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While cavitation has been suspected as a mechanism of blast-induced traumatic
brain injury (bTBI) for a number of years, this phenomenon remains difficult to
study due to the current inability to measure cavitation in vivo. Therefore,
numerical simulations are often implemented to study cavitation in the brain
and surrounding fluids after blast exposure. However, these simulations need to
be validated with the results from cavitation experiments. Machine learning
algorithms have not generally been applied to study blast injury or biological
cavitation models. However, such algorithms have concrete measures for
optimization using fewer parameters than those of finite element or fluid
dynamics models. Thus, machine learning algorithms are a viable option for
predicting cavitation behavior from experiments and numerical simulations. This
paper compares the ability of two machine learning algorithms, k-nearest
neighbor (kNN) and support vector machine (SVM), to predict shock-induced
cavitation behavior. Themachine learningmodels were trained and validatedwith
experimental data from a three-dimensional shock tube model, and it has been
shown that the algorithms could predict the number of cavitation bubbles
produced at a given temperature with good accuracy. This study
demonstrates the potential utility of machine learning in studying shock-
induced cavitation for applications in blast injury research.
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1 Introduction

Blast-induced traumatic brain injury (bTBI) represents over 66% of injuries sustained
by deployed U.S. military service members (Regasa et al., 2019). From 2000 to the third
quarter of 2022, the Department of Defense reported 486,424 traumatic brain injuries, with
387,456 of those attributed to bTBI from active deployments (DOD Worldwide TBI
Numbers, 2023). bTBI is not limited to military service members but may also impact
civilians in war zones or in industrial explosions. Symptoms of bTBI include visual
dysfunction, headaches, balance, and impulse control impairment (Capó-Aponte et al.,
2012; Bryden et al., 2019). Blast injury is also associated with an increased probability and
severity of post-traumatic stress disorder (PTSD) and increased chances of developing
neurodegenerative disorders (Barker et al., 2023; Borinuoluwa and Ahmed, 2023).
Diagnostics, treatment, and prevention of bTBI are dependent on an understanding of
the mechanisms through which blast exposure damages the brain (Marsh and Bentil, 2021).
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While the process underlying bTBI remains unclear, there are
several hypothesized mechanisms (e.g., thoracic surge, cavitation,
and inflammation) that could improve injury models (Courtney and
Courtney, 2008; Adhikari et al., 2016; Kumar Sahel et al., 2019). In
the case of cavitation, which is the formation and collapse of vapor
cavities in a fluid due to local pressure fluctuations, it is primarily
hypothesized that the collapse of cavitation bubbles causes injury.
This may be due to the pressures or temperatures generated by the
bubble collapse or by the formation of high-velocity water jets,
which can cause poration of cell membranes (Lafrenaye et al., 2012;
Adhikari et al., 2016).

Finite element (FE) models and fluid dynamics simulations have
been used in research works to examine cavitation as a mechanism
of bTBI (Kurosawa et al., 2008; Panzer et al., 2012; Tan et al., 2017b).
In the FE analysis of bTBI, the outcomes are dependent on a series of
choices made to describe the material properties of the head in a
blast exposure environment. These choices include constitutive
model, geometry, and mesh properties. The constitutive model
and governing equation(s) choices for materials like blood,
cerebrospinal fluid (CSF), and brain tissue can differ substantially
between bTBI mechanism studies (Linninger et al., 2009; Wilhelm
et al., 2020; Gholampour et al., 2023). For instance, El Sayed et al.
(2008) used a thermodynamic variational constitutive model that
has both viscoelastic and Ogden functions. In this model, cavitation
is defined by a porous plasticity term. In a study by Panzer et al.
(2012), the brain tissue is modeled as a linear viscoelastic material,
and the volumetric response of the CSF and brain tissue was
modeled using the Mie–Grüneisen equation of state (EOS).
Cavitation was modeled using the cut-off pressure method by
setting a limit on the tensile pressure past a certain threshold. In
a full-body blast model, Tan et al. (2017a) modeled the brain as an
isotropic and viscoelastic material. Cavitation was incorporated in a
CSF EOS, where the CSF density is determined by a barometric EOS,
which is then used to solve for pressure in the fluid.

The geometry of the head, in the finite element model, may vary
and could be as simple as cylindrical or spherical shells, with tissue
and fluid surrogates inside (Kurosawa et al., 2008), to fully three-
dimensional (Giudice et al., 2019; Madhukar and Ostoja-Starzewski,
2019). The head geometry can also vary by the different number of
anatomical structures (e.g., white matter, gray matter, ventricles,
skull, and scalp) that are included in the finite element model. For
any geometry, choices about the number and size of mesh elements
also have an impact on the model results (Wilhelm et al., 2020). A
full-head reconstruction by El Sayed et al. (2008) contained nine
structures, including the skull, CSF, and brain consisting of gray and
white matter, and comprised 39,047 tetrahedral composite elements.
Panzer et al. (2012) generated an axial head model with seven
structures, using a single-layer mesh of 29,088 hexahedral
Lagrangian elements. Some have even suggested that the
inclusion of the whole body is critical in modeling blast injury
and cavitation. For instance, Tan et al. (2017a) considered a full-
body model that had over 4.2 million elements.

Finite element analysis is a valuable tool in understanding
cavitation as a mechanism for bTBI. However, there are several
limitations to FE models in bTBI research. Some of the most
pressing limitations include the following: 1) All of the decisions
(e.g., material properties of the head, constitutive models describing
the mechanical behavior of the materials, cavitation EOS, head

geometry, anatomical structure, and type and number of
elements) are not standardized within the field, but directly
impact the accuracy of the results of the finite element
simulation of bTBI. 2) Insufficient spatial resolution (Madhukar
and Ostoja-Starzewski, 2019), especially given the likely scale of
cavitation bubbles (nanometers to micrometers). Thus, the spatial
resolution of FE models may not be sufficient to analyze the
locations and patterns of cavitation. 3) Challenges in
experimental validation. There is a two-fold challenge in
validating FE models of cavitation. The first is evident from the
above examples: the optimal material properties and constitutive
models have not been standardized. The second and a confounding
issue is that experimental data would be the best way to validate
these model choices, and in vivo evidence of shock-induced
cavitation in the brain is considered implausible at this time. 4)
Many finite element models use a pre-placed seed bubble, rather
than modeling the actual nucleation phase of cavitation. This is
because there is an ongoing debate as to whether or not there are
pre-existing bubbles in the cerebrospinal fluid and blood vessels
(Adhikari et al., 2016). Regardless of the debate’s outcome, including
a model of cavitation nucleation is important since it impacts the
biological accuracy of the results and is necessary to evaluate the
ability of biological fluids to generate cavitation bubbles under
realistic blast conditions.

Fluid dynamics simulations are better suited to model the fluid
regions within the brain but do not perform well at modeling rigid
boundary conditions andmay not generate information that is easily
translated to patient outcomes (Achey et al., 2022). This is partially
because computational fluid dynamics (CFD) simulations have
different variables than most finite element models, including
wall shear stress, oscillatory shear index, and flow complexity
and velocity (Achey et al., 2022). In the CFD simulations, the
behaviors of the brain, CSF, and skull are generally modeled with
Mie–Grüneisen or Tillotson–Brundage equations of state
(Brundage, 2014; Haniff et al., 2015). However, the variation in
material properties assigned to the tissue and other portions of the
head is similar to that of FE models. CFD models face the same
validation challenges as the FE method due to the lack of
experimental data. Furthermore, CFD model accuracy may vary
due to the natural variation in the head geometry, along with the
volume and flow rate of CSF and blood between individuals.

There are other methods for modeling cavitation, including
coupled models like fluid–structure interaction (FSI) and molecular
dynamics simulations (Adhikari et al., 2016; Achey et al., 2022).
These methods are valuable for the study of cavitation in blast-
induced traumatic brain injury but suffer some of the same
fundamental concerns as FE and CFD models: i) a lack of
experimental data for validation due to the inability to visualize
shock-induced cavitation in vivo, ii) lack of a standard set of
governing equations to guide the complex model design choices,
and iii) lack of nucleation (bubble formation) modeling at an
appropriate spatial and temporal resolution. Thus, there is a need
for alternative approaches for predicting cavitation behavior that
can address some of these challenges. One such alternative approach
is implementation of machine learning algorithms to classify and
predict fluid behaviors like cavitation.

Machine learning algorithms show increasing potential for fluid
and soft tissue modeling due to their decreased computational
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burden and simpler procedure, when compared to FE and CFD
models (Kutz, 2017; Liang et al., 2018; Kochkov et al., 2021).
Although the machine learning approach also needs to be
validated against experimental data, the validation process is not
as challenging when compared with the FE and CFD methods since
validation of parameters describing the material properties and
constitutive relations is not required. Hence, machine learning
models can provide meaningful contributions to the
understanding of fluid and soft tissue behavior alongside FE and
CFD methods. Furthermore, machine learning algorithms can be
used with integrative approaches (e.g., incorporation of
heterogeneous data types and modalities) that allow for holistic
and system-level understanding of biological and medical problems
(Watson et al., 2019; Zitnik et al., 2019). Additionally, improved
machine learning models of today can learn with less training data
(e.g., data consisting of shock-induced cavitation images) than
before, while yielding good to excellent accuracy (Shaikhina
et al., 2015; Zhang and Ling, 2018). The smaller number of
parameter choices in machine learning models helps overcome
some of the challenges in experimental validation. Input and
output parameter effects can be validated experimentally using a
shock tube model, which is the approach taken in the present paper.

The k-nearest neighbor (kNN) and support vector machine
(SVM) algorithms are two common machine learning models
that have been compared in the context of both neuroscience
and cavitation. Specifically, existing literature suggests that these
two algorithms performed better than other algorithms in both
neuroscience and cavitation applications (Feng et al., 2019;
Vishwanath et al., 2020; Yakupov and Smirnov, 2023). For
instance, when comparing the SVM with other machine learning
techniques such as random forest and ridge regression for the
purpose of cavitation prediction, the SVM showed better
performance (Yakupov and Smirnov, 2023). While the actual
process and parameters for each model (i.e., kNN and SVM) are
described in the Methods section (Section 2), a brief description of
the algorithm’s prior use in neuroscience and cavitation research is
presented here.

Within the field of neuroscience, kNN and SVM have both been
used and compared to classify brain injury and other neurological
outcomes (e.g., survival, diagnostic scores, and functional
connectivity) using electroencephalography (EEG) and magnetic
resonance imaging (MRI) data (Vergara et al., 2017; 2018; Hale et al.,
2018). When using EEG data to classify mild traumatic brain injury
(mTBI), a kNNmodel with three neighbors outperformed the SVM,
although the two models were usually within 3% of each other
(Vishwanath et al., 2020). The kNN and SVM algorithms have also
been applied to patient clinical data. For example, the SVM has
previously been shown to perform better than logistic regression in
classifying survival rates in severe traumatic brain injury (sTBI)
(Feng et al., 2019). A study by Hsu et al. (2021) found that both kNN
and SVM did comparably well in predicting patient survival
following sTBI, using clinical data, but were much less successful
at accurately classifying patient death.

kNN and SVM have also been used in cavitation models (Fadaei
Kermani et al., 2018; Dutta et al., 2020). For instance, a kNN model
was able to accurately predict the severity of cavitation damage on a
dam spillway during periods of flooding (Fadaei Kermani et al.,
2018). Additionally, a comparative study of kNN and SVM has also

been performed by Dutta et al. (2020) to detect cavitation in a
pumping system. The results showed that kNN is preferable when
there are more training data than features (i.e., variables), while the
SVM is better at classifying larger amounts of labeled data. The
labeled data in the study by Dutta et al. (2020) were variables with
assigned values, where these values described the centrifugal
pumping system (e.g., cavitation status and rotational speed).

There is limited literature applying machine learning to detect
and predict cavitation bubbles in biological and neuroscience
applications. As such, this paper presents an example of how
machine learning can predict fluid behavior (i.e., cavitation) as a
function of a fluid property that is relevant in a biological system
(i.e., temperature). Experimental images of shock-induced
cavitation, in fluids at different temperatures, were recorded
during shock tube experiments. The images were fed into a
bubble detection program to generate datasets quantifying the
number of cavitation bubbles as a function of temperature. These
datasets were used to train two commonly used machine learning
algorithms (i.e., kNN and an adaptation of the SVM that will
facilitate multi-class classification) in a comparative study to
understand which algorithm could best predict the cavitation
level (i.e., number of cavitation bubbles) given the temperature of
the surrounding fluid. Thus, the novelty of this paper is in using the
kNN and SVM algorithms to predict shock-induced cavitation
behavior based on a biological parameter (i.e., temperature).
Additionally, the results from the machine learning models were
validated with experimental data that visualized shock-induced
cavitation. The findings from this paper will influence future
experiments investigating cavitation as a bTBI mechanism by
demonstrating the ability of machine learning algorithms to
predict cavitation behavior without a defined set of governing
equations or model properties.

In the future, the machine learning model presented in this
study will be expanded such that multiple inputs (e.g., geometry,
temperature, and blast wave pressure) can be considered to predict
the corresponding fluid behavior (i.e., cavitation). Such a model
could then be adapted in the manner similar to Fadaei Kermani et al.
(2018), where the level of cavitation predicted can be translated into
a prediction of damage level (in this case bTBI severity).

The remainder of this paper presents a description of the bubble
detection and bubble classification algorithms used in the shock-
induced cavitation study. Furthermore, the performance of the kNN
and adapted SVM models at predicting shock-induced cavitation is
provided. The discussion in Section 4 evaluates the selection of the
ideal machine learning algorithm for modeling fluid behavior in
bTBI and includes suggestions for expanding cavitation-specific
machine learning models in the future.

2 Methods

2.1 Cavitation chamber

A 50 mm × 25 mm × 25 mm cavitation chamber was
constructed of clear, acrylic sheets for this study. Acrylic sheets
were selected not only for durability but also for optical clarity to
facilitate imaging of the shock-induced cavitation event (described
in Section 2.2). A depiction of the experimental setup, including the
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cavitation chamber, shock tube, pressure transducers, and cameras,
is shown in Figure 1. The wall of the cavitation chamber that is in
front of the shock tube was the thinnest (1 mm). The side walls were
5 mm thick, and all the remaining walls were 10 mm thick.

The cavitation chamber was filled with 31 mL of deionized water
by using a syringe. Deionized water was used to avoid the residual
effect of any ions or electrical conductance on cavitation.

The deionized water was heated to the desired temperature by
using a hot plate, and the temperature was recorded with a
graduated tube thermometer and a digital thermometer function
(Traceable Salinity Pen, model 4367). Five trials were used for each
testing temperature, which ranged from 20°C to 60°C in 5°C
increments.

The fluid temperature was recorded before and after filling the
chamber and after shock exposure. In between shock exposures, the
deionized water was removed from the chamber by using a syringe.

2.2 Shock tube model

A three-dimensional (3-D) shock tube model was used to
generate the shock waves, which induced cavitation in chambers
filled with deionized water. The 76.2-mm oxyacetylene shock tube is
divided into a driver (0.3 m) and a driven (4.6 m) section, separated
by a 25.4-μm Mylar diaphragm. The oxyacetylene in the driver
section was ignited, which ruptured the diaphragm and generated a
shock wave that propagated down the driven section of the shock
tube and toward the cavitation chamber. The fluid-filled cavitation
chamber was placed 2 mm from the exit of the shock tube. Pressure
transducers (PTs) record the speed and pressure–time profile of the
shock wave. Piezoelectric pressure transducers 0 and 1 (PT0 and
PT1, PCB Piezotronics, Model 102B15) are 1.5 m apart and are
located on the driven section of the shock tube so that the shock
wave speed and overpressure can be measured (see Figure 1). PT1 is
127 mm from the front wall of the cavitation chamber. The

cavitation chamber was illuminated using two separate LED
lights (Nila Zaila Deluxe Daylight) prior to igniting the
oxyacetylene in the shock tube.

During each trial of the shock tube experiments, the images of
the cavitation chamber were recorded at 100,000 frames per second
using two high-speed monochrome digital cameras (Photron,
FASTCAM SA-Z) with a 105-mm macro lens (Nikon, AF-S VR
Micro-NIKKOR 105-mm f/2.8G IF-ED). In this study, a trial refers
to one ignition of the oxyacetylene in the shock tube and the
subsequent recording of the cavitation event (or lack thereof, if
cavitation did not occur). A subset of 50 images, which covers
0.5 ms, was found to completely depict the cavitation event. This
subset of 50 images was saved for each trial, resulting in a total of
2,250 images for the 45 trials conducted since there were five trials at
each 5°C increment. These 2,250 images were processed using the
bubble detection program described in Section 2.3.

2.3 Bubble detection program

A bubble detection program was written using the commercially
available software MATLAB (version: 9.10.0.1602886 (R2023a)). The
program detected the bubbles automatically within the entirety of the
chamber’s interior, which was selected as the cavitation region of
interest. The region of interest for the first image in the series was
selectedmanually, and all subsequent images were batch-cropped to the
same region. An example of image cropping, as well as bubble detection
for the region of interest, is shown in Figure 2.

Each cropped image was then pre-processed to minimize noise by
removing artifacts, such as light reflections from the chamber’s exterior
or shock tube. TheMATLAB function “imfindcircles”was used to
detect the bubbles in each processed image. The center coordinates were
recorded for all of the bubbles in each of the images. A count of the
number of bubbles (i.e., bubble count) and bubble locations was
recorded for each image. Each bubble was assigned an identification

FIGURE 1
Experimental placement of the cavitation chamber, shock tube, and high-speed cameras.
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number based on its first appearance to facilitate tracking bubbles
through the frames recorded by using high-speed cameras (Crocker,
1999). This allowed individual cavitation bubbles in the image series to
be counted, without repeatedly counting bubbles which occur in
multiple frames. At each 5°C increment, between 20°C and 60°C, the
data from each image describing the total bubble counts and bubble
locations were recorded. The grand total number of shock-induced
cavitation bubbles and bubble locations used in each trial was obtained
by aggregating the total bubble counts and bubble locations from all the
images in an image series.

2.4 Machine learning algorithms

A k-nearest neighbor (kNN) model and an adapted support
vector machine model using error-correcting output codes (ECOC
SVM) were constructed to predict shock-induced cavitation
behavior as a function of temperature. The kNN and ECOC
SVM machine learning models use fluid temperature as an input
and the level of cavitation (i.e., cavitation level) as an output. The
cavitation level refers to the grand total number of shock-induced
cavitation bubbles produced at a specified fluid temperature, which
is described further in Section 2.5. Fluid temperature refers to the
bulk temperature of the deionized water that is inside the
cavitation chamber.

Both kNN and SVM are supervised machine learning methods,
meaning they use labeled points with known solutions to train the
machine learning models. As a result, the machine learning models
are first trained to predict the cavitation level using labeled training
points, where each “point” represents one experimental trial. The
training points are considered “labeled” because the kNN and ECOC
SVM machine learning models have been provided with both the
input (i.e., fluid temperature) and the output (i.e., level of cavitation)
for each trial. After training the kNN and ECOC SVMmodels using
the labeled training points, the machine learning models are able to
classify cavitation levels using testing points. A testing point is an
experimental trial at a given fluid temperature, which is given as an
input for the machine learning model to predict the cavitation level.
As such, the output from using a testing point in the kNN and ECOC
SVM models is a prediction of the cavitation level given a fluid
temperature. Thus, the machine learning model’s predictive
accuracy can be measured by comparing the predicted level of
cavitation for a given testing point (i.e., an experimental trial)
with the actual cavitation level calculated using the bubble
detection program from the experimental trial.

Figure 3 illustrates the coupled bubble detection and machine
learning (i.e., kNN and ECOC SVM) processes.

2.4.1 kNN algorithm
The kNN algorithm is a simple machine learning method that

classifies the output from a testing point based on the categories
(i.e., known outputs/solutions) of labeled training points
(i.e., nearest neighbors) (Zhang, 2016).

The output from a testing point is the category that contains the
highest number of the k-labeled nearest neighbors (i.e., labeled training
points that had a similar output). In the context of this study, the testing
point is a fluid temperature for which themachine learningmodel is not
given the level of cavitation. The machine learning model predicts the
cavitation level for the testing point by using the labeled training data,
where both the input (i.e., fluid temperature) and output (i.e., cavitation
level) are provided to the machine learning model.

The number of k neighbors used to determine the category of a
testing point can affect the performance of the model. A k-value that
is too large can lead to underfitting, while a k-value that is too small
can lead to overfitting (Zhang, 2016). Here, underfitting means the
model is ignoring important details and patterns (e.g., increases or
decreases in the cavitation level with respect to temperature) within
the data, and overfitting means that the model is learning too many
small details (noise) from the training data such that the model’s
predictions are not generalizable.

The commonly suggested value for k is the square-root of the
number of training samples (Zhang, 2016).

This suggests that a k-value of approximately 5 would be
appropriate for these data. However, five separate kNN models
were trained using k values of 1, 2, 3, 5, and 7 to determine whether
the suggested k was the optimal value. The values considered for k
were predominantly odd because even values of k historically have
poor classification ability (Pawlovsky and Kurematsu, 2019).

2.4.2 kNN cross-validation
Cross-validation is a common way of testing potential k-values to

determine the best choice of k for a given dataset (Biessey et al., 2021).
The optimal k-value was determined through cross-validation using an

FIGURE 2
Cavitation bubble detection process using an image from a trial
at 60°C. (A) The cavitation region of interest consists of the entirety of
the chamber interior (red rectangle), which is cropped for use in the
bubble detection program. (B) Example of the output from the
bubble detection program for the selected region of interest. The
annotated image is created by the bubble detection program, where
the detected bubbles are outlined in red.
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adapted holdout technique. The adapted holdout technique was used
for the cross-validation because it helps avoid bias in the reported
accuracy by taking an average of the accuracies of models trained on
different train–test splits (Biessey et al., 2021). A k-value set to the
square root of the trial number would in this case be approximately 5,
which is why 5 was included as a possible k-value. However, this is only
a standard recommendation (Zhang, 2016).

For each k-value (i.e., 1, 2, 3, 5, and 7), the cross-validation
required the creation of 10 different kNNmodels using the fitcknn
function in MATLAB.

The purpose of this cross-validation process is to avoid
biased results.

Each of the 10 kNNmodels, for a specific k-value, were trained and
tested using a different train–test split with 70% training points and 30%

testing points.While there is no universally agreed upon ideal train–test
split ratio, the testing set needed to be of sufficient size to evaluate the
performance of themodel. The structure and size of the data favored the
selection of a 70%/30% split over a split of 80%/20% to be consistent
with related literature (Hale et al., 2018). This is because the 70%/30%
split is the standard recommendation for smaller datasets since higher
splits are reserved for large datasets (Muraina, 2022).

TheMATLAB functioncvpartitionwas used to randomly split
the data into 70% training and 30% testing sets. The machine learning
model was trained using the training set, and the function crossval

was used to calculate the accuracy of the model in predicting the
cavitation level on the testing set. This process was repeated 10 times
using different train–test sets for a specific k-value, and the testing
accuracies were averaged to obtain the cross-validation accuracy.

FIGURE 3
Flowchart depicting the bubble detection program and machine learning algorithm processes for each trial. Steps that do not apply to ECOC SVM
and only apply to kNN are indicated. The kNN and ECOC SVM algorithms described using the flowchart require one input (i.e., fluid temperature) and yield
one output (i.e., cavitation level). The flowchart was generated using the free version of Miro Mir (2023).
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The training and testing data both contained the fluid temperature
and actual cavitation level of each point (i.e., experimental trial).
However, the kNN is not provided with the actual cavitation level
when using the testing set to make its prediction of the grand total
number of cavitation bubbles as a function of temperature. Instead, the
actual cavitation level associated with the testing point is used to assess
the accuracy of the kNN’s prediction.

The kNNmodel requires the distance between the labeled points
(from the training dataset) to be defined. This distance affects which
labeled points are chosen as the nearest neighbors to a testing point.
The Euclidean distance was chosen for the kNN model due to the
simplicity of having only a single input (i.e., temperature) to predict
the cavitation level (Zhang, 2016). Thus, the Euclidean distance d
between the test point with temperature x and a neighbor
(i.e., labeled point) with temperature y is d(x, y) = |x − y|.

2.4.3 ECOC SVM algorithm and cross-validation
An SVM is a machine learning model used for binary classification

tasks. The SVM model finds the hyperplane separating two groups of
labeled points, which maximizes the margin between the hyperplane
and the nearest labeled data point in each class (Guenther and Schonlau,
2016). Since the objective of predicting the various cavitation levels as a
function of fluid temperature is not a binary classification task, the SVM
is adapted using the ECOC. The ECOC modification enables the SVM
model to be generalized to solve multi-class classification problems by
combining several SVMs that are each trained to perform a different
binary classification task (Yan and Yang, 2014). The ECOC SVM
models were created in MATLAB using the fitcecoc function, and
the ECOC SVMmodels were cross-validated in the samemanner as the
kNN models (Section 2.4.2).

Specifically, the data were randomly split into 70% training and
30% testing sets using theMATLAB function cvpartition. After
the ECOC SVM model was trained on the training set, the function
crossval was used to calculate the accuracy of the model in
predicting the cavitation level using the testing set. This process was
repeated 10 times, and the testing accuracies were averaged to obtain
the cross-validation accuracy.

2.4.4 Confidence intervals from the
bootstrapping method

To further validate our model performance results, a
bootstrapping method was used to obtain confidence intervals for
the average accuracy of all kNN and ECOC SVM models.
Bootstrapping methods are used to approximate the mean of a
distribution by taking the means of several random samples and
using the sample mean distribution to determine a confidence
interval for the true mean (Wehrens et al., 2000). This
confidence interval is more informative than a single sample
mean because it uses the standard deviation of the sample means
to give a range of values that contain the true mean with some level
of confidence (i.e., 95% confidence).

For each model (i.e., kNN or ECOC SVMwith a given cavitation
scheme), a sample of 10 trained models was collected by training
each one on a different random 70%/30% train–test split. The test
accuracies of all 10 models were averaged to obtain a sample mean
(i.e., the mean accuracy for that sample of 10 trained models). This
process was repeated 10 times to obtain a set of 10 sample means.
Finally, the average and standard deviation of the set of 10 sample

means were used to construct a 95% confidence interval for the
average accuracy of the given model. This entire bootstrapping
process was repeated for all 24 models.

2.5 Defining cavitation level

Cavitation level is not something that has been previously
defined, although prior studies have applied levels to cavitation
damage (Fadaei Kermani et al., 2018). Thus, this manuscript defines
the cavitation level as the number n of cavitation bubbles that appear
after the cavitation chamber is exposed to a shock wave with an
overpressure of 207 kPa from the pressure transducer PT0. The
different levels of cavitation are described using four different
“cavitation schemes.” These four schemes assess how precisely
the kNN and ECOC SVM models could predict cavitation bubble
numbers (e.g., delineating 5–10 bubbles from 15–20 bubbles) as a
function of temperature.

Since a standard definition for the “cavitation scheme” does not
exist, two different approaches were considered to determine the
appropriate bin sizes at each cavitation level. The first approach is
“data-driven” because bins are selected based on the distribution of the
cavitation bubbles obtained from the shock tube experiments. The
second approach is “distribution-driven” and focuses on the
similarity of bin sizes, regardless of the actual distribution of the
cavitation bubbles from the shock tube experiments. Two different
cavitation schemes were explored for both the “data-driven” and
“distribution-driven” approaches.

Table 1 shows the definition of each cavitation level for the two
different approaches and four cavitation schemes. These cavitation
level definitions apply to both the kNN and ECOC SVM models.

The two cavitation schemes (i.e., schemes 1 and 2) for the “data-
driven” approach were selected to reflect the actual numbers of
cavitation bubbles observed in each trial. This means that the levels
were defined such that each level reflected the actual cavitation bubble
number of at least one trial, and there were no levels that did not
correspond to a real trial. For example, if the trials contained 1, 2, 2, 5, 8,
10, and 12 bubbles, then the cavitation levels might be 1–5 and 8–12.
The cavitation levels are not necessarily equally sized and are selected
such that each level will have training trials that fall within those
cavitation levels.

The two cavitation schemes (i.e., schemes 3 and 4) for the
“distribution-driven” approach were created using equally sized
bins. These equally sized bins may contain cavitation levels that
are not associated with a trial since the number of cavitation bubbles
at that level may not have been observed during the shock tube
experiments.

3 Results

3.1 Shock wave pressures

Figure 4 shows the pressure history for PT0 and PT1 during the
shock tube experiments. The shock wave speed inside the shock tube
was 484 m/s (Mach 1.4).

The overpressure recorded by PT0 and PT1 during the
experiments was 207 kPa and 148 kPa, respectively.
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The magnitude and duration of the overpressure decrease when
the shock wave approaches the shock tube exit (i.e., the end of the
driven section).

3.2 Bubble detection program

Using the recorded images from the shock tube experiments, the
bubble detection program produced the grand total number of
shock-induced cavitation bubbles detected as well as an assigned
identification number for each bubble based on its first appearance
(and location) to facilitate tracking of bubbles through the frames.
To ensure accurate performance of the bubble detection program,
the bubble number was manually counted from a subset of
75 randomly selected images where shock-induced cavitation was
present. A subset size of 75 was chosen to validate the bubble
detection program, which corresponds to 10% of the images from

trials containing shock-induced cavitation. The variance between
the bubbles counted manually and those counted using the bubble
detection program did not exceed five (5) bubbles, even at the
highest cavitation levels.

The performance of the bubble detection program at different
temperatures is depicted in Table 2.

In addition, the bubble detection program also saves an
annotated image consisting of cavitation bubbles that are
outlined using the color red. An example of this bubble detection
annotation is shown in Figure 2B for the 60°C case.

3.3 kNN performance as a function of k
choice and cavitation scheme

The following subsections describe the performance of the kNN
algorithm, which varied by the choice of k and cavitation scheme.

TABLE 1 Definitions of the cavitation level by bubble number n for four different cavitation schemes and two approaches.

Data-driven approach Distribution-driven approach

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Cavitation level 1 n ≤ 5 n ≤ 1 n ≤ 1 n ≤ 1

Cavitation level 2 5 < n ≤ 20 1 < n ≤ 5 1 < n ≤ 5 1 < n ≤ 5

Cavitation level 3 n > 20 5 < n ≤ 10 5 < n ≤ 10 5 < n ≤ 10

Cavitation level 4 10 < n ≤ 25 10 < n ≤ 25 10 < n ≤ 15

Cavitation level 5 25 < n ≤ 75 25 < n ≤ 50 15 < n ≤ 20

Cavitation level 6 n > 75 50 < n ≤ 100 20 < n ≤ 30

Cavitation level 7 n > 100 30 < n ≤ 40

Cavitation level 8 40 < n ≤ 50

Cavitation level 9 n > 50

FIGURE 4
Pressure–time traces from pressure transducers PT0 and PT1, located on the driven section of the shock tube.
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3.3.1 k choice
The grand total of the number of bubbles was used to train the

kNNmodels using a k-value of 1, 2, 3, 5, and 7 neighbors to facilitate
prediction of the cavitation level.

The optimal k-values were determined based on the cross-
validation model accuracy, which is the average accuracy of
predicting the cavitation level using ten kNN or ECOC SVM
models, where each machine learning model was trained and
tested on a new random train–test split of 70% training and 30%
testing, as described in Section 2.4.

The optimal (i.e., highest performing) value for k depended on
the levels defined by the cavitation scheme (Table 1). The cross-
validation accuracies, by choice of k and cavitation scheme, are
depicted in Figure 5.

Considering the average cross-validation accuracy across all four
cavitation schemes, a k-value of 3 performed the best, while the
recommended k-value of 5 performed only slightly worse (1%
difference). However, the optimal k-value also varied by the
cavitation scheme. For example, a k-value of 1 produced the best
results for cavitation scheme 2, but the worst results for
cavitation scheme 3.

It can be helpful to compare the results of an individual machine
learning model to gain more insights into where predictions were
correct and incorrect. Individual model accuracy was depicted using
a graphical representation (i.e., Figure 6; Figure 8), where a
prediction line is used to illustrate when the kNN model
predicted the testing points. In the graphical representation, the
predictive outputs for the cavitation level at the different values of k
are shown. Confusion matrices for the predictions by the kNN
model are also provided (i.e., Figure 7; Figure 9). In the confusion
matrix, the rows describe the true class and the columns represent
the predicted class. The true class is the actual cavitation level
corresponding to the testing point, and the predicted class is the
cavitation level predicted by the machine learning model for that
testing point’s temperature. The numbered rows and columns in the
confusion matrix correspond to the cavitation level in a scheme. For
example, a confusion matrix for cavitation scheme 1 would be 3 × 3
since there are three possible cavitation levels. The degree of
correctly classified points in the legend and elements of the
confusion matrix describes the number of testing points that
were correctly classified by the model.

Since there are 13 testing points that are randomly selected,
following the 70% training/30% testing split of the data, the sum of
all the values in each confusion matrix is 13. Thus, the confusion

TABLE 2 Mean number of bubbles following the manual count and using
the bubble detection program as a function of fluid temperature. The fluid
temperature is the input parameter for the machine learning model. The
last column is the difference in the mean number of bubbles calculated
using the formula: manual–program.

Mean number of cavitation bubbles

Manual Program Difference

20°C 0.32 0.12 +0.2

30°C 0.86 0.71 +0.15

40°C 4 6.4 −2.4

50°C 22.3 28 −5.7

60°C 92 97.5 −5.5

FIGURE 5
Cross-validation accuracy by the choice of k and the cavitation scheme.
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matrix provides the outcome for each of the 13 testing points
considered. There may be more than one training and testing
point at each temperature for a given cavitation level and
scheme. This is attributed to the randomly generated 70%
training/30% testing split of the data. The plots of kNN
performance (Figure 6; Figure 8) do not show the number of
testing and training points at a given temperature. Furthermore,
the confusion matrices (Figure 7; Figure 9) for the kNN performance
highlight the number of testing points at a cavitation level, but do
not indicate the number of points occurring at a specific
temperature. As a result, the number of testing and training
points at a given temperature for the different kNN models is
included in Supplementary Tables S1–S4, which can be found in
Supplementary Materials.

3.3.2 Cavitation scheme
The cavitation scheme had a substantial impact on model

performance. While there was not a large difference between the

two data-driven schemes (1 and 2) or between the two distribution-
driven schemes (3 and 4), the variation in performance between the
data- and distribution-driven schemes was large. The data-driven
schemes performed 10%–20% better than the distribution-driven
schemes, regardless of the k-value. It is worth noting that even the
worst performing k-value (i.e., k of 1) in the worst performing
scheme (i.e., scheme 3) still achieved an accuracy of 66.54%.

The choice of the cavitation scheme impacts the cavitation level
predicted by the kNN model. For example, Figure 8 shows the model
performance for a k-value of 5 using schemes 1 and 2, while the
confusion matrices for these two schemes are shown in Figure 9.
Figure 8A shows that the model does not predict cavitation level
2 well using cavitation scheme 1 (5 < n ≤ 20 bubbles) since the
prediction (blue line) made by the model passes through only one
classified testing point (i.e., a fluid temperature of 45°C). Comparatively,
Figure 8A shows that the model predicts cavitation levels 1 and 3 well
when considering scheme 1 since the prediction line passed through all
of those classified testing points. The confusion matrix for the results in
Figure 8A is shown in Figure 9A, where the number of testing points
that were predicted correctly and incorrectly by the model is shown.
Additionally, Figure 8B shows that the model does not do as well at
predicting cavitation levels 2–4 using cavitation scheme 2. As a result, it
can be discerned that the machine learning model is not accurately
distinguishing whether a given temperature will produce
5–10 cavitation bubbles by comparing the cavitation level definitions
given in Table 1. This is because 5–10 cavitation bubbles can occur at
several different temperatures (e.g., 35°C, 40°C, and 45°C).

3.4 ECOC SVM performance as a function of
the cavitation scheme

The ECOC SVM outperformed the kNN model for all the
cavitation schemes considered. This may be due to the lack of a
parameter, similar to the k choice for the kNN, that needs to be
optimized for the ECOC SVM model. The ECOC SVM model does
require a “cost” parameter C, which affects the weight (or cost)
assigned by the algorithm to each misclassified training point
(i.e., the labeled point containing the fluid temperature and the
actual cavitation level information from the trial). However, C is
automatically processed using soft-margin minimization by
MATLAB, which assigns the cost of each misclassification of the
cavitation level based on the distance between the misclassified point
and the corresponding margin for the class. The soft-margin
minimization process allows the ECOC SVM algorithm to
differentiate between misclassified points that are close to being
classified correctly and those that are far from being classified
correctly. As a result, the ECOC SVM model is better than the
kNN algorithm because it is less sensitive to noise in the data.

Since the C is automatically processed for the ECOC SVM
model, the performance is only compared across cavitation
schemes. The cross-validation accuracies for the ECOC SVM
models, by the cavitation scheme, are depicted in Figure 10.

Individual ECOC SVM model accuracy was depicted using a
graphical representation (i.e., Figure 11), where a prediction line is
used to illustrate when the model predicted the testing points.
Confusion matrices for the predictions by the ECOC SVM model
are also provided (i.e., Figure 12).

FIGURE 6
kNN model performance using cavitation scheme 1 for (A) k = 2,
which is the best performing value of k, and (B) k = 3, which is the
worst performing value of k.
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Supplementary Tables S5, S6, which can be found in
Supplementary Materials, show the number of training points
and testing points for the ECOC SVM models.

The cavitation scheme had a smaller overall effect on ECOC
SVM performance when compared with the kNN’s performance.
The simplest cavitation scheme (i.e., scheme 1) produced the highest
accuracy of 93.11%. The second cavitation scheme performed only
4% worse than scheme 1, with an accuracy of 89.56%. Schemes 3 and
4 also had good accuracies of 88.89% and 89.56%, respectively. In all
cases, the ECOC SVM model did at least 3% better than the best-
performing kNN models in the data-driven schemes, but did up to
13% better than kNN for the distribution-driven cavitation schemes.
The comparison of the two best-performing schemes (1 and 2) for
the ECOC SVM is shown in Figure 11 and Figure 12. Specifically, the
predictive performance for schemes 1 and 2 is shown in Figure 11,
and the corresponding confusion matrices are shown in Figure 12.

The ECOC SVM model was able to generate much more
accurate predictions of the cavitation level than the kNN models,
regardless of the number of k neighbors chosen or the cavitation

scheme used. Using a simpler cavitation scheme (i.e., scheme 1),
both the kNN and ECOC SVM models produced a cross-validation
accuracy above 85%, with the ECOC SVM obtaining almost 95%
accuracy. Using the more complex cavitation scheme (i.e., scheme
4), ECOC SVM still outperforms the best kNN model (i.e., k = 3) by
11%. A comparison of the machine learning algorithms by the
cavitation schemes can be seen in Table 3.

3.5 Confidence intervals from the
bootstrapping method

The bootstrap mean accuracy, standard deviation, and 95%
confidence intervals for each model and cavitation scheme are
presented in Supplementary Materials (Sections 1.5 and 2.6).
Overall, the bootstrapped mean accuracy was within 4% of the
cross-validation accuracy, and several of the cross-validation
accuracies fall into the bootstrapped confidence intervals. The
bootstrapped mean accuracies for schemes 1, 3, and 4 were within

FIGURE 7
Confusion matrices for the kNN model using cavitation scheme 1 with (A) k = 2, which is the best performing value of k, and (B) k = 3, which is the
worst performing value of k. The total number of rows and columns in the confusion matrix correspond to the number of cavitation levels defined by the
cavitation schemes in Table 1.
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2% of the cross-validation accuracies. There was a larger difference
(8.7%, on average) between the cross-validation and bootstrapped
accuracies for cavitation scheme 2. The overall trends that cavitation
scheme 1 produced the highest accuracy and that the ECOC SVM
models had higher accuracy than the kNNmodels were consistent using
both the cross-validation and bootstrap mean accuracy methods. Since
cavitation schemes 1, 3, and 4 hadmore consistent results between both
the cross-validation and bootstrap mean accuracy methods, this could
be an indication that these schemes are more robust. Comparing cross-
validation and bootstrapped accuracies could be a useful tool in
determining the ideal cavitation scheme for a model. The benefits
and limitations to each method for assessing accuracy are further
evaluated in Section 4.

4 Discussion

The results from the present study indicate that machine
learning algorithms like kNN and ECOC SVM are capable of

accurately predicting fluid behavior (e.g., shock-induced
cavitation) given a fluid condition like temperature. The kNN
and ECOC SVM models were able to achieve 93.11% cross-
validation accuracy even with a very small training set (n = 45)
by machine learning standards (Shaikhina et al., 2015; Zhang and
Ling, 2018). These findings support the use of machine learning
methods to investigate cavitation as a mechanism of bTBI.

Cross-validation accuracies and bootstrapped mean estimates
with confidence intervals were the two different methods applied to
estimate the accuracy of the kNN and ECOC SVM models. The two
approaches have various benefits and limitations. Cross-validation
methods are simple to compute and require a low computational
load (Koul et al., 2018), but the accuracy estimates obtained using
cross-validation methods tend to have high variance depending on
the specific train–test split (Koul et al., 2018). In contrast,
bootstrapping methods are more complex and require a heavier
computational load than cross-validation methods, but
bootstrapping methods provide estimates that have lower
variance (Wehrens et al., 2000). Therefore, bootstrapping
methods may be more useful than cross-validation methods
when the computational cost is not excessive. Overall, the two
methods showed very good agreement for cavitation schemes 1,
3, and 4 (within 2%). Cavitation scheme 2 had an average percent
difference of 8.7%, which may be attributed to the definitions of
cavitation levels 5 and 6. The definitions of levels 1–4 were the same
between cavitation schemes 2 and 3, but scheme 3 had much higher
bootstrapping accuracies, which may indicate the variation is
attributed to cavitation levels 5 and 6.

The results from the cross-validation accuracies and
bootstrapped mean estimates suggest that both methods may be
useful in determining the most accurate cavitation scheme. It is
common to perform cross-validation for machine learning
(Refaeilzadeh et al., 2009), and many current papers use hold-out
cross validation, where the accuracy of the model is estimated based
on the test accuracy of a model on a single test set (Koul et al., 2018).
The cross-validation methodology used in this paper is an adapted
hold-out technique described in Section 2.4.2, which took an average
of 10 different models with different test sets and is thus even more
reliable due to less dependence on the specific train–test split.
Conversely, bootstrapping is much more time-consuming because
it requires the training of each model type several times. In the
bootstrapping methodology used in this paper, each model was
trained 100 times, resulting in the overall training of 2,400 models.
Each model was trained 100 times as per the recommendation by
Bouckaert (2003) on how to choose between algorithms.
Consequently, the mean and variance of the algorithms’
accuracies are estimated using 100 individual accuracies for each
algorithm. The bootstrapping approach can be a less feasible option
for a more costly training process, such as one that has a large
amount of data or one that involves more complex models
(i.e., neural networks that take longer to train) (Wehrens et al.,
2000). For smaller datasets where the cost of training is
comparatively low, the inclusion of bootstrapping methods can
help establish confidence in model accuracy.

While the shock-induced cavitation data used for this study were
not collected in vivo nor did it consider a biofluid such as
cerebrospinal fluid in the chamber, the machine learning
approach should be considered in the future to predict the

FIGURE 8
kNN model performance for k = 5 using (A) cavitation scheme
1 and (B) cavitation scheme 2.
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influence of multiple biological parameters (e.g., temperature,
salinity, pH, geometry, viscosity, and ion concentration) on
biofluid behavior in blast environments. Although these machine
learning models would inherently face some of the same non-
parametric uncertainty as conventional models (e.g., the actual
number or size of cavitation bubbles generated in the brain by
shock exposure), the ability to validate each biological parameter’s
effect in ex vivo experiments increases the likely biofidelity of the
predicted biofluid behavior using in vivo models or computational
simulations.

4.1 Comparison of kNN and SVM models

The machine learning models in this study only considered one
feature (i.e., fluid temperature), which has a strong and positive
correlation with the number of cavitation bubbles. The results
consistently showed that the ECOC SVM outperforms the kNN
when predicting the cavitation level based on fluid temperature.
Using other data structures (e.g., non-linear data or data points that

have multiple labels), the kNN may be preferred over the ECOC
SVM because the ECOC SVM generally does not handle the other
data structures well. Additionally, the kNN may also perform better
than the ECOC SVM when the amount of training data relative to
model features (i.e., data inputted into the machine learning model)
is increased (Singh et al., 2016; Chahar and Kaur, 2020).

The ECOC SVM is generally considered simpler and more
interpretable than the kNN but can only identify a smaller set of
patterns when compared with the kNN (Singh et al., 2016; Chahar and
Kaur, 2020). Thus, it follows that the ECOC SVM would perform well
on the one feature data set because the pattern is simple. The ECOC
SVMmodel also tends to perform better than the kNNwhen there are a
large number of inputs relative to sample size (Yan and Yang, 2014;
Gaye et al., 2021). As a result, it would be advantageous to include
additional inputs like salinity, pH, geometry, viscosity, and ion
concentration in an ECOC SVM model since this action would
likely improve predictions of shock-induced cavitation behavior to
investigate cavitation as a bTBI mechanism.

Both kNN and SVM are shallow and supervised learning
methods. Shallow versus deep learning refers to the architecture

FIGURE 9
Confusion matrices for the kNNmodel with k = 5 using (A) cavitation scheme 1 and (B) cavitation scheme 2. The total number of rows and columns
in the confusion matrix correspond to the number of cavitation levels defined by the cavitation schemes in Table 1.
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of a model and the number of layers of representations these models
contain (Zhong et al., 2019). Supervised versus unsupervised
learning refers to whether or not the model is trained using
labeled (by humans) training data or is allowed to define its own
groups and clusters based on the model’s own detected features in
unlabeled data (Rajoub, 2020). Both supervised and shallow learning
methods are appropriate for labeled datasets with simple patterns
and provide high accuracy when making predictions (Malach and
Shalev-Shwartz, 2019; Robles Herrera et al., 2022). The pros and
cons of a deep learning approach for future work with these types of
data are discussed in Section 4.4.

In future, the machine learning model will be expanded by
increasing the number of input parameters and datasets. The
performance of the modified machine learning model, containing
the expanded input and data, will be tested using other commonly
used supervised learning algorithms (e.g., decision trees, random
forest, and XGBoost) and compared with the results from the kNN
and ECOC SVM. Decision trees are often used in healthcare
research and can handle versatile data structures, which would be
useful to consider in a version of the model that applies a wider set of
inputs (Charbuty and Abdulazeez, 2021). Decision trees were not
selected for the current work due to the model design (a single input
and output with different numbers of levels). This is attributed to
decision trees being biased toward more levels, which could have
impaired the identification of the optimal cavitation scheme in this
work. Random forest algorithms create a set of decision trees that are
trained using different subsets of the training points. Random forest
models can be more robust to overfitting than a single decision tree
and can handle larger datasets. As a result, random forest models
may be useful for a bTBI prediction model that considers a larger
number of input parameters for cavitation and other medical data.

The capability to handle larger datasets was not necessary in this
work, particularly when weighted against the decreased
interpretability of the results and the increased number of
hyperparameters (e.g., number of trees, tree depth, and number
of features) of a random forest algorithm when compared with the
kNN or ECOC SVM model (Ao et al., 2019). XGBoost is a boosting
method that trains multiple models sequentially to help improve
each new decision tree. While the speed and versatility of XGBoost
make it an appealing option for a model having multiple input
parameters, the literature has shown that the XGBoost technique is a
sub-optimal model for small datasets and was therefore not
considered in this work (Azmi and Baliga, 2020).

4.2 Choice of k

The suggested k-value of 5, calculated using the square root of
the training data, did not produce the highest cross-validation
accuracy. Rather, the highest cross-validation accuracy (averaged
over all cavitation schemes) was for a k-value of 3 (i.e., best k-value).
There was a very small difference (less than 1%) between the average
performance of the kNN model when using k nearest neighbor
values of 2, 3, and 5. The k-values of 1 and 7 averaged 78% accuracy
across all cavitation schemes, only 2%–2.5% less accurate than the
other k-values. The results of the cross-validation highlight the
importance of performing an analysis to determine the optimal
choice of k. While the square root of the training data size is a good
suggested starting point, the suggested k-value may not be the
optimal k value for all data.

Although the ideal value of k may change in the data range
(i.e., for each trial within a particular cavitation scheme), the best k-

FIGURE 10
Cross-validation accuracy of the ECOC SVM models based on the cavitation scheme for cost C = 1.
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value was used in the analysis for simplicity (Garcia-Pedrajas et al.,
2017). Thus, future work should consider the implementation of a
data-driven k selection method where the optimal value of k is
determined for each trial (Cheng et al., 2014). For instance, an
adapted correlation matrix kNN could provide additional
classification accuracy for the kNN model.

4.3 Choice of the cavitation scheme

A universal method of quantifying the level of cavitation using
the bubble number does not exist. As such, this paper explored
several different definitions of the cavitation level using the term
“cavitation scheme” to analyze the predictive ability of the kNN and
ECOC SVM models. The choice of the cavitation scheme impacted
the predictive accuracy of kNN models strongly and moderately
affected ECOC SVMmodels. Two approaches to defining cavitation
levels were explored. The first approach is the “data-driven”
cavitation scheme, which bases the distribution and definition of

the cavitation level on the actual data from the shock tube
experiments. The data-driven schemes were selected so that each
possible cavitation level was reflective of at least one trial from the
dataset. The second approach is the “distribution-driven” cavitation
scheme, where a similar number of bubbles are selected in each level
or “bin.” In the “distribution-driven” schemes, there may not be
trials in the training data for a given bin (i.e., it is possible to have a
bin without any data describing the number of cavitation bubbles).

Overall, the data-driven approach performed better than the
distribution-driven approach. The simplest scheme
(i.e., scheme 1) was defined using the data-driven approach
and achieved the highest accuracy. This result is as expected
since the more data points fit within each classified level/bin, the
more training points the machine learning algorithms had to
“learn” at each level. However, the other cavitation schemes
using either the data-driven or distribution-driven approach
were still able to achieve high accuracy when predicting the level
of cavitation. This demonstrates the need for an ideal cavitation
scheme definition that maximizes both predictive accuracy and
result specificity. For example, if both cavitation schemes 1 and
2 yield an accuracy above 90%, it may be more beneficial to
select the more detailed cavitation scheme (i.e., scheme 2 for
this study).

4.4 Limitations and future directions

One limitation in the results presented in this paper is the
small size of the dataset, which may result in the conclusions
being a function of a random decision by the algorithms.
However, despite the small size of the training dataset, the
high accuracy obtained from the kNN and ECOC SVM
algorithms supports continued efforts in applying machine
learning to predict shock-induced cavitation. The present
study demonstrates initial evidence that machine learning can
be used to make predictions of cavitation behavior based on
parameters related to blast injury and that these findings can be
validated using a shock tube model.

This study only considered the kNN and ECOC SVM models
since both have been considered in applications related to biology or
cavitation. With more input parameters (e.g., ion concentration and
viscosity), it is likely that ECOC SVM would continue to perform
better than kNN. The current model is focused on predicting the
cavitation bubble number (i.e., cavitation level). For other output
parameters, like the strength of cavitation bubble collapse, it could
also be useful to consider a different algorithm type (e.g., decision
trees) that has been used in the literature (Wang et al., 2021).
Additionally, as the data inputs increase in number and complexity,
it could be useful to compare the performance of an unsupervised
algorithm (i.e., k-means clustering) to the supervised ECOC SVM.
As mentioned earlier, unsupervised machine learning describes
algorithms that analyze unlabeled datasets without any human
intervention (Rajoub, 2020). A key limitation to applying
unsupervised learning to more complex data from clinical
settings is interpretability. Since unsupervised algorithms may
return categories that are not consistent with human-defined
categories, the practical implications of the machine learning
results can be difficult to interpret and pose challenges when

FIGURE 11
ECOC SVMmodel performance for costC= 1 using (A) cavitation
scheme 1 and (B) cavitation scheme 2.
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evaluating their accuracy. Additionally, the kNN and ECOC SVM
may be less prone to overfitting, when compared with unsupervised
learning, since cross-validation methods can be used to help prevent
overfitting in supervised learning (Koul et al., 2018). This is not easy

in unsupervised learning due to the lack of labels associated
with the data.

In this study, there was little value to applying unsupervised
machine learning since a single, highly correlated input (i.e., fluid

FIGURE 12
Confusion matrices for the ECOC SVM model with cost C = 1 using (A) cavitation scheme 1 and (B) cavitation scheme 2. The total number of rows
and columns in the confusion matrix correspond to the number of cavitation levels defined by the cavitation schemes in Table 1.

TABLE 3 Cross-validation accuracies for the four cavitation schemes as a function of all kNN and ECOC SVM machine learning models.

Cross-validation accuracies

Scheme 1 (%) Scheme 2 (%) Scheme 3 (%) Scheme 4 (%)

kNN with one neighbor 86.32 86.99 66.54 74.75

kNN with two neighbors 86.99 84.95 75.51 76.39

kNN with three neighbors 84.95 86.89 74.33 78.23

kNN with five neighbors 85.29 85.29 74.18 77.51

kNN with seven neighbors 86.32 86.32 70.55 69.43

ECOC SVM with C = 1 93.11 90.00 88.89 89.56
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temperature) and output (i.e., cavitation level) were considered.
Unsupervised learning has more potential benefit when there are
complex patterns and interactions that a humanmight not be able to
readily discern. In the context of bTBI, supervised learning would be
beneficial to characterize singular, easily labeled outcomes (e.g., level
of cavitation and presence or absence of coma). On the other hand,
unsupervised learning methods could be more beneficial in
detecting the underlying patterns in cavitation and intracranial
pressure, which lead to moderate bTBI (Bröker et al., 2022).

The influence of chamber geometry on shock-induced
cavitation was not assessed in this study, which is one
limitation of this work. This limitation will be addressed in
future work involving shock tube experiments using multiple
chamber geometries to understand how the geometry will
influence cavitation behavior. In this case, the machine
learning algorithms would first be trained using the
dimensions from multiple chamber geometries to see if
cavitation can be predicted without the influence of geometry.
If the prediction ability of the machine learning algorithms using
the different geometries is poor, then the geometry would be
added as a model input feature which will be
experimentally validated.

While the kNN and ECOC SVM models presented in this study
predicted shock-induced cavitation behavior based on the fluid
property temperature, there may be an application where the
machine learning model could predict the level of shock-induced
cavitation that could lead to a bTBI. In this case, cavitation above a
certain level would result in a model prediction of bTBI, while
cavitation below that level would result in a prediction of no bTBI.
To achieve something like this, machine learning could be coupled
with experiments or simulations. Themodel would be given the blast
and fluid conditions (overpressure, temperature, etc.) as inputs and
would output whether a bTBI would be incurred or not, based on the
predicted level of cavitation. This machine learning model may also
be able to make predictive conclusions about the severity of the bTBI
using the predicted level of cavitation. In the same way that Fadaei
Kermani et al. (2018) assigned a cavitation index to a level of damage
severity, the cavitation levels defined in this study could be assigned
to levels of bTBI severity. For example, using cavitation scheme 1,
level 1 could correlate to mild bTBI, level 2 is moderate, and level 3 is
severe. These levels could be validated using real patient data, where
the diagnosed bTBI severity is the output, and consider different
input conditions such as age, presence of lesions in the brain,
diagnostic scores, and magnitude of the overpressure (i.e., shock
wave). Such a model could provide high clinical value due to the
current ethical and practical challenges in quantifying brain injury
severity and predicting injury outcomes. However, this model would
require detailed knowledge of the injury conditions, and clinicians
might be hesitant to discharge patients or recommend care plans
based on the output from the algorithm. That being said, existing
studies have already demonstrated the use of machine learning
algorithms to predict patient outcomes or brain injury severity
(Vergara et al., 2017; 2018; Hale et al., 2018). Despite the
logistical obstacles posed by clinical implementation of machine
learning algorithms, the low-risk nature of a potentially
transformative reward supports investigation into this avenue.
While ultimate medical recommendations should incorporate
medical expertise and a variety of tests, machine learning is a

potential option for clinicians to use patient data to help inform
diagnostics and treatment plans. In the case of a heterogeneous
condition like blast injury, models that can help accurately classify
injury severity and predict outcomes can be a useful tool in the
overall kit used to improve patient care.

This study further demonstrates the ability of machine learning
to predict cavitation behavior in a fluid with good accuracy, which
has implications for blast-injury models.

The machine learning algorithms presented in this study have
the potential to quantify injury severity based on a mechanistic
metric. If future machine learning models are adapted to predict
injury severity based on the predicted cavitation level, then this
would provide substantial support to the theory that cavitation is the
main mechanism driving bTBI.

Consequently, the results of the present study emphasize the
novel benefit that machine learning can offer for understanding
the mechanisms of bTBI and predicting outcomes following
this injury.
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