueira et al., 2022; Yang et al., 2022). The primary goal of
these interventions is to restore or preserve physiological blood
flow in the brain. CBF can be measured both dynamically and
statically. However, due to individual variations in pathogenic
influences, extent of tissue damage, vascular resistance, and
elasticity, the evaluation standards and range for optimal cerebral
blood perfusion levels must be dynamically adjusted (Nie et al.,
2023). As a result, dynamic CBF assessment is of greater clinical
significance for guiding personalized management and treatment
strategies, and improving the prognosis of stroke.

Currently, there is a lack of safe, reliable, and effective dynamic
evaluation methods for CBF in clinical practice. CBF assessment
primarily relies on computed tomography perfusion imaging (CTP)
and diffusion-weighted imaging (DWI) (Martin et al., 2017).
However, these imaging devices are typically bulky, which
hinders bedside monitoring capabilities. Additionally, ischemic
stroke (IS) patients in intensive care units may face challenges
such as limited venous access and the risk of tracheal catheter
displacement during intra-hospital transport to the imaging suite.
Although clinical studies have demonstrated the potential of
portable MRI in complex clinical care settings (Sheth et al.,
2020), this device is not as sensitive to low-perfusion areas as
professional perfusion imaging and is limited by a temporal
window, preventing continuous tracking. The transcranial
Doppler (TCD) technique allows for real-time evaluation of
changes in cerebral hemodynamics and parenchymal structure
through non-invasive measurement of CBF velocity (Tao et al.,
2021). However, the TCD method is effective in tracking perfusion
of larger vessels and is less effective in detecting perfusion in small to
medium-sized vessels and microvessels (Gómez-Escalonilla et al.,
2022). This limitation contributes to the ineffective clinical
reperfusion observed post-vascular recanalization in IS patients.
Electrical impedance tomography (EIT) offers non-invasive
dynamic measurements of intracranial pathophysiological
information. However, the low electrical conductivity of the skull
impacts measurement accuracy (Wang et al., 2021). Near-infrared
spectroscopy (NIRS) facilitates continuous non-invasive bedside
monitoring of CBF by measuring changes in blood oxygenation
and deoxygenation in blood vessels (Rivera et al., 2020). Despite
these advantages, its detection depth is limited and accuracy is easily
influenced by environmental factors. As such, NIRS is primarily
suited for monitoring superficial tissue blood flow.

Electromagnetic coupling sensing (ECS) measures alterations in
electrical conductivity and dielectric constant to procure
pathophysiological information from biological tissues. Prior studies
have proposed ECS as a promising innovation for the real-time bedside
monitoring of cerebrovascular conditions such as traumatic brain
injury, cerebral hemorrhage, and cerebral edema (Griffith et al.,

2018; Alqadami et al., 2021; Li et al., 2021; Chen et al., 2022a; Chen
and Kwai-Man, 2022; He et al., 2022). Pulsatile CBF, the changes in
intracranial blood volume during cardiac systole and diastole in
response to arterial blood pressure, provides insights into both
immediate aberrations in intracranial blood supply and overall CBF
levels. Consequently, it can offer comprehensive data for the dynamic
assessment of intracranial blood supply. The formation of pulsatile CBF
involves alterations in the relative volumes of major intracranial
components like brain parenchyma, CBF, and cerebrospinal fluid.
This process prompts swift responses in brain conductivity and
dielectric constant. Employing magnetic induction phase shift
signals, which indicate shifts in brain electrical conductivity, we
separated pulsatile CBF (Zeng et al., 2022). And its primary
frequency component is close to heart rate. In another experiment,
inductive technology was used to observe pulsatile CBF in healthy
volunteers during continuous inhalation of a certain concentration of
CO2 (Zhang et al., 2023). Results indicated significant changes in time-
domain and frequency-domain characteristics of the inductive signal
correlated with the duration of CO2 inhalation. However, these
investigations solely focused on changes in brain electrical
conductivity in relation to pulsatile CBF, neglecting the variations in
dielectric constant. More crucially, due to the lack of effective analytical
methods and comparison with existing devices, the dependable
association between ECS-based pulsatile CBF, the immediate
response to intracranial blood supply abnormalities, and the overall
level of CBF remains indeterminate.

In this study, we developed a CBF monitoring system utilizing
ECS. This system detects variations in brain conductivity and
dielectric constant by identifying the RF in an equivalent circuit
containing both magnetic induction and electrical coupling. We
evaluated the performance of the system using a self-made physical
model of blood vessel pulsation to test pulsatile CBF. Additionally,
we recruited 29 healthy volunteers to monitor CO, cerebral blood
flow velocity (CBFV) data and RF data before and after caffeine
consumption. We analyzed RF and CBFV trends during immediate
responses to abnormal intracranial blood supply, induced by
changes in vascular stiffness, and compared them with CO data.
Furthermore, we explored a method of dynamically assessing the
overall level of CBF by leveraging image feature analysis.

2 Materials and methods

2.1 Detection principle

Within the near-field range, by applying an electromagnetic field
to the skull and brain, both electrical coupling and magnetic
induction can be achieved. The field distribution and
corresponding circuit are illustrated in Figure 1. Magnetic
induction causes a change in overall impedance Rind when the
intracranial conductivity changes, while electrical coupling causes
a change in coupling capacitance Ccap when the intracranial
dielectric constant changes. Based on the principle of
electromagnetic coupling, Daniel Teichmann et al. derived the
following relationship (Teichmann et al., 2013):

f osc �
1
2π

������������������
1

L C + Ccap( ) − Rind

2L
( )2

√
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Where fosc is the RF, L is the no-load inductor, and C is the no-
load capacitor.

Under the influence of arterial blood pressure, pulsatile CBF
manifests a periodic response in tandem with cardiac systole and
diastole, thereby maintaining dynamic balance in intracranial blood
volume. This process triggers dynamic changes in the relative
volumes of intracranial tissues, each having different electrical
conductivities and dielectric constants. As per the above
equation, the variations in electrical conductivity and dielectric
constant of brain tissue can be ascertained by tracking changes in
RF. Consequently, ECS can theoretically reflect information
pertinent to pulsatile CBF.

2.2 CBF monitoring system

As illustrated in Figure 1, the electromagnetic coupling-based
CBF monitoring system comprises an electromagnetic coupling
sensor, signal acquisition module, main control module, wireless
communication module, monitoring module and signal analyzing
module. This system is designed to continuously and wirelessly
monitor RF signals, which reflect the conductivity and permittivity
of the measured target, and completes the dynamic assessment of the
overall level of CBF through an algorithm combined with
image features.

The electromagnetic coupling sensor was constructed by
winding a coil around an electrode plate measuring 60 mm ×
60 mm, fabricated from printed circuit board (PCB) material.
The sensor boasts a double-layer coil winding, a track width of
4.5 mm, a turn spacing of 1.5 mm, and is comprised of copper-based
material. The signal acquisition module, built with a capacitive data
converter (FDC2214 EVM, TI) featuring an anti-electromagnetic
interference architecture, was tasked with acquiring the detection
results from the electromagnetic coupling sensor and calculating the

RF. Communicating via the I2C protocol, the main control unit
(STMF103C8T6) performs downsampling of the measurement
findings at a rate of 20 Hz. The wireless communication module
(ESP8266 ATK) retrieves data from the serial port and transmits
them to the monitoring module using the TCP Server protocol. The
monitoring module, developed with Labview software, is installed
on a standard personal computer. It is responsible for displaying
waveforms in real-time and storing monitoring data. The signal
analysis module preprocesses the signal and uses a model that
combines image feature analysis and machine learning to classify
measured CBF signals at different levels. The entire system is
powered by a 3.3 v lithium battery.

2.3 Performance evaluation experiments

The performance evaluation experiments of the electromagnetic
coupling-based CBF monitoring system were conducted using a
simulated model of vascular pulsation. As shown in Figure 2, the
model consists of a feed pump (ZNB-XY1; KellyMed, Beijing,
China), a silicone tube (outer diameter = 5 mm, inner diameter =
3 mm), and a beaker filled with a saline solution (0.009 g/mL). The
silicone tube was connected from the saline-filled beaker to the feed
pump’s water inlet and back to the same beaker, simulating vascular
pulsation. The feed pump’s squeeze frequency was set at 1 Hz, and
the performance of the electromagnetic coupling-based CBF
monitoring system was evaluated at various depths and ranges.
For depth assessment, the silicone tube was displaced in the Oz
direction from its initial position, ranging from 2 cm to 11 cm,
advancing 1 cm at each step. For range evaluation, the silicone tube
was shifted 4 cm in the Oy direction, with each step measuring 1 cm.
To further examine the system’s ability to detect CBF responses
under different pressure excitations, we installed a water stopper
between the peristaltic pump’s outlet and the detection site. To

FIGURE 1
Overall design of the CBF detection device.
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mimic a more realistic detection environment, we incorporated a
skull model and secured the system’s components (excluding the
monitoring module) at the pterional region. The feed pump’s
squeeze frequency was maintained at 2 Hz. The water stopper’s
compression distance was modified (1.5 mm, 2 mm, 2.5 mm) to
obtain CBF responses under diverse simulated intravascular
pressure stimulations. Simultaneously, an invasive blood pressure
measurement module (MMBPTSA20) was positioned identically
and connected to a multi-parameter physiological monitor
(RM6240XC) to measure the pressure signal.

2.4 CBF monitoring trials in health
volunteers

In order to evaluate the feasibility of dynamic CBF monitoring
via electromagnetic coupling sensing, a clinical trial was performed
with 29 healthy volunteers (age range: 20–40 years). The work was
approved by the Ethics Committee of the Southwest Hospital of
Army Medical University (Chongqing, China). Each participant
gave his or her informed permission. These individuals had no
history of cardiovascular or cerebrovascular disorders and no
implanted medical devices. The volunteers were split into
experimental group 1 (n = 13), experimental group 2 (n = 13),
and control group (n = 3). Participants in experimental group 1 and

experimental group 2 consumed 200 mg of caffeine orally. This
induced temporary alterations in the stiffness and elasticity of their
cerebrovascular system, resulting in variations in their CBF. The
photograph of simultaneous monitoring of RF and CO in health
volunteers is provided in the Supplementary Material, during the
trial in Experimental Group 1, participants remained seated in a
restful state while the electromagnetic coupling sensor was secured
to their right temple. RF measurements were captured continuously
from before caffeine consumption to 30 min after caffeine
consumption. The control group took the same measurements
but did not consume caffeine. Concurrently, a CO monitor
(MNIR-P100) was employed to gather the CO index as a
reference. The control group followed an identical measurement
method to the experimental group, except without the consumption
of caffeine. Data for RF and CO was collected over a period of 5 min.
To compare with standard CBFV data, we used transcranial Doppler
(TCD) (EMS-9U) to measure cerebral blood flow parameters in the
right middle artery in experimental group 2. CBFV data were
measured before caffeine consumption and at 5-min intervals
until 30 min after caffeine consumption.

The acquired signal data were subjected to a wavelet
threshold denoising algorithm employing both soft and hard
thresholds in order to filter out high-frequency noise, resulting in
preprocessed signals. Subsequently, these preprocessed signals
were utilized to analyze the dynamic variation in CBF following

FIGURE 2
The setup of the performance evaluation experiments (A) The performance evaluation at various depths and range (B) CBF responses detection
under different pressure excitations.
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medication administration by using the change ratio of the
amplitude (CRA).

2.5 Image feature analysis of CBF waveform

RF signals collected from the healthy volunteer experiment were
converted into image data. Subsequently, image feature analysis was
performed to evaluate the capability of the electromagnetic coupling
system developed in this study to distinguish CBF levels under
varying physiological states. The process of feature extraction and
selection is illustrated in the Supplementary Material. Within a
single physiological state for each participant, 16 data sets were
obtained per minute, utilizing a fixed window of 300 RF signals and a
step length of 60. Each data set was converted into a waveform
graph, constructing the image dataset. A total of 336 images were
generated for this study. Following this, image features were
extracted from both local and overall aspects of the image,
followed by dimension reduction through a selection process.
Given the constraints of computational resources and time, the
image size was adjusted to 100 × 100 pixels prior to feature
extraction and selection, utilizing the bicubic interpolation method.

To extract overall image features, 7-dimensional and 16-
dimensional features were calculated by employing Hu-Moment
and the Gray Level Co-occurrence Matrix (GLCM) in multiple
directions, respectively. Concurrently, the image’s Histogram of
Oriented Gradient (HOG) and Local Binary Pattern (LBP) were
utilized to acquire local image features. For the HOG, the image’s
various gradient directions ranging from 0° to 360° were divided into
9 segments and further partitioned into several 16 × 16 blocks. Each
block was split into four 8 × 8 cells. The gradient direction and
magnitude for each pixel in every cell were calculated. Ultimately,
the gradient histograms of multiple elements were amalgamated into
high-dimensional vectors. For the LBP, the entire image was
scanned in a 3 × 3 neighborhood to acquire texture information.

The distribution characteristics of the overall features extracted
via Hu-Moment and GLCM were visualized and analyzed using line
graphs for feature selection. The remaining global and local features
were screened by computing the importance of random forest
features. Features with an importance level higher than 0.5%
were retained, while the rest were discarded. Following feature
selection, a feature dataset was constructed and labeled with
corresponding labels for subsequent training and testing of the
classification model.

2.6 Overall CBF level classification

Using machine learning methods, we constructed a diagnostic
model for overall level of CBF before and after caffeine
consumption, based on the feature dataset derived from image
feature extraction and screening. The overall modeling process is
depicted in Figure 3. The feature dataset was divided into a training
set and a test set at a 4:1 ratio. To enhance the efficiency of the model
training, the dataset was standardized. Random forest, Support
Vector Machine (SVM), and K-Nearest Neighbor (KNN)
algorithms were chosen for the training. A grid search was
conducted using a 5-fold cross-validation method, iterating and

adjusting parameters. The final output was the combination of
parameters with the highest score. The tuning ranges of each
model are shown in Table 1.

In order to validate the performance of our model and identify
the most effective algorithm, we leveraged a diverse array of metrics
to scrutinize the classification efficacy of the three candidate
machine learning algorithms. These metrics provided direct
evaluation of the classification results, and included measures
such as accuracy, recall, and the F1 score. In addition, we
evaluated the specificity, or the true negative rate, of the
classification model by utilizing Receiver Operating Characteristic
(ROC) curves and computing the Area Under the Curve (AUC).
Moreover, the interplay between accuracy and recall rates, key
components of any classification problem, was rigorously
analyzed through the deployment of Precision Recall (PR) curves
and confusion matrices. This approach granted us an understanding
of the model’s performance in terms of precision, recall, and the
trade-off between these two critical metrics. By utilizing these
comprehensive and nuanced evaluation methods, we were able to
rigorously test and compare the performance of our candidate
algorithms.

3 Results

When the feed pump’s extrusion frequency is held constant at
1 Hz, the monitoring results from the electromagnetic coupling
system at varying depths are depicted in Figures 4A–C. We
noted a periodic pulsation with pronounced peaks and troughs in
the RF signal within the time domain as the detection depth was
modified from 2 cm to 6 cm. Accompanying an increase in detection
depth was a progressive diminution in the amplitude of these
pulsations. In the frequency domain, the predominant frequency
component of the RF exhibiting high amplitude were consistently
found to be 1 Hz, thus corresponding to the feed pump’s squeeze
frequency. At a depth of 8 cm, the average change in RF was
observed to be on the order of 10–5. Referencing Daniel
Teichmann’s study, the order of magnitude for observed values
generally ranges from 10 to 3 to 10–5. Consequently, these findings
suggest that the effective detection depth of the electromagnetic
coupling system is approximately 8 cm. The monitoring results of
the electromagnetic coupling system at different ranges are
illustrated in Figures 4D–F. As the detection range shifted from
0 cm to 4 cm, the RF signal was found to pulsate at a frequency of
1Hz, and the average RF reading was on the order of 10–5. Given
that the skull’s thickness is roughly 1.5 cm and the location of
unilateral points is about 7–8 cm from the midline of the brain, it’s
notable that the results from the performance evaluation experiment
demonstrate that the electromagnetic coupling-based CBF
monitoring system can effectively encompass the blood supply
area of the middle cerebral artery.

Figures 4G, H presents the simulated results of CBF responses
incited by changes in intravascular pressure. As the descending
height increases, both the amplitude of the invasive blood pressure
wave and the periodic fluctuation range of RF are observed to
decrease. As illustrated in Figure 4I, with the pressing distance
escalating from 1.5 mm to 2.5 mm, the pressure within the tube
diminishes from 0.0827 kPa to 0.05274 kPa. Concurrently, the
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average RF declined from 5.96 × 10−5 MHz to 3.86 × 10−5 MHz.
When the extrusion frequency of the feed pump remains
unchanged, the pressure within the tube is directly proportional
to the simulated blood flow per unit time (Mohammed et al., 2019;
Barvik et al., 2023). Theoretically, the periodic pulsation range and
average value of RF should adhere to the same trend as the pressure
within the tube. Hence, these results substantiate the assertion that
electromagnetic coupling-based systems exhibit the potential to
discern CBF responses under varying pressure stimulations.

The pretreated RF monitoring results for Volunteer 1 are displayed
in Figure 5. The RF signal exhibits periodic pulsations with pronounced
peaks and troughs. This signal includes a primary wave caused by blood
vessel constriction and a secondary wave caused by blood vessel
rebound (Chen et al., 2022b). The blue lines in Figures 5A–F
present the changes in RF pulsations 30 min post-caffeine

consumption, with observations recorded at five-minute interval,
and the red lines show RF signals before caffeine consumption. The
ingestion of caffeine can trigger transient disturbances in CBF (Liu et al.,
2021). Over time, the amplitude of the RF pulsations progressively
diminishes, with the most significant decline apparent 25 min after
caffeine consumption. These results suggest a potential relationship
between the change in RF pulsation amplitude and CBF disturbance
induced by caffeine consumption. The increased arterial stiffness and
diminished elasticity resulting from caffeine ingestion leads to a
decrease in CBF. The CO level is proportional to CBF. The CRA
relative to normal, both 5 min and 30 min post-caffeine ingestion, for all
volunteers is depicted in Figure 6A. Among the 13 subjects, only two
exhibited an increase in the CRA, while the remainder demonstrated a
downward trend to varying degrees. As shown in Figure 6B, for most
healthy volunteers, the initial CO index post-caffeine consumption was

FIGURE 3
Classification algorithm flow of CBF levels in different physiological states.

TABLE 1 Hyperparameter range settings for machine learning models.

Parameter

KNN n_neighbors = {3,4,5, . . . ,30} weights = {“uniform,” “distance”}

SVM C = {0.01, 0.06,0.11, . . . ,5.01} gamma = {0.01, 0.11,0.21, . . . ,10.01}kernel = { “linear,” “rbf”}

Random Forest

n_estimators = {50,51,52, . . . ,201}

max_features = { “sqrt,” “log2”}

max_depth = {5,6,7,8,9,10, None}

min_samples_split = {2,3,4,5}
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FIGURE 4
The result of performance evaluation experiments (A) Frequency domain RF signals of different depths (B) Time domain RF signals of different
depths (C) The changes in sensitivity of RF signals with different depths (D) Frequency domain RF signals of different ranges (E) Time domain RF signals of
different ranges (F) The changes in sensitivity of RF signals with different ranges (G) Comparison of RF signals in different dropheights (H) Comparison of
pressure signals in different dropheights (I) Comparison of change trend between RF and simulated intravascular pressure.

FIGURE 5
The 30-minmonitoring results of RF in the No.1 healthy volunteer after taking caffeine. (A)Comparison of RF between the initial moment and taking
caffeine for 5 min. (B)Comparison of RF between the initial moment and taking caffeine for 10 min. (C)Comparison of RF between the initial moment and
taking caffeine for 15 min. (D) Comparison of RF between the initial moment and taking caffeine for 20 min. (E) Comparison of RF between the initial
moment and taking caffeine for 25 min. (F) Comparison of RF between the initial moment and taking caffeine for 30 min.
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greater than the CO index at 30 min, suggesting that caffeine intake
reduced CO levels. Systolic velocity (Vs), diastolic velocity (Vd) and
mean cerebral blood flow velocity (Vm) in experimental group
2 showed similar changes. Figures 7A, B show the trend graphs of
Vm measured by TCD and CRA of RF signal after oral caffeine
consumption, respectively. After caffeine consumption, there was an
overall decrease in Vm over time, which is consistent with the trend in
CRA. The Spearman rank correlation coefficient between Vm andCRA
was 0.8986, and the p-value was 0.0148, indicating that the correlation
was significant. These results confirm that the electromagnetic
coupling-based CBF monitoring system can effectively reflect the
immediate response to abnormal intracranial blood supply provoked
by changes in vascular stiffness post-caffeine consumption in healthy
volunteers.

We extracted a total of 14,379 dimensions of CBF waveform
features. Among these, the global features comprised 23 dimensions
and the local features encompassed 14,356 dimensions. For the

global features, we conducted an analysis for the 0° GLCM illustrated
in Figure 8. It can be discerned that the feature values for the
majority of volunteers showed a significant increase post-caffeine
ingestion. Furthermore, we performed analyses on other GLCM
features and found that approximately 70% of the contrast and
entropy values in four directions of GLCM exhibited a notable
upward trend. Conversely, the energy and loss moment
demonstrated a corresponding downward trend. The comparison
graphs for the remaining features are provided in the Supplementary
Material. Subsequently, we decided to retain only the GLCM
features and conduct feature selection on Hu-moments and local
features based on their feature importance. During this process, we
computed feature importance and discarded those with an
importance value of less than 0.5%. The final feature retention
results are presented in Table 2. We retained 9 dimensional
HOG features and 9 dimensional LBP features. Combined with
the previous GLCM features, a total of 34 dimensional features were

FIGURE 6
Comparison of CRA and CO before and after consuming caffeine (A) The CRA in volunteers at different states (B) The CO in volunteers at
different states.

FIGURE 7
Comparison of CRA and VM before and after consuming caffeine (A) The distribution and fluctuating pattern of CRA over time (B) The distribution
and fluctuating pattern of Vm over time.
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preserved for subsequent studies. The Hu-moment features, due to
their low importance and irregular distribution, were discarded.

We trained and tested three distinct machine learning models,
namely, Random Forest, KNN, and SVM, using the retained
features. As shown in Table 3, the Random Forest model exhibits
the best performance across all measured parameters, achieving an
accuracy of 87.09%, an F1 score of 0.8867, and an AUC value of 0.93.
Figure 9 presents the graphical interpretations of the performance of
the three machine learning models, including the PR curve, ROC
curve, confusion matrix, and learning curve. Analyses of these
graphs attest to the high performance of the Random Forest
model in terms of both precision and recall, resulting in a
commendable F1 score. The learning curve shows that the
accuracy of the test set steadily increases with the expansion of

the dataset and sustains a satisfactory level, indicating that there is
no underfitting or overfitting within the classification model.
Overall, the Random Forest model presents superior performance
for this particular task. These results provide preliminary evidence
that our method can accurately classify different changes in
abnormal intracranial blood supply caused by changes in blood
vessel stiffness. Additionally, it provides a method for diagnosing
overall CBF levels under different physiological conditions.

4 Discussion

The dynamic assessment of CBF carries significant clinical value,
as it provides crucial guidance in determining personalized
management and treatment strategies, ultimately leading to
improved stroke prognoses. Currently, the lack of a safe, reliable,
and effective bedside method for evaluating CBF dynamics
continues to result in a considerable portion of IS patients
experiencing ineffective CBF reperfusion, despite vascular
recanalization. Notably, approximately 50% of IS patients, who
underwent successful vascular recanalization within 24 h as
suggested by a superior modified Thrombolysis in Cerebral

FIGURE 8
Contrast feature analysis diagram of 0° gray co-occurrence matrix.

TABLE 2 Feature screening.

Total feature dimension Retained feature dimension Whether to discard

GLCM 16 16 No

HOG 4,356 9 No

HuMoment 7 0 Yes

LBP 10,000 9 No

TABLE 3 Classification test results of different models.

SVM KNN Random forest

F1 0.8737 0.8679 0.8867

Accuracy 0.8602 0.8494 0.8709

AUC 0.87 0.89 0.93
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Infarction (mTICI) assessment, failed to demonstrate a favorable
functional outcome after 90 days (Jovin et al., 2022). This study aims
to extract pulsatile CBF by observing changes in cerebral electrical
conductivity and the dielectric constant during cardiac systolic and
diastolic periods. These changes serve to dynamically reflect the
immediate response of intracranial blood supply abnormalities. By
leveraging image feature analysis and machine learning modeling, it
provides a method for diagnosing overall CBF levels under different
physiological conditions.

The large size and low temporal resolution of CT,MRI, and other
imaging devices, coupled with the high price of these devices, place a
heavy financial burden on individuals. The wearable cerebral blood
flow monitoring device established in this study has significant
advantages of small size and low cost. The characteristics of
lithium battery power supply and wireless communication enable
the device to carry out real-time and continuous monitoring of CBF
on mobile terminal or PC, which has high operability and portability,
does not require too much operation skills, and has more application
scenarios. In contrast to traditional methodologies that solely detect
changes in either electrical conductivity or the dielectric constant, a
more reliable extraction of pulsatile CBF can be achieved through a
combined detection of electrical coupling and magnetic induction in
the near-field range. The electric coupling equivalent circuit,

predominantly used for detecting changes in the dielectric
constant of the subject, exhibits high sensitivity, albeit with
compromised penetration capabilities (Maharani et al., 2020).
Conversely, magnetic induction, capable of penetrating the skull,
allows the measurement of brain tissue’s electrical conductivity by
gauging the disturbances of induced eddy currents within the
intracranial region. However, given the relatively low electrical
conductivity of biological tissues, the ensuing interference is
relatively weak, leading to suboptimal detection sensitivity (Oziel
et al., 2019). Exploiting the inherent non-interference between electric
fields and magnetic fields, this study presents an ECS, which
incorporates a sensor constructed via coil winding on the
electrically coupled substrate, thus enabling the complementary
use of electric coupling and magnetic induction. To assess the
performance of the proposed system, we conducted range and
depth tests on a self-made physical model of blood vessel
pulsation. The experimental results indicate that RF changes of the
order of 10–5 can still be detected at a vertical distance of 8 cm and a
lateral displacement of 4 cm, with pronounced periodic pulsations
identifiable between peaks and troughs. Compared to existing
induction-based CBF assessment system, the effective detection
range and depth of our proposed system are enhanced by a factor
of three to four (Zeng et al., 2022; Zhang et al., 2023).

FIGURE 9
Graphical interpretations of the classification performance in the three machine learning models (A) PR curve (B) ROC curve (C) Random forest
Learning curve (D) Random forest confusion matrix.
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The electromagnetic coupling-based monitoring system
demonstrates the capability to discern changes in blood flow
volume resulting from simulated internal pressure within the
vessel. This indicates that the system is capable of detecting CBF
responses to spontaneous excitation of ABP. When ABP deviates
within a specified range, the cerebrovascular system safeguards a
stable CBF state through active dilation and contraction,
constituting cerebrovascular reactivity (CVR). Numerous risk
factors associated with cerebrovascular disease commonly
engender a diminishment of CVR and augmented blood pressure
variability (Gomez et al., 2021). The cumulative effect of these
factors can precipitate cerebral blood perfusion deficiency or
inflict mechanical overload on vascular walls, thereby hastening
the progression of cerebrovascular diseases (de Heus et al., 2020).
Presently, clinical CVR testing largely depends on the reaction of
CBF to standard ABP changes induced by pharmacological, venous,
carotid compression, and thigh cuff methods (Petkus et al., 2019).
Nevertheless, the routine stimulation of blood pressure alterations
entails potential risks and its utilization in intensive care is
circumscribed. Detecting CBF responses to spontaneous
excitation of ABP could effectively resolve this issue. In instances
of unwavering vibration frequency, the diameter of the simulated
vascular system escalates with the increase in internal pressure.
Although this is incongruous with the physiological mechanism of
vasoconstriction elicited by an elevated ABP, the trend of RF
pulsation amplitude harmonizes with simulated intravascular
pressure. The frequency of CBF arising from spontaneous ABP
oscillation approximates heart rate and exhibits individual
variability. In performance evaluation experiments, the vibration
frequency of simulated blood vessels aligns with the primary
frequency domain component of RF. During trials involving
healthy volunteers, the low-frequency components of RF were
observed to vary within the normal heart rate. Therefore, this
study lays the groundwork for the formulation of novel methods
for CVR evaluation.

The pulsatile CBF extracted based on ECS can dynamically
reflect the immediate response of intracranial blood supply
abnormalities caused by changes in vascular stiffness. When
compared with continuous CO2 inhalation or breath-holding
techniques, the aberrant intracranial blood supply instigated by
oral caffeine administration aligns more closely with the
pathophysiological progression of cerebral ischemia (Wardlaw
et al., 2019). Oral caffeine consumption can induce alterations in
vascular stiffness, which subsequently lead to hypervolemic
blood flow in intracranial microvasculature. The cerebral
sensitivity to heightened pulsatile blood flow initiates
morphological transformations in intracranial microvessels,
such as diminished internal diameter and reduced systolic and
diastolic volumes (Gil et al., 2022). As the remodeling and
stiffness of intracranial microvasculature increase, deficiencies
in CBF due to ischemia and hypoxia become evident (Freitas-
Andrade et al., 2020). The readily accessible methods for
assessing CBF are CBFV measured by TCD and CO measured
by NIRS. Considering the pathophysiological changes in
intracranial microvessels are the key contributors to
insufficient CBF supply post-caffeine consumption, we
employed CO and CBFV as a reference to analyze and
compare the RF measurement results in this study. In

comparison to the initial state, the CO index of healthy
volunteers demonstrated a substantial decline 30 min post-
caffeine ingestion. However, the extent of changes in CO was
not uniform, which may be attributable to individual variations
in caffeine tolerance. Notably, the CRA and CBFV exhibited a
downward trend within 30 min of caffeine consumption. As the
magnitude of RF symbolizes the intensity of pulsatile CBF, these
results suggest that the amplitude alterations in the RF signal
mirror the immediate abnormal responses of intracranial blood
supply triggered by caffeine.

Combined with image feature analysis and machine learning
modeling, ECS can achieve dynamic assessment of the overall
level of CBF. There is a close correlation between CO and CBF,
with cerebral hypoxia typically lagging behind CBF deficiency. As
such, the significant drop in CO levels observed 30 min after oral
caffeine ingestion in healthy volunteers suggests a decrease in
overall intracranial blood volume. For this study, we leveraged
image feature analysis to generate a dataset discerning the overall
level of intracranial blood volume. Compared to other feature
extraction algorithms, image features offer distinct advantages in
terms of interpretability, richness of information, and robustness.
We processed local and global features of the image separately.
Global features primarily reflect information such as texture
thickness, randomness, area, and size (Tian et al., 2020), while
local features detail the shape and gradient of specific image
details (Zhang et al., 2021). The combination of global and local
features elucidates the irregularity, amplitude size, area, and
smoothing degree of the RF waveform, details that are
intrinsically linked to CBF’s intensity, velocity, periodic
change, and volume size. By extracting image features and
selecting features based on importance computation and
visualization, we can amass a feature dataset that holistically
reflects overall changes in CBF levels. Leveraging this dataset, we
employed machine learning to construct a classification model
with high accuracy, facilitating dynamic assessment for the
overall CBF level. The three principal machine learning
algorithms currently used—Random Forest, KNN, and
SVM—have different training methods. Utilizing these three
algorithms for research allows us to analyze image feature
information from various perspectives and enhance the
universality and reliability of our findings. According to the
classification results, the accuracy of different models varies.
This discrepancy stems from the distinct performance of
various features within and between groups, with different
models amplifying this difference.

However, this is a preliminary study. The instantaneous
response of CBF abnormalities under the combined stimulation
of vascular pressure and stiffness has not been assessed by ECS due
to limitations in the simulated model of vascular pulsation. The
classification performance of overall CBF levels is constrained by the
lack of complex texture image features. In next research phase, our
team will develop a physically simulated model approximating
actual vascular pulsations and investigate the impact of multiple
parameters (CBF, ABP, and vessel diameter) on RF. Additionally, we
will explore various data encoding methods to transform one-
dimensional data into two-dimensional images, aiming to obtain
more intricate texture features and enhance classification
performance.
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5 Conclusion

This study presents a dynamic assessment methodology for CBF by
integrating electromagnetic coupling sensing and image feature analysis.
TheCBFmonitoring system, based on electromagnetic coupling sensing,
detects changes in brain conductivity and dielectric constant by
employing RF in an equivalent circuit that includes magnetic
induction and electrical coupling. Experimental testing substantiates
that this system provides a detection range and depth enhanced by
three to four times compared to conventional electromagnetic detection
techniques, thereby comprehensively covering the principal intracranial
blood supply areas. The system effectively captures CBF responses under
different intravascular pressure stimulations. In healthy volunteers, as
cerebral vascular stiffness increases and CO decreases due to caffeine
intake, the RF pulsation amplitude diminishes progressively. Upon
extraction and selection of image features, widely used machine
learning algorithms exhibit commendable performance in classifying
overall CBF levels before and after caffeine consumption. These results
highlight that our proposedmethodology, predicated on ECS and image
feature analysis, enables the capture of immediate responses of abnormal
intracranial blood supply triggered by alterations in vascular stiffness.
Moreover, it provides an accurate diagnosis of the overall CBF level
under varying physiological conditions.
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