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Introduction: The decoding of the motor imaging electroencephalogram (MI-EEG)
is the most critical part of the brain-computer interface (BCI) system. However, the
inherent complexity of EEG signals makes it challenging to analyze and model them.

Methods: In order to effectively extract and classify the features of EEG signals, a
classification algorithm of motor imagery EEG signals based on dynamic pruning
equal-variant group convolutional network is proposed. Group convolutional
networks can learn powerful representations based on symmetric patterns, but
they lack clear methods to learn meaningful relationships between them. The
dynamic pruning equivariant group convolution proposed in this paper is used to
enhance meaningful symmetric combinations and suppress unreasonable and
misleading symmetric combinations. At the same time, a new dynamic pruning
method is proposed to dynamically evaluate the importance of parameters, which
can restore the pruned connections.

Results and Discussion: The experimental results show that the pruning group
equivariant convolution network is superior to the traditional benchmark method in
the benchmark motor imagery EEG data set. This research can also be transferred to
other research areas.
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1 Introduction

The brain-computer interface (BCI) allows the human brain to directly interact with
computers or other external devices using electroencephalogram (EEG) signals. The research
of the human BCI mainly includes three types: the invasive BCI, partial BCI, and non-
invasive BCI. Although there are many BCI systems and technologies, the non-invasive BCI
(EEG) has been widely studied because of its low cost, simplicity, and good time resolution.
Motor imaging (MI) is one of the most widely studied BCI applications based on EEG, which
can help the disabled and elderly to complete specific tasks through imagination without
using limbs (Lotte et al., 2007; Pfurtscheller et al., 2006).

The design of a typical EEG-based brain-computer interface system for motor
imagination is shown in Figure 1. Generally speaking, the BCI system of motor
imagination is mainly composed of five parts: signal data acquisition, data preprocessing,
feature extraction, feature classification and the equipment control interface (Subasi, 2007).
The data acquisition stage includes MI-EEG signal acquisition and analog-to-digital

OPEN ACCESS

EDITED BY

Adriano De Oliveira Andrade,
Federal University of Uberlândia, Brazil

REVIEWED BY

Fangzhou Xu,
Qilu University of Technology, China
Ting Li,
Chinese Academy of Medical Sciences
and Peking Union Medical College, China

*CORRESPONDENCE

Wei Zhang,
2351014850@qq.com

RECEIVED 11 April 2022
ACCEPTED 26 April 2023
PUBLISHED 26 May 2023

CITATION

Tang X, ZhangW,WangH, Wang T, Tan C,
Zou M and Xu Z (2023), Dynamic pruning
group equivariant network for motor
imagery EEG recognition.
Front. Bioeng. Biotechnol. 11:917328.
doi: 10.3389/fbioe.2023.917328

COPYRIGHT

© 2023 Tang, Zhang, Wang, Wang, Tan,
Zou and Xu. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 26 May 2023
DOI 10.3389/fbioe.2023.917328

https://www.frontiersin.org/articles/10.3389/fbioe.2023.917328/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.917328/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.917328/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2023.917328&domain=pdf&date_stamp=2023-05-26
mailto:2351014850@qq.com
mailto:2351014850@qq.com
https://doi.org/10.3389/fbioe.2023.917328
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2023.917328


conversion through an EEG cap. Because the amplitude of the EEG
signal is very weak, it is easily affected by EMG, eye electricity, and
AC power frequency interference. In the data preprocessing stage,
time-domain filtering and spatial filtering are carried out to improve
its signal-to-noise ratio. In the feature extraction stage, the features
for specific tasks are extracted from EEG data for classification. In the
feature classification stage, a machine learning algorithm is used to
decode its meaning from EEG features. Finally, in the equipment
control interface stage, instructions are sent to peripherals, such as
computers, wheelchairs, and robots, according to the meaning of the
EEG signals (Bhattacharyya et al., 2019; Bigirimana et al., 2020; Li
et al., 2019; Orset et al., 2021; Shi et al., 2020; Song and Kim, 2019).

The theoretical basis of MI signal generation is event-related
desynchronization and event-related synchronization. When people
imagine a limbmovement in their brain, the corresponding area of the
sensorimotor cortex will be in an active state, and the alpha and beta
waves in the EEG signals generated by this area will be attenuated in
amplitude, which is called event-related desynchronization. On the
contrary, if the brain does not carry out the motor imagery task, the
amplitude of the alpha and beta spectrum concussion of the EEG will
be significantly enhanced, which is called event-related
synchronization. At present, there are many research studies on
the BCI of motor imagination, such as left hand movement, right
hand movement, leg movement, and tongue movement.

For a long time, many research studies on the EEG interface
have been devoted to feature extraction and classification because
they have a crucial impact on the performance of the BCI system.
The common space pattern (CSP) algorithm is a classical algorithm
used to extract the characteristics of original EEG signals. The CSP
algorithm and several improved algorithms have been developed
and applied to the BCI of motor imagination (Wang et al., 2006)
(Aghaei et al., 2013). For example, Aghaei et al. designed a separable
common spatial spectral pattern algorithm for the BCI of motion
imagination, which has certain advantages in computational
complexity. In addition, in the EEG feature extraction stage,
many time–frequency signal processing methods have also
achieved good results, such as short-time Fourier transform
(STFT), empirical mode decomposition (EMD), and continuous
wavelet transform (CWT) (Lee and Choi, 2018; Park et al., 2013;
Tabar and Halici, 2017). Tabar and Halici used STFT to integrate the
time, frequency, and position information extracted from the
original EEG signal and convert it into an image. Lee and Choi
used continuous wavelet transform to transform EEG signals into a
time–frequency spectrum. Sometimes, in order to improve the
computational efficiency, a feature selection process is added to

the extracted features to remove redundant information. In the
feature classification stage, the commonly used algorithms are linear
discriminant analysis (LDA), support vector regression (SVR), and
artificial neural network (Naseer and Hong, 2013; Siuly and Li, 2012;
Subasi, 2005). Naseer and Hong applied the LDA classifier to the
motor imagination classification task based on two different features.
Siuly and Li designed a least square support vectormachinemethod to
classify motion imagination signals. However, there is a common
problem in these traditional algorithms, and they rely toomuch on the
prior knowledge of EEG signal processing.

With the deepening of the application of the deep learning method
in the field of EEG signal processing, the end-to-end learning method
combining EEG feature extraction and classification shows obvious
advantages. In recent years, many EEG classification methods based on
the deep learning model show superior performance to traditional
methods (Ek and Bma, 2021; Idowu et al., 2021; Sun et al., 2020; Sun
et al., 2022a; Yang et al., 2015). As the first deep learning model
introduced into EEG signal processing, the CNN integrates EEG feature
extraction and classification and has achieved good final classification
results. At the same time, graph convolutional network and transfer
learning technology have also been introduced into brain computer
interface research, and some new progress has also been made (Zhang
et al., 2021; Sun et al., 2022b; Sun et al., 2023).

Although CNNs have achieved significant performance
improvement on some benchmark problems, their training
efficiency and generalization ability still need to be improved.
One concept developed for this purpose is equivariant, which
again draws inspiration from humans. Humans can recognize
familiar objects, although they differ in location, size, angle of
view, lighting conditions, and background. In addition, we can
not only identify them accurately but also describe the types and
parameters of relevant changes in detail (Schmidt et al., 2016).
Equivariant is closely related to the concept of symmetry. Since these
changes will not change the essence of the underlying objects, they
should be treated and learned as a single concept. Recently, several
methods have adopted these ideas to maintain symmetry, including
translation (LeCun et al., 1989), scaling (Sosnovik et al., 2020), and
general symmetry group (Bekkers, 2020; Romero andHoogendoorn,
2020; Venkataraman et al., 2020).

Although a group convolution network (GCNN) can learn
powerful representation based on symmetric patterns, it is an
important model to improve the learning ability of small
samples. However, the existing group convolution network model
structure still has a large number of redundant weights, which is easy
to overfit and difficult to deploy on the mobile platform with limited
computing power. In this paper, a pruning group convolution
network is proposed. By pruning the connections dynamically,
the robustness of EEG recognition is significantly improved.
Different from the previous greedy way to complete this task, we
combine properly splicing the connections in the whole process to
avoid incorrect pruning and make it a continuous dynamic update
of network weights. The experimental results show that the method
is effective. While improving the robustness of a small sample EEG
recognition task, our method can effectively compress the number of
parameters in the GCNN with a compression factor of 15 ×. This
method is superior to the common GCNN to a great extent.

Specifically, we propose a robust group convolution based on
dynamic pruning group convolution. In the process of dynamic

FIGURE 1
BCI system.
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pruning group convolution, pruning is used to emphasize
meaningful symmetric combinations and suppress unreasonable,
redundant, and possibly misleading combinations. In addition, we
propose a new method of dynamic pruning and experimentally
prove that our dynamic pruning equivariant group convolution
network performs better than the traditional group equivariant
network and other benchmark methods on BCI IV 2B and self-
collected EEG datasets.

The contribution of this paper is as follows:

(1) A group convolution network based on time–frequency spatial
EEG representation is proposed, which integrates the
spatiotemporal spectral information of EEG signals into a
unified network framework. The group convolution of the
EEG feature extraction layer keeps equivariant under
symmetric transformation, which constrains the network and
improves the statistical efficiency, thus contributing to the
generalization of network performance.

(2) We propose a general group theory framework about pruning,
that is, dynamic pruning group convolution, which can
adaptively capture the discriminative patterns in brain
regions, frequency bands, and time domains, effectively
compress the number of parameters in the GCNN, and
dynamically evaluate the importance of parameters through
dynamic pruning, so as to restore the pruned connections in
time, reducing the number of parameters at the same time. It
helps to find out the really important connections and improves
the robustness of the model.

(3) Several experiments on two benchmark datasets show that our
algorithm is always superior to state-of-the-art models.

The rest of this paper is arranged as follows. The second section
briefly introduces the related work. The third section describes the
process of EEG pruning group convolution network analysis and
proposes a pruning group convolution (DPGEN) framework for
EEG classification. In the fourth section, experiments are carried out
on the open dataset BCI IV 2B and the self-collected dataset of the
laboratory, and the experimental results are analyzed. Finally, the
fifth section summarizes the paper and prospects the future work.

2 Related work

2.1 EEG-ConvNet

Recently, deep learning has attracted increasing attention in
many types of machine learning problems in the medical field. The
end-to-end training of deep neural networks (ConvNets) from
original signals is a promising deep learning technology. These
ConvNets utilize the hierarchical structure of many natural
signals. A deep convolution neural network (EEG-ConvNet) for
EEG recognition was proposed by Lawhern et al. (2016). The model
eliminates the dependence on the channel layout by using spatial
filtering in the first layer (Blankertz et al., 2008). Springenberg et al.
(2014) focused on spatiotemporal convolution in spatial filter space
to capture the spatiotemporal relationship of the EEG. At the same
time, in order to reduce the total number of parameters, the model
omits the fully connected layer. This model can be used together

with a small EEG database and can improve the latest performance
of multiple tasks and subjects in some cases, which challenges the
concept that large datasets are required to obtain the best
performance.

2.2 Group convolution network

Deep convolutional neural networks (CNNs) have been
proved to be very powerful models, such as image, video, and
audio sensory data. Convolution weight allocation and depth
(and other factors) are important for good prediction
performance. The convolution layer can be used effectively in
an in-depth network. One important reason is that the
convolution layer is translationally equivariant: moving the
image and feeding it through several layers is the same as
feature mapping (at least reaching the edge effect) obtained by
feeding the original image through the same layer and then
moving it. In other words, symmetry (translation) is
maintained by each layer, which makes it possible to utilize
symmetry not only at the first layer but also at higher levels of
the network.

Cohen and Welling (2016) showed how to generalize
convolutional networks to more general symmetric groups,
including rotation and reflection transformations, and the
concept of equivariant is the key to this generalization. For
some selected groups, the model constructs a representation
with a linear group space structure. This means that each
vector in the representation space has an attitude associated
with it, and this additional structure can more effectively model
the data: convolution nuclear energy in the group convolution
network detects the co-occurrence of features with priority-related
attitude and can match such feature sets in each global attitude
through an operation called group convolution.

In deep learning, general equivariant is more useful than
invariance because it is generally impossible to determine
whether features are in the correct spatial structure if they are
invariant. In addition to improving statistical efficiency and
promoting geometric reasoning, the equivariant of symmetric
transformation constrains the network in a way conducive to
generalization.

2.3 Neural network dynamic pruning
strategy

As a brain-inspired model, the deep neural network (DNN) is
widely used in image classification, natural language processing,
speech recognition, and EEG recognition. Although DNN models
usually need a large number of parameters to ensure their superior
performance, there is significant redundancy in their parameters.
Therefore, with appropriate strategies, these models can be
compressed without significantly reducing the prediction accuracy.
In the existing methods, network pruning has become a prominent
method because of its amazing model compression ability under the
condition of ensuring the prediction accuracy. For example, Han et al.
(2015) proposed a lossless depth neural network compressionmethod
by eliminating redundant parameters and repeated iterative training.
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However, due to the complex interconnection between hidden
neurons, the weights of parameters may change significantly once
pruning is performed. This leads to two main problems in some
other classical methods. The first problem is that there is no way of
recovering the possible network damage. Since there is no chance of
repairing the trimmed connection, improper pruning may result in
serious precision loss. Therefore, the compression ratio must be
excessively suppressed to avoid this loss. Another problem is the low
efficiency of learning. As described previously, in order to obtain the
appropriate compression rate on AlexNet, it is necessary to alternate
pruning and retraining several times, and each retraining process
contains millions of iterations, which may be very time consuming.
Mathieu et al. (2013) attempted to solve these problems and pursue
the compression limit of the pruning method. It is recommended
to cut off redundant connections through continuous network
maintenance. This method involves two key operations: pruning
and splicing. Obviously, pruning is performed to compress the
network model, but overpruning or wrong pruning will lead to the
loss of accuracy. In order to compensate for the unexpected loss,
this method properly integrates the splicing operation into
network pruning so that when the spliced connection is found
to be important, the connection can be restored. These two
operations are integrated to make the method dynamic by
updating the parameter importance when necessary. Pruning
and splicing naturally constitute a cycle, similar to the synthesis
of excitatory and inhibitory neurotransmitters in the human
nervous system.

3 Dynamic pruning group equivariant
network

3.1 Equivariant group convolution network

Group convolution is the generalization of ordinary convolution
on groups. We first introduce this a priori concept.

3.1.1 Translation equivariant of ordinary
convolution

Let f,ψ: Rd → RNc be a vector signal and a convolution kernel
on Rd such that f � fc{ }Nc

c�1 and ψ � ψc{ }Nc

c�1. Ordinary convolution
(Blankertz et al., 2008) (*Rd ) is defined as

f*Rdψ[ ] y( ) � ∑Nc

c�1
∫

Rd
fc x( )ψc x − y( )dx. (1)

In order to study (and generalize) the properties of convolution,
formula (1) is rewritten by using the translation operator y:

f*Rdψ[ ] y( ) � ∑Nc

c�1
∫

Rd
fc x( )yψc x( )dx, (2)

where yψc(x) � ψc(x − y). It should be noted that the translation
operator y is indexed by the translation y. So, we actually consider a set
of operators y{ }

y∈Rd, which index all possible translation sets y∈Rd. A
basic characteristic of convolution is that it can be exchanged with
translation:

y f*Rdψ[ ] x( ) � y f[ ]*Rdψ[ ] x( ), x, y ∈ Rd. (3)

In other words, the convolution of the y-translated signal y[f]
with a convolution kernel is equivalent to the convolution of original
signal f with filter ψ and then y-translation. This property is called
translational equivariant. Translation equivariant is considered to be the
basis of good performance of the convolutional neural network inmany
application scenarios.

3.1.2 Group convolution and group equivariant
Space convolution can be extended to general transformation,

and a more general set g{ }
g∈G

, s.t y{ }
y∈Rd ⊆ g{ }

g∈G
is used.

However, in order to keep the equivariant, the transformation
type allowed in g{ }

g∈G
can be limited by the idea of group theory.

A group is a tuple (G,•), which is composed of a set G, g∈G, and
a binary operation group product •:G×G→G . Let f,ψ:G→RNc be the
input signal and group convolution kernels on G, respectively, and
group convolution (*G) is defined as

f*Gψ[ ] g( ) � ∑Nc

c�1
∫

G
fc ~g( )ψc(g−1 ~g)d~g, (4)

� ∑Nc

c�1
∫

G
fc ~g( )Lg ψc[ ] ~g( )d~g. (5)

Unlike Eq. 2, the domain of group convolution [f*Gψ], input f,
and convolution kernel ψ in the new model is grouped. In short,
group convolution can be considered as a set of inner products
between input signal f and group transformation ψ. An important
advantage of group convolution is that it extends equivariant
(formula 3) to groups; that is, the group convolution defined on
groups satisfies the commutative law

L~g f*Gψ[ ] g( ) � L~g f[ ]*Gψ[ ] g( ), g, ~g∈ G. (6)

This property is called group equivariant. Like spatial convolution,
group convolution is the only linear group equivariant mapping. A
rotation translation group (also called the P4 group) is a typical affine
group as shown in Figure 2. Group P4 is defined as R � e, r1, r2, r3{ },
where r is 90° rotation. The group convolution is defined as the |R |(|R
| = 4) convolutions ψ between theH-transform Lr[ψ](∀r∈R) of the filter
ψ and the input f. The convolution at each rotation angle in the group
convolution is equal to the sum of the spatial channel convolutions

FIGURE 2
Pruning group convolution on the rotation translation group.
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[fk *R2Lk[ψk]] between f and LR[ψ] (group element ~r∈ R and
channel k ∈ [Nc]).

3.2 Dynamic pruning group equivariant
maps

In this part, we first introduce the motivation of pruning the
group convolution network and then introduce the detailed
implementation method.

Group convolution pruning is calculated by pruning operator αk,
αk � hk(W(i,j)

k ). Therefore, pruning group convolution can adjust the
connection of group elements g∈G on different channels k∈[Nc].

f*αGψ⎤⎦ g( ) � ∑Nc

k�1
∫

G
αk g, ~g( )fk ~g( )Lg

⎡⎣ψk
⎤⎦ ~g( )d~g⎤⎦.⎡⎣ (7)

3.2.1 Marking
First, we agree on the symbols that appear in this article. It is

assumed that the GCNN model can be expressed as {Wk: 0≤k ≤ C},
where Wk is the connection weight matrix in the kth layer. For the
fully connected layer with m-dimensional input and n-dimensional
output, the size of wk is m×n。. For the group convolution layer with
a trainable kernel, we expand the weight of each convolution kernel
into a vector and splice them into a matrix as a whole.

In order to represent the pruning of group convolution
networks, we introduce the set Wk, Tk: 0≤ k≤C. Each Tk is a
binary matrix, in which each element represents the activation
state of the network connection, that is, whether the network
connection is deleted. Matrix Tk can be understood as the mask
matrix of network weight matrix Wk.

3.2.2 Dynamic pruning
The purpose of pruning is to simplify the network and improve the

generalization ability of the network. Here, the key to pruning is to
delete redundant connections and retain those connections that are
critical to network performance. However, in a specific network, the
importance of parameters (i.e., the importance of connections) is
dynamic due to the interaction and activation of neurons connected
to each other. In other words, some seemingly redundant connections
will become crucial because of the deletion of other connections around
them. Therefore, it is very important to keep the repair ability of the
network structure in the process of model training.

Taking the kth layer as an example, dynamic pruning can be
transformed into the following optimization problem:

min
Wk ,Tk

L(WkpTk) s.t. T i,j( )
k � dk W

i,j( )
k( ),∀ i, j( ) ∈ , (8)

where L(•) is the loss function, * is the Dot product operator, the
set  is composed of all weights in the matrix Wk, and dk(•) is the
discriminant function. If the parameter w seems to be the key in
the current layer, then dk (w) = 1; otherwise, it is 0. The function
dk(•) is designed empirically. In order to make the description
clearer, we introduce the dk(•) function in Section 3.2.3. The
problem (8) can be solved by using the random gradient descent
(SGD) method to update wk and TK alternately, which is described
as follows.

In the chain rule of calculating the gradient by using the back-
propagation algorithm, the following can be obtained:

∇W l( )L � ∑nl
i�1
∑nl−1
j�1

zL

z ~W
l( )
ij

· ∇W
~W

l( )
ij . (9)

Here, ~W
(l)
ij � Wij · T, ~W

(l)
ij is only affected by Wij, and

z ~W
l( )
ij

zWij
� zWij · Tij

zWij
� Tij +Wij · z · Tij

zWij
. (10)

We consider

zlog
Wij

∣∣∣∣ ∣∣∣∣
mu

zWij
�

zlog −Wij

mu
( )
zWij

, if Wij < 0

zlog
Wij

mu
zWij

, if Wij ≥ � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�

− 1
Wij

, if Wij < 0

1
Wij

, if Wij ≥ � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ � 1
Wij

.

(11)

So, when Wij is pruned (i.e., |Wij|≤ μ),

z ~W
l( )
ij

zWij
�

log ε, if Wij

∣∣∣∣ ∣∣∣∣≤ ε · μ
log

Wij

μ
+ Wij

Wij

∣∣∣∣ ∣∣∣∣, if Wij

∣∣∣∣ ∣∣∣∣> ε · μ.
⎧⎪⎪⎨⎪⎪⎩ (12)

Therefore, the gradient of Wij after dynamic pruning is

∇W l( )L( )ij � zL

zW
~~ l( )

ij

· zW
~~ l( )

ij

Wij
,

�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
log ε · zL

zW
~~ l( )

ij

, if Wij

∣∣∣∣ ∣∣∣∣≤ ε · μ
log

Wij

μ
+ Wij

Wij

∣∣∣∣ ∣∣∣∣( ) · zL

zW
~~ l( )

ij

, if Wij

∣∣∣∣ ∣∣∣∣> ε · μ .

(13)
When the absolute value of Wij is small relative to μ

(Wij ≤ ε · μ) and ε takes the appropriate value,
(∇W(l)L)ij � log ε · zL

z ~W
(l)
ij

. Although the corresponding gradient

does weaken a lot, it does not completely disappear and will
be updated all the time during the training process. After several
iterations, Wij may return to a more moderate size relative to mu
so that the pruned connection can be restored.

When the absolute value of the pruned Wij is equal to mu,
(∇W(l)L)ij ≈ Wij

|Wij | · zL

z ~W
(l)
ij

, it will be a very small number so that Wij will

not be updated in the gradient descent algorithm. In this case,
because Wij itself cannot be changed, the Wij connection may be
restored only when the mu itself becomes smaller.

The binary matrix Tk can be solved by formula (12). The
traditional gradient descent method can be used to optimize wk,
and its update is determined by the following formula:

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Tang et al. 10.3389/fbioe.2023.917328

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.917328


W
i,j( )

k ← W
i,j( )

k − β
z

zW
i,j( )

k T
i,j( )

k

L Wk ⊗ Tk( ),∀ i, j( ) ∈ I,

(14)

where β is the learning rate. Here, not only are the non-zero parameters
of Tk updated (these updated parameters are considered to be
unimportant and ineffective for reducing network loss) but also the
zero parameters of Tk are updated. This strategy can recover the
incorrect pruning.

The partial derivative in formula (14) can be calculated by the chain
derivation rule. After repeated iterations, the pruning group convolution
network will converge to a higher accuracy, and the generalization ability
will be improved. The aforementioned process is shown in Algorithm 1.

Input: X: training datum; {Wk: 0 ≤ k ≤ C}: the reference

model; α: base learning rate; μ: mean value; σ: standard

deviation; γ: the multiple of the threshold value of the

pruned weight compared with the standard deviation σ; ε:
the minimum value to ensure the stability of weight; f:

learning policy.

Output: {Wk, Tk: 0 ≤ k ≤ C}: the updated parameter matrices

and their binary masks.

{ Wk* Tk: 0 ≤ k ≤ C}: Hadamard product of the updated

parameter matrix and its binary masks.

Wk ← Wk, Tk ← 1 is initialized ∀0 ≤ k ≤ C, β ← 1, and

iter ← 0

Repeat

Small-batch samples are randomly selected as input X.

The value of the loss function is calculated with

(WK⊙Tk).

Backward propagation of the model output and the

gradient of the loss function is calculated by Eq. 9.

While (k < C),

Tk is updated by Eq. 6 and the current Wk.

Wk is updated by Eq. 14 and the current loss function

gradient by Eq. 9

Iter ← iter+1 is updated until the iter reaches its

desired maximum.

Algorithm 1. Group convolution network pruning: gradient
descent algorithm in group convolution network pruning.

Dynamic pruning has two meanings. First, in the current state,
redundant connections will be deleted through iteration. However,
on the other hand, if incorrectly trimmed connections once seemed
important, they should be reestablished. An overview of our
approach is shown in Figure 3.

3.2.3 Parameter weight
Since the measurement of parameter importance affects the

state of network connection, the functions dk(•),∀0 ≤ k ≤ C are
essential for our dynamic network pruning. We tested several
candidates and found that the absolute value of the weight is the
best option.

One of the core issues of pruning is to determine which
weights are crucial to the network and need to be retained and
which weights are redundant and need to be deleted. Through
experiments, we find that the absolute value of weight can be
used as a measure of connection importance. In each iteration
of Algorithm 1, the parameters with relatively small amplitude
are pruned temporarily, and the parameters with larger
amplitude are retained or spliced. Obviously, the threshold
has a great influence on the compression ratio of the group
convolution neural network. For each layer of the group
convolution network, the corresponding threshold is set
according to the average absolute value and variance of its
connection weight.

dk Wi,j
k( ) � log max| ε,

Wi,j
k − μ

∣∣∣∣ ∣∣∣∣
γ · σ( ),(

μ � 1
m*n

∑m
i�1
∑n
j�1

Wi,j
∣∣∣∣ ∣∣∣∣,

σ �
����������������������

1
m*n − 1

∑m
i�1
∑n
j�1

Wi,j
∣∣∣∣ ∣∣∣∣ − μ( )2.√√ (15)

μ and σ represent the mean value and standard deviation of
the absolute value of each element in the weight matrix Wk,
respectively. γ is the multiple of the threshold value of the pruned
weight compared with the standard deviation σ of the absolute
value of each element in the weight matrix, and ε is the minimum
value to ensure the stability of the weight.

FIGURE 3
Dynamic network pruning for models with parameter redundancy.
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4 Experimental results and analysis

4.1 Emotiv EEG dataset classification
experiment

4.1.1 EEG data acquisition experiment
In this experiment, dataset 1 is collected using the Emotiv

EEG acquisition instrument developed by Emotiv Systems in the
United States (the offline experiment of a lower computer such as
a wheelchair is carried out using Emotiv EEG acquisition
instrument). Its main components include an electrode cap,

electrode, electrode box, and Emotiv wireless USB receiver.
The electrode cap contains an amplifier, ADC, filter
(0.2–45 Hz), and notch filter (except power frequency
interference). One electrode cap has 16 electrodes, two of
which are reference electrodes, and the rest are for acquisition,
as shown in Figure 4. At the same time, we set the electrode
according to the international 10–20 standard electrode
placement method, and the sampling frequency is 128 Hz.

The EmotivPRO sensor collects, displays, and saves the EEG
signals of each channel through its own software application
emotivPRO (acquisition interface is shown in Figure 5).

In this paper, we will study the EEG signals of left and right hand
motor imagery. The specific steps of collecting EEG signals are as
follows: first, the subjects are calmed down and kept relaxed for 40 s,
and then, the acquisition process is started. The subjects are relaxed
for 6 s; then, there will be a prompt tone in 6 s to prompt the subjects
to start imagining left or right hand movement, and there will be a
prompt tone in 10 s to prompt the subjects to stop imagining.
Taking 1 s as a group of EEG sample data, four groups of EEG
sample data can be obtained by collecting once. Then, the
aforementioned acquisition process is repeated until there are
180 groups of left hand and right hand motor imagery EEG
signals; that is, there are a total of 360 groups of EEG signal
sample data.

In order to reduce the amount of data, this paper only selects the
F3, F4, FC5, FC6, T7, and T8 channel signals located in the motor
sensory area for analysis and divides the datasets into training sets
and test sets according to the ratio of 4:1.

4.1.2 Data preprocessing process
The signal-to-noise ratio of the collected EEG signal is very low,

which usually contains significant background noise, such as clutter,
electrooculogram, ECG, and EMG. In this paper, the EEG signal is
preprocessed as follows.

FIGURE 4
Electrode position of the EmotivPRO EEG acquisition instrument.

FIGURE 5
EmotivPRO interface.
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Step 1: Removing the abnormal samples: Due to environmental
noise, poor equipment contacts, and other factors, some incorrect
samples will be produced when the EEG signals are collected.
Therefore, the average potential of the channel is used as the
reference value for comparison with each sample data, which
eliminates the large difference.

Step 2: Normalizing to average: By subtracting the amplitude of
each sample from its average amplitude, the average value of the
EEG signal can be 0, and the analysis process is easier.

Step 3: Band-pass filtering: When imagining the movement of the
left or right hand, event-related synchronization/desynchronization
is mainly manifested as μ rhythm (6–13 hz) and β rhythm
(14–30 hz), so the EEG signal is filtered by a 6–30 hz band-pass filter.

Step 4: Short-time Fourier transform.
The 2008 BCI competition IV dataset 2B is taken as an example,

which includes the records of three electrodes (C3, CZ, and C4) in
the left/right handMI task. These electrodes are located in the motor
area of the brain.

Pfurtscheller and Da Silva (1999) showed that the Mu band
(6–13 Hz) energy observed in the motor cortex decreased by
performing MI tasks. This reduction is called event-related
desynchronization (ERD) (Yu et al., 2015). MI tasks also result in
increased energy in the β-band (14–30 Hz), which is called event-
related synchronization (ERS). Left-handed and right-handed motor
MI tasks caused ERD and ERS in the left and right sides of the motor
cortex, respectively, which affected the EEG signal intensity of C3 and
C4 electrodes. CZ was also affected by the hand movement MI task.
Considering these facts, we design network input to take advantage of
the time and frequency characteristics of the data.

STFT is applied to a time series with a duration of 2 s. The
window size of the STFT is 64 and the time interval is 14. From
sample 1 to sample 1,000, the STFT is calculated for 1,000 samples of
67 windows. Then, mu and beta bands are extracted from the output
spectrum. The band between 6–13 and 17–30 is considered to
represent mu and beta bands, respectively. The size of the
extracted image in the mu band is 16 × 67, and that of the Beta
band is 15 × 67. These images are then combined into an Nfr × Nt

image, where Nfr = 31 and Nt = 67.
The process was repeated for three electrodes (C4, CZ, and C3).

The results were combined in the way of preserving the

information of electrode adjacency. The resultant size of the
input image was Nh × Nt, where Nh = Nc * Nfr = 93. A sample
input signal time–frequency diagram constructed for the right
hand MI task experiment is shown in Figure 6. By using this
method, the left and right sides of the motor cortex are activated,
and different activation patterns are generated along the vertical
cortex.

The ERD effect in channel C3 is clearly shown in Figure 6A, which
corresponds to the right MI task (the 6–13 Hz band in channel C3 is
darker than that in channel C4). However, the ERS effect is not
obvious on the C3 electrode. Similar to the right hand, for samples
collected for the left hand MI task, this activation is expected to occur
on the opposite side of the electrode as shown in Figure 6B. The
time–frequency diagram is constructed for each test sample and used
as the input of the DPGEN in the next stage.

4.1.3 Determination of threshold
In the DPGEN algorithm, γ is the multiple of the threshold value

of the weight pruned compared with the standard deviation σ of the
absolute value of each element in the weight matrix.

The EEG data of the first person are taken as the experiment, and
the value is evenly taken at the interval of 1 between 1 and 10. The
processed samples are input into the DPGEN. The results show that
when the value of γ exceeds 8, the recognition accuracy of the EEG
signal decreases rapidly.

As shown in Figure 7, when the threshold γ is 7 and 8, the
accuracy is relatively high, so the size set in this paper is 8.

FIGURE 6
Input sample image, including two frequency bands of C3, CZ, and C4 for each electrode.

FIGURE 7
Recognition accuracy under a different threshold γ.
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4.1.4 Experimental results and analysis
In order to verify the effectiveness of the pruning group

convolutional neural network (DPGEN) proposed in this
paper, this study conducts a comparative experiment with the
left and right hand motor imagery EEG dataset collected by
Emotiv and compares its recognition accuracy with the
classical EEG feature extraction algorithms CSP (Wu et al.,
2013), DBN (Chu et al., 2018), and DWT-LSTM (Li et al.,
2016). In the comparative experiment, the CSP used the
eigenvectors corresponding to the first two eigenvalues as the
spatial filter and used the RBF kernel SVM as the classifier. The
results of accuracy are shown in Figure 8.

As shown in Figure 8, compared with the results of the CNN,
STFT-CNN, and DPGEN, the recognition accuracy of the
DPGEN is higher, which indicates that the DPGEN can make
full use of the effective information in EEG signals. The
recognition accuracy of the DPGEN method in this paper is
higher than that of the other methods in the data of five subjects,
and the variance of prediction accuracy of this method is smaller
than other methods’. It shows that the proposed method has
better stability.

We need to verify whether the performance improvement of the
proposed method is statistically significant compared with the other
three algorithms. In this experiment, two-way analysis of variance
(ANOVA2) test was used to calculate the p-value between the
proposed methods and these methods. Subjects and methods are
two independent variables of the test, and classification accuracy is
the dependent variable of the test. The least significant difference
(LSD) method was used for multiple comparisons. Table 1 lists the
p-values between the proposed algorithm and the other three
algorithms. It is generally considered that when the p-value is
less than 0.05, and there is a significant difference between the
performances of the two algorithms involved in the comparison. As
shown in Table 1, the p-value between the proposed algorithm and
CSP, DBN, and DWT-LSTM is less than 0.05. Therefore, the
improvement in the recognition accuracy of the algorithm
proposed in this paper is significant.

In order to compare the performance of the pruning group
convolution network using different group convolution kernels,

we conducted further experiments on the dataset collected by
the laboratory. First, a CNN architecture with pruning is
constructed, including two layers of 3 × 3 convolution,
24 channels in each layer, relu activation function, batch
normalization, and dropout.

Next, we replace each convolution of the pruned convolutional
neural network (PCNN) with p4 convolution (Eqs 10, 11), and the
generated feature maps are composed of features that change in
rotation. The number of filters is set to 6*4 = 24 to keep the number
of parameters roughly fixed compared to the CNN (the number of
channels is 24). The accuracy of the P4CNN is somewhat improved
compared to the standard CNN with pruning.

Then, we tested the pruning group convolutional network
proposed in this article, replacing each convolution of the
pruning convolutional network with a P4M group convolution
kernel (Eqs 10, 11), and the generated feature map is changed by
rotation and mirroring. It has characteristic composition and the
same transformation law as the input signal. The performance of this
network is better than that of the CNN with pruning and PP4GCN.
The reason may be that P4M group convolution adds mirroring and
rotation transformations in the middle layer.

In another experiment, we use the proposed DPGEN and
GCNN to classify motor imagery EEG signals. The input EEG
signal is also preprocessed by short-time Fourier algorithm.
DPGEN performed well in all five subjects, indicating that the
hierarchical features extracted from the extracted EEG signals
through different group convolution kernels contain abundant
information related to classification tasks, which can improve the
recognition accuracy of EEG signals, as shown in Figure 9.

The receiver operating characteristic (ROC) curve in the figure
is a graphical representation used to evaluate the performance of
the classification model. The performance of the algorithm can be

FIGURE 8
Accuracy of EEG recognition algorithms for five different
subjects.

TABLE 1 P-values between the proposed method and other three algorithms.

Method Statistic CSP DBN DWT-LSTM

P-values Mean <0.008 <0.002 <0.003

P-values Variance <0.004 <0.028 <0.034

FIGURE 9
Recognition accuracy for five different subjects (with different
group convolution kernels).
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judged by analyzing the value of the area under the curve (AUC). As
shown in Figure 10, in most cases, the method proposed in this
paper obtains higher AUC value than GCNN, which shows that our
method has more advantages in EEG motor imagination signal
processing.

The DPGEN performed well in all five subjects, indicating that
the hierarchical features extracted from the extracted EEG signals
through different group convolution kernels contain abundant
information related to classification tasks, which can improve
the recognition accuracy of EEG signals as shown in Figure 9.

At the same time, we will analyze the model compression
performance of the proposed method. In order to compare fairly

and copy conveniently, we follow the default experimental settings
of the SGDmethod, including training batch size, basic learning rate,
learning strategy, and maximum training iterations. A brief
summary of the compression results is shown in Table 2.

4.2 Public dataset BCI competition IV 2B
recognition experiment

This paper uses the open dataset BCI competition IV 2b of the
fourth BCI competition for further verification. The dataset contains
nine subjects’ left and right handmotor imagery EEG data, each subject

FIGURE 10
ROC curves of five subjects. (A) S1. (B) S2. (C) S3 (D) S4. (E) S5.
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collected five times, the first two collected each time contains
120 groups of data, and there is no feedback, while the last three
collected each time contains 160 groups of data, and there is
feedback; that is, each subject collected a total of 720 groups of
experimental data. In the process of acquisition, EEG signals of C3,
CZ, and C4 channels were recorded, and the sampling frequency
was 250 Hz. The collected signals were filtered by a 0.5–100-Hz
bandpass filter and 50 Hz notch filter.

In this part, in order to adapt to the format changes of the EEG
data, the dataset is preprocessed similar to the previous dataset.
Some parameters of the DPGEN are set as follows: group
convolution kernel 1:3 × 3, group convolution kernel 2: 3 × 3,
pooling layer 1:2 × 1, and pooling layer 2:2 × 1.

In order to verify the recognition effect of the DPGEN EEG
recognition method on the open dataset BCI competition IV 2B, the
recognition accuracy is compared with the top three results of BCI
competition EED (Sun, 2010), CSP, ACSP (Sun and Zhou, 2014),
DBN, and CNN-SAE (Tabar and Halici, 2016). The comparison
results are shown in Figure 11.

Figure 11 shows that the DPGEN method proposed in this
paper has better results in the data of most subjects in the open
dataset BCI competition IV 2B. Due to the individual
differences of the EEG signals, the recognition accuracy of
data from very few subjects is not the highest. However,
compared with other methods, the average recognition

accuracy of this method is the highest, which shows the
effectiveness of this method.

The p-values between the proposed algorithm and other eight
algorithms are shown in Table 3. It can be seen that the p-values
between the proposed algorithm and EED, CSP, ASCP, DBN, and
CNN-SAE are less than 0.05.

4.3 Online experiment

In order to verify the performance of the algorithm in EEG real-time
processing, we conducted an online test on the self-designed intelligent
wheelchair system. The systemmainly includes the following subsystems:
the Emotiv EEG acquisition instrument, portable computer, wireless
communication module, control system, and wheelchair. The structure
of the intelligent wheelchair system is shown in Figure 12.

The Emotiv EEG acquisition instrument shows good
performance in the acquisition of EMG and EEG signals.
Through previous experiments, we found that the muscle action
of “gritting teeth” can produce obvious voltage changes in the
F8 channel, so this signal is used to start and stop online
experiments. The action of “blinking” will produce an obvious
voltage change in the FC4 channel, which can be used to
generate the wheelchair straight command. In addition, the
motor imaginary EEG signals of six channels F3, F4, FC5, FC6,
T7, and T8 are collected. The left hand and right hand motor
imaginary EEG signals are classified by the method proposed in this
paper, which are used to generate the commands of the wheelchair
turning left and right, respectively.

TABLE 2 Dynamic network pruning can significantly reduce the model complexity of the GCNN, while the prediction error rate can be reduced to a certain extent.

Model Average accuracy Parameters (K) Iterations (K) Compression

GCNN 81.33 113 10

DPGEN 83.93 7.5 12 15×

FIGURE 11
Recognition accuracy of different algorithms on the BCI
competition IV 2B dataset.

TABLE 3 P-values between the proposed method and other five algorithms.

Method EED CSP ACSP DBN CNN-SAE

P-value <0.001 0.003 <0.002 0.008 0.042

FIGURE 12
Structure of the intelligent wheelchair system.
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The first three subjects in our laboratory’s self-collected dataset
were used to carry out the online experiment. The commands that the
wheelchair needs to perform include left turn, right turn, and straight
ahead. All kinds of experiments are carried out in a cross-way. Each
type of experiment was conducted 140 times, and the rest was 5 min
after every 20 experiments, with an interval of 20 s. The recognition
accuracy of the wheelchair online control experiment is shown in
Table 4.

Table 4 shows that the recognition accuracy of this method is
higher than that of the GCNN model. Because the EMG signal
has more obvious characteristics than the EEG signal, the
online recognition accuracy of the EMG signal is higher than
that of the EEG signal. In addition, by comparing the
experimental results given in Figure 6 and Table 4, it can be
found that in general, the online recognition accuracy is lower
than the offline recognition accuracy. This is because online
experiments may be subject to more factors. For example,
subjects may be vulnerable to the influence of the surrounding
environment and fatigue.

5 Conclusion

In this paper, we proposed a framework for motor imagery EEG
recognition based on the dynamic pruning group equivariant
network. The proposed framework can integrate the intrinsic
relationship of EEG signals of various EEG channels. Combined
with multilevel features extracted from different group convolution
layers, dynamic pruning reduces the number of parameters, reduces
the complexity of the network, and improves the recognition
accuracy of small sample data. Finally, experiments are carried
out on the BCI IV 2B dataset and laboratory self-collected
dataset. In the future, we will use domain adaptation and domain
generalization to study the effectiveness of topic-independent EEG-
based motor imagery EEG recognition in the group equivariant
framework, integrate structure and regularity into the process of
weight pruning, and establish a unified framework of weight
pruning, activation reduction, and weight clustering.
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