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The excessive use of antibiotics in clinical settings has resulted in the rapid
expansion, evolution, and development of bacterial and microorganism
resistance. It causes a significant challenge to the medical community.
Therefore, it is important to develop new antibacterial materials that could
replace traditional antibiotics. With the advancements in nanotechnology, it
has become evident that metallic and metal oxide nanoparticles (MeO NPs)
exhibit stronger antibacterial properties than their bulk and micron-sized
counterparts. The antibacterial properties of silver nanoparticles (Ag NPs) and
copper nanoparticles (Cu NPs) have been extensively studied, including the
release of metal ions, oxidative stress responses, damages to cell integrity, and
immunostimulatory effects. However, it is crucial to consider the potential
cytotoxicity and genotoxicity of Ag NPs and Cu NPs. Numerous experimental
studies have demonstrated that bimetallic nanoparticles (BNPs) composed of Ag
NPs and Cu NPs exhibit strong antibacterial effects while maintaining low
cytotoxicity. Bimetallic nanoparticles offer an effective means to mitigate the
genotoxicity associated with individual nanoparticles while considerably
enhancing their antibacterial efficacy. In this paper, we presented on various
synthesis methods for Ag-Cu NPs, emphasizing their synergistic effects,
processes of reactive oxygen species (ROS) generation, photocatalytic
properties, antibacterial mechanisms, and the factors influencing their
performance. These materials have the potential to enhance efficacy, reduce
toxicity, and find broader applications in combating antibiotic resistance while
promoting public health.
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Introduction

The increasing bacterial resistance due to widespread antibiotic use is alarming.
Currently, global epidemics caused by various microorganisms pose a serious threat
to national economic development and public safety (Ventola, 2015; Kurt Yilmaz and
Schiffer, 2021). According to relevant data, bacterial resistance is a major obstacle in the
fight against pathogenic microorganisms. In 2019, 1.27 million people died directly from
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antibiotic-resistant infections, while 4.95 million deaths were
indirectly related to this issue, surpassing the number of deaths
caused by AIDS or malaria (Yang et al., 2022). Therefore, the
development of novel and efficient antibacterial materials is of
utmost importance.

Nanoparticles effectively combat bacterial resistance via direct
killing, membrane inhibition, and targeted mechanisms (Pelgrift
and Friedman, 2013). Inorganic metal nanoparticles offer simplicity,
lower toxicity, and reduced resistance compared to organics. Their
small size, charge, and surface area enhance microorganism control
(Yang et al., 2022). Developing nanoparticle resistance requires
multiple genetic mutations, highlighting their potential against
multi-drug-resistant microorganisms (Mohammadi et al., 2018;
Arora et al., 2020). Silver nanoparticles (Ag NPs) possess
remarkable antibacterial efficacy and minimal resistance
propensity. They disrupt bacterial membranes, interfere with
DNA and protein processes by releasing Ag+ ions, and capitalize
on reactive oxygen species for enhanced microbial control (Egger
et al., 2009; Piao et al., 2011; Bondarenko et al., 2013; Qing et al.,
2018; Ghosh M. et al., 2021; Targhi et al., 2021; Almutairi et al.,
2022). Bondarenko’s study has confirmed the ability of Ag NPs to
selectively impact bacterial inner membranes, contributing to a
more comprehensive understanding of their mode of action
(Bondarenko et al., 2018). Numerous studies have highlighted
that the antibacterial mechanism of Cu NPs primarily involves
the induction of oxidative stress through the generation of
reactive oxygen species (ROS), the release of metal ions, and the
internalization of nanoparticles (Vincent et al., 2016; Siddiqi and
Husen, 2020; Bhattacharjee et al., 2022). Usman proposed that while
the effectiveness of Cu NPs is comparable to that of Ag NPs, the
challenge of oxidation during their production and storage processes

still persists (Usman et al., 2013). Torres observed that Ag-Cu NPs
exhibit a strong synergistic antibacterial effect due to increased cell
permeability. Therefore, he suggests that employing silver-copper
alloy nanoparticles appears to be a cost-effective alternative to
traditional antibiotics (Torres-Urquidy and Bright, 2012; Garza-
Cervantes et al., 2017).

Bimetallic nanoparticles (BNPs) have garnered considerable
attention due to their exceptional physical properties, which
enable the integration of different metals to enhance optical,
catalytic, and antibacterial performances (Alavi and Karimi,
2018a; Malik et al., 2023). Through their experimental
observations of synthesized Ag-Cu NPs, Długosz et al. discovered
that these BNPs exhibited minimal genotoxicity and sustained
antibacterial efficacy. Consequently, they proposed the
incorporation of silver and copper nanoparticles into the BNPs
system as a promising avenue for achieving more effective and
safer antimicrobial applications (Długosz et al., 2021). Numerous
researchers have demonstrated that Ag-Cu NPs address the
limitations of individual copper and silver nanoparticles,
amplifying antibacterial effects, improving stability, and mitigating
nanotoxicity concerns (Perdikaki et al., 2016; Kalińska et al., 2019;
Sabira et al., 2020). These findings hold significant implications for
advancing antimicrobial products and guiding future research
endeavors in this field. The elucidation of the precise bactericidal
mechanism of Ag-Cu NPs is presented in Figure 1.

This review highlights the unique antibacterial synergy between
silver nanoparticles and copper nanoparticles. The paper explores
the effects of various synthesis methods, structures, carriers, pH, and
photocatalytic mechanisms on the antibacterial performance of Ag-
Cu NPs. The aim of this paper is to provide a comprehensive
theoretical foundation for future studies in this field.

FIGURE 1
Synergistic bactericidal effect of Ag-Cu NPs.
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TABLE 1 Summarized different synthesis routes for Ag-Cu NPs.

Synthesis method Precursors Research
objective

Nano
structure

Pros/Cons References

Reduction reaction
(Down-Top)

AgNO3、Cu(NO3)2·3H2O Antibiotic resistance Alloy NPs Simple process, catalytic activity,
low cost, optimal control of BNP

size and distribution via
experiment parameter tuning/

Toxic precursors,
environmentally highly toxic,
elevated reaction conditions

Pourjafari et al. (2022)

AgNO3、Cu(NO3)2·XH2O Bactericidal agent Alloy NPs Zain et al. (2014)

Ag NPs、Copper Nitrate Antibiotic resistance Alloy NPs Zhou et al. (2022)

AgNO3、Cu(I)Cl Bactericidal agent Alloy NPs Jang et al. (2020)

AgNO3、 Cu(NO3)2·3H2O Bactericidal agent Core-Shell NPs Sabira et al. (2020)

AgNO3、CuCO3 Antibiotic resistance Core-Shell NPs Valdez-Salas et al.
(2021)

AgNO3、CuSO4 Antibiotic resistance Alloy NPs Mohammadi et al.
(2018)

AgNO3、Cu(NO3)2·3H2O Bactericidal agent Alloy NPs Valodkar et al. (2011)

Dealloying approach (Top-
Down)

Zr48Cu36Ag8Al8 MG ribbon Better performance
expression

Core-Shell NPs Simple, cost-effective, efficient,
product stability and purity, no
surfactants/Reaction conditions

sensitivity

Liu et al. (2017)

Mg65Ag12.5Cu12.5Y10 metallic
glass

Better performance
expression

Alloy NPs Li et al. (2017)

Mg–(Ag,Cu)–Y metallic
glasses

Bactericidal agent Alloy NPs Wang et al. (2019)

Pulsed Laser Ablation (Top-
Down)

Ag/Cu alloy targets Optical and
photoelectric properties

Alloy NPs Highly reactive surface, pure
products, precise control of

particle size, yield, and shape/
strict laser parameter control

Satya Bharati et al.
(2019)

Ag/Cu alloy targets Study of Structural
Transformations

Alloy NPs Malviya and
Chattopadhyay (2014)

Ag/Cu alloy targets Study of Synthesis
Methods

Alloy NPs Ahmadinejad and
Mahdieh (2022)

The vapor deposition
technique (Down-Top)

AgNO3、CuCl2 Antibiotic resistance Alloy NPs Uniform size, controllable
composition, precise control of

center-to-center spacing

Perdikaki et al. (2016)

———————— Better performance
expression

Alloy NPs Bogatyrenko et al.
(2023)

Ag, Cu, and Mg Rods Bactericidal agent Cluster-in-Cluster
Form

Benetti et al. (2019)

Microwave reactor
(Down-Top)

AgNO3、CuSO4·5H2O Bactericidal agent Alloy NPs Short reaction times, small
particle sizes, high purity and

uniformity/Longer initial sample
preparation

Długosz et al. (2021)

AgNO3 and CuNO3 Bactericidal agent ————— Ameen (2022)

AgNO3、Cu(CO2CH3)2·H2O Study of optical
properties

Core-Shell NPs Xiong et al. (2016)

Biosynthetic approach
(Down-Top)

AgNO3、Cu(CH3COO)2 Bactericidal agent Alloy NPs Rapid reaction, cost-effective,
environmentally friendly,

excellent candidates for biological
applications/Electronic
applications impeded

Kumar et al. (2023)

AgNO3、CuSO4 Bactericidal agent Core-Shell NPs Hamouda et al. (2023)

AgNO3、Cu(NO3)2·3H2O Antibiotic resistance Alloy NPs Malik et al. (2023)

AgNO3、CuSO4 Antibiotic resistance Alloy NPs Alavi and Karimi
(2018a)

AgNO3、CuSO4 Dye pollution
prevention

Alloy NPs Kushwah et al. (2019)

AgNO3、Cu(OAc)2·H2O Better performance
expression

Alloy NPs/Core-
Shell NPs

Tsuji et al. (2010)

The sol–gel method
(Down-Top)

AgNO3、Cu(NO3)2·5H2O、
Zn(CH3COO)2

Performance
Investigation

————— High repeatability and efficiency
、aerogel synthesis; long reaction
times, intricate steps, high skill
demands, limited control over NP

size

Modwi et al. (2021)

Ag、Cu、Au Targets Performance
Investigation

Alloy NPs Zhang et al. (2018a)

AgNO3、Cu(NO3)2·3H2O
Zn(NO3)2

Performance
Investigation

Alloy NPs Ziabka et al. (2023)

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Hao et al. 10.3389/fbioe.2023.1337543

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1337543


Synthesis method of Ag-cunps

Extensive research indicates that the distribution of metals in
BNPs is significantly influenced by the preparation process, leading
to the formation of diverse structures. The general strategies for
synthesizing nanomaterials typically involve either a “top-down
approach” or a “bottom-up approach.” (Sharma et al., 2019).

The top-down approach involves the use of physical techniques
(e.g., pulsed laser ablation in liquids, grinding) or chemical methods
(e.g., chemical alloying) to break down larger targets (e.g., rods,
sheets or films) into smaller ones. In this process, the addition of
stabilizers is selectively employed to prevent aggregation, resulting
in the production of nanomaterials (Nyabadza et al., 2023).
However, research indicates shortcomings in the precise control
of BNP size and shape using these methods. The fragmentation of
bulk materials often leads to non-uniform surface topography or
edge fractures, thereby affecting the physical and chemical
properties of BNS (Bhol et al., 2020).

In contrast, the bottom-up approach involves assembling atoms
into nanoparticles (NPs) through physical methods (e.g., aerosol
processing), chemical methods (e.g., chemical reduction,
displacement reactions), or bio-synthesis methods (Nyabadza
et al., 2023). In this approach, nanostructures are assembled from
the bottom up through stacking interactions between atoms and
molecules, forming uniformly distributed structural units. This
method initially reduces precursors to atoms, followed by
nucleation and growth processes. Researchers can precisely
control the size and shape of the desired product by adjusting
composition parameters, offering advantages such as absolute
precision, complete process control, and minimal energy loss
(Ghosh Chaudhuri and Paria, 2012; Bhol et al., 2020). While it is
noteworthy that the bottom-up approach generally exhibits a slower
generation rate, it has been convincingly demonstrated to be more
advantageous for nanoparticle synthesis when compared to the top-
down approach (Ghosh Chaudhuri and Paria, 2012). Traditionally,
silver-copper nanoparticles have been predominantly synthesized

FIGURE 2
Synthesis methods of BNPs.
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using chemical or physical methods. Although there are methods
involving biological synthesis, they have not been widely adopted,
potentially indicating a future trend. Table 1 summarizes common
synthesis methods for Ag-Cu NPs, and Figure 2 illustrates several
common synthesis approaches of BNPs. Next, we will primarily
discuss several common methods for synthesizing Ag-Cu NPs from
the perspective.

The top down approach

Chemical dealloying
Chemical dealloying is one of the most commonly used and

traditional techniques for synthesizing anisotropic bimetallic
nanostructures. This method is characterized by its simplicity,
cost-effectiveness, and the absence of surfactants or other
adsorbates. By selectively etching one or more noble metal
elements from an alloy, this approach results in the formation
of binary nano-composites with exceptionally clean surfaces
(Qiu et al., 2011). However, there are limited reports on the
preparation of BNPS using the chemical dealloying method,
particularly Ag-Cu NPs. Through chemical dealloying of Zr-Cu-
Ag-Al-O amorphous/crystalline composite material, Liu et al.
successfully synthesized a novel Cu-supported Ag-Cu nano-
porous alloy. This alloy not only exhibits outstanding air stability
at room temperature but also demonstrates significantly improved
oxidation stability compared to previously reported Cu-Ag core-
shell microparticles (Liu et al., 2017). On another front, Li et al.
notably achieved efficient preparation of a chemically homogeneous
three-dimensional nano-porous bimetallic Ag-Cu alloy by
subjecting metallic glass Mg65Ag12.5Cu12.5Y10 to dealloying
treatment in dilute H2SO4 aqueous solution under self-corrosion
conditions (Li et al., 2017).

Pulsed laser ablation
As a top-down method for nanoparticle fabrication, Pulsed

Laser Ablation in Liquids (PLAL) involves irradiating solid
targets (typically rods, sheets, or thin films) in a liquid medium.
This method allows the liquid to collect the ejected nanoparticles
produced by laser processing, forming a colloidal suspension
applicable across various fields. PLAL, as an exemplary approach
for catalytic synthesis of nanoparticles, yields clean, uncapped, and
surfactant-free nanoparticles with highly reactive surfaces.
Compared to several prevalent manufacturing techniques, PLAL
offers faster production of BNPs and effective control over the size
distribution, yield, and shape of nanoparticles (Fazio et al., 2020;
Nyabadza et al., 2023). However, its drawbacks primarily revolve
around the necessity to determine suitable laser processing
parameters, demanding extensive experimental work, and the
existence of intricate, nonlinear relationships between input and
output factors (e.g., NP size) (Nyabadza et al., 2023).

Recently, Bharati et al. synthesized silver-copper alloy
nanoparticles (NPs) using the Pulsed Laser Ablation in Liquids
method. Their research underscores the potential of Ag-Cu alloy
NPs in detecting various analyte molecules (Satya Bharati et al.,
2019). In a previous study, Malviya et al. observed a transition in the
morphology of Ag-Cu alloy synthesized by the PLAL method, from
a biphasic structure to a dispersed morphology within the

nanoparticles, and ultimately to a core-shell structure, with
increasing copper concentration. This study provides valuable
insights into the application of the PLAL synthesis method for
Ag-Cu NPs (Malviya and Chattopadhyay, 2014).

The down top approach

Chemical reduction method
Chemical reduction, as one of the most common bottom-up

methods for synthesizing BNPs, enables precise control over BNPs’
size and distribution through meticulous control of experimental
parameters. It offers simplicity, scalability, and the seamless
integration of foreign atoms into the synthesis process
(Paszkiewicz et al., 2016; Dlamini et al., 2023). However,
significant challenges remain. Chemical reduction often requires
the separation of unreacted reagents and impurities from the
resulting NPs, and the use of potentially harmful precursors is
commonplace. Additionally, reaction times can be prolonged,
and some conditions may be stringent, including very high
reaction temperatures, posing challenges for practical
implementation (Nikam et al., 2018).

Valdez-Salas et al. suggest that the advantages of this method for
the synthesis of Ag-Cu NPs are mainly due to the fact that it can
strategically manipulate the arrangement of arrays of different core-
shell structures and take advantage of the directionality provided by
core-shell elements, the sequence of chemical reduction reactions
influences the structure of the synthesized Ag-Cu NPs (Valdez-Salas
et al., 2021). Manikam et al. suggested that nanoparticle synthesis via
chemical reduction can be divided into two subgroups: the first
involves co-reduction of two different metal salts, while the second
involves successive reduction of two metal salts (Manikam et al.,
2011). The consecutive reduction of metal salts readily produces
core-shell nanostructures, while simultaneous reduction of metal
salts increases the likelihood of forming nanoalloys or nanoclusters
(Mvango and Mashazi, 2019).

Liquid phase pulsed plasma method
The liquid-phase pulsed plasmamethod has been investigated as

an economical, environmentally friendly approach for synthesizing
nanoparticles. In the synthesis of BNPs, this method addresses
challenges associated with traditional chemical reduction
methods, particularly in handling large phase-segregated
mixtures. Liquid-phase pulsed plasma has demonstrated efficacy
in producing non-equilibrium nanoscale particles with exceptionally
high cooling rates (Yang L. et al., 2019). This method not only
enables the generation of nano-materials with varied sizes and
controlled shapes but also offers a streamlined process with low
energy consumption. Importantly, it often eliminates the use of toxic
precursors or reagents (Ma et al., 2020). Limited research exists on
the synthesis of Ag-Cu NPs using liquid-phase pulsed plasma. In a
recent study, Yang et al. successfully employed this method to
achieve the uniform alloying of Ag-Cu NPs. Application of these
nanoparticles in antibacterial research revealed their remarkable
ability to completely suppress the growth of Escherichia coli and
Staphylococcus aureus at ultra-low concentrations within a brief
incubation period. Importantly, the nanoparticles exhibited
minimal genetic toxicity (Yang L. et al., 2019). This study
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presents a promising avenue for the preparation of silver-copper
nano-composite materials.

Microwave method
Microwave (MW) method is a bottom-up physical approach.

This method involves mixing precursors and pH stabilizers (e.g.,
through magnetic stirring), and then subjecting the mixture to
microwave irradiation for a specific duration (usually a few
minutes) to form nanoparticles. The size and yield of the
nanoparticles depend on the time and power of microwave
radiation. While this process requires low-cost equipment, it
often entails a relatively lengthy sample preparation time (Li
et al., 2014).

Microwave method has piqued interest in colloidal NP synthesis
due to the “specific MW effect.” his unique effect encompasses
uniform heating and rapid reaction rates, not achievable through
traditional methods. They play a crucial role in controlling the
balance of nucleation and growth processes in liquid media, essential
for forming NPs with predetermined structural, compositional, and
geometric features (Chen et al., 2013). Xiong et al. compared the
nanostructure and optical properties of Ag-Cu NPs synthesized
using microwave and traditional oil bath heating methods. They
observed that Ag-Cu NPs produced via microwave reaction exhibit
smaller particle sizes, higher purity, and greater uniformity.
Additionally, the microwave synthesis method minimizes the
introduction of toxic chemicals, rendering it a more
environmentally friendly option (Xiong et al., 2016).

The sol–gel method
The sol-gel method, a bottom-up approach, entails blending

precursors with a solvent in the presence of a catalyst to create a
homogeneous solution. The addition of water initiates hydrolysis,
leading to the formation of suspended particles known as sol.
Noteworthy advantages of this method include the convenient
synthesis of aerogels and the ability for large-scale nanoparticle
production. However, it demands skilled chemists, involves multiple
processing steps, and provides limited control over nanoparticle size
(Nyabadza et al., 2023).

Research on the sol-gel synthesis of Ag-CuNPs is extensive, with
recent studies often combining Ag-Cu NPs with other metallic
elements. The focus lies primarily on coating preparation and the
investigation of optical and electrical properties. For instance,
Modwi and colleagues found that Ag-modified Cu-doped ZnO
nanoparticles exhibit superior electrical characteristics (Modwi
et al., 2021). Meanwhile, Zhang et al. discovered that under near-
infrared light, NYFT composite materials loaded with Au-Ag-Cu
demonstrate heightened photocatalytic activity and increased
effectiveness against S. aureus (Zhang H. et al., 2018).

Biosynthetic approach

Although physical and chemical methods have successfully
produced high-purity nanoparticles of desired sizes, these
processes often incur high costs and involve toxic chemicals.
Hence, the toxicity issues in the preparation process become
particularly critical. One of the primary goals of nanotechnology
is to establish an ecologically friendly production process. To achieve

this, some researchers have focused on biological methods for
synthesizing metal nanoparticles due to their advantages, such as
rapidity, cost-effectiveness, and environmental friendliness (Ghosh
S. et al., 2021).

Nanoparticles (NPs) biosynthesis is fundamentally a bottom-up
process involving the reduction of ions in aqueous solutions. In these
studies, proteins and enzymes secreted by organisms like plants,
bacteria, fungi, and yeast play a crucial role as reducing agents in NP
synthesis. Although NPs synthesized through biological routes are
enveloped by proteins and enzymes, making them excellent
candidates for biological applications like drug delivery, this
encapsulation may hinder their application in the field of
electronics (Nyabadza et al., 2023).

However, research on the green synthesis of Ag-Cu NPs is
relatively scarce. Recently, Hamouda et al. conducted a study
evaluating the antibacterial activity of Ag-Cu NPs extracted from
the seaweed Ulva lactuca against both Gram-positive and Gram-
negative bacteria, as well as their impact on antibiofilm formation.
The synthesized nanoparticles exhibited significant antibacterial
activity against multidrug-resistant strains, highlighting their
potential as alternative antibacterial agents (Hamouda et al.,
2023). Simultaneously, Kumar et al. successfully prepared Ag-Cu
NPs from wastewater extract of Prosopis cineraria pods (commonly
known as “Sangri”), confirming the promising application prospects
of this synthesis method (Kumar et al., 2023). Other plant extraction
methods, such as Artemisia haussknechtii leaf extract, (Alavi and
Karimi, 2018b), Salvia officinalis, (Malik et al., 2023), and Aegle
marmelos and Citrus limetta fruit peel extract (Kushwah et al., 2019)
have also been reported. The majority of these studies have focused
on research in the field of antibacterial properties.

In addition to the common methods for synthesizing Ag-Cu
NPs mentioned above, there is widespread interest in various
bottom-up synthesis approaches, such as galvanic deposition,
(Mahara et al., 2016), galvanic displacement, (Muzikansky et al.,
2013; Lee et al., 2015), and one-pot synthesis (Giorgetti et al., 2013;
Delsante et al., 2015). In contrast, top-down synthesis methods have
received relatively less attention in the research.

Different structures of Ag-cunps

The varied morphology of nanoparticles significantly influences
their antibacterial efficacy and genotoxic potential (Mohammadi
et al., 2018). Research indicates that in bimetallic complexes, such as
silver and copper, the interaction occurs not only at a mechanical
level but also at an atomic and lattice level (Dehghani et al., 2019).
Based on the arrangement of atomic structures, BNPs can be
categorized into two main types: hybrid structures and segregated
structures. Hybrid structures are further classified into random
structures and ordered structures. Random structures are also
referred to as alloy structures, while hybrid structures with
ordered arrangements are known as intermetallic structures.
Segregated structures consist of two different metals, with a
shared interface termed as cluster structures, and a structure
where one metal encases another is termed as core-shell
structures (Figure 3) (Behera et al., 2020). Medynska further
delineated BNPs into nine distinct nanostructure arrangements
(Zaleska-Medynska et al., 2016). Recent studies have extensively
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explored Ag and Cu nanocomposites. Most prepared Ag-Cu
nanocomposites exhibit “phase-separated” or “core-shell”
configurations (Yang L. et al., 2019). The most widely reported
nanocomposites have core-shell structures (Sharma et al., 2019).

The core-shell structures

Extensively studied for their geometric control and exceptional
physical properties, core-shell nanoparticles (CS NPs) exhibit
synergistic attributes (Tao et al., 2017). Ferrando’s research
revealed that components with higher REDOX potential in the
reduction process tend to assume the core role, while the second
component has a propensity to deposit onto this core, forming a
core-shell structure. Furthermore, he observed that the introduction
of surfactants can alter the deposition sequence, leading to the
formation of an antinuclear shell arrangement (Ferrando et al.,
2008). Numerous studies focus on Ag-Cu CS NPs, with concentric
spherical CS NPs being most explored (Yang Z. et al., 2019). Ghosh
outlines two synthesis methods for diverse CS NPs: using distinct
core shapes for physical control or employing capping agents,
polymers, or reagents to govern growth direction and size
(Ghosh Chaudhuri and Paria, 2012). Although generally less
biologically active than singular nanoparticles, CS NPs exhibit
prolonged metal ion release for extended bactericidal efficacy
(Feng et al., 2021). Ag-Cu CS NPs exhibit broad-spectrum
antibacterial activity and negligible genetic toxicity, highlighting
their potential in antimicrobial applications (Długosz et al., 2021).

Ghosh discovered that different core shapes can lead to
distinct Ag-Cu NPs, and the antibacterial effectiveness and
toxicity of CS NPs are intimately linked to the core shape and
shell thickness (Ghosh Chaudhuri and Paria, 2012). Gan’s
findings reveal that triangular CS NPs, compared to spherical
and cubic counterparts, possess larger specific surface areas and
porosity, thereby enhancing their antibacterial activity (Gan
et al., 2018). Caruso and colleagues have observed that shell
materials not only enhance core stability and dispersion through
surface charge modification but also shield the core from external
stimuli by adjusting shell thickness at the nanoscale (Caruso,
2001). This synergistic mechanism imparts excellent
antibacterial properties to Ag-Cu NPs while effectively
preventing nanoparticle aggregation and inhibiting the genetic
toxicity of BNPs.

Tojo proposed that the morphology of CS NPs can be finely
tuned by adjusting the proportions and introduction sequence of
metal precursors (Tojo and Vila-Romeu, 2014). Notably, Osowiecki
et al. discovered an intriguing phenomenon during the synthesis of
Ag-Cu core-shell NPs: varying the atomic fraction of Ag leads to
distinct structures, ranging from nano crescent to complete core-
shell configurations with enhanced surface coverage, a novel finding
(Osowiecki et al., 2018). Jang et al. demonstrated that successful
formation of Ag-Cu CS NPs requires sequential reduction of Cu and
Ag precursors, while simultaneous introduction or initial reduction
of Ag precursors impedes the formation of Cu-Ag CS NPs. This
phenomenon might be attributed to the underlying
chemical reactions:

FIGURE 3
Different types of bimetallic nanostructures (NS). (A) Alloyed NS (random), (B) intermetallic NS (ordered), (C) core-shell NS, (D) subcluster NS, (E)
multishell core-shell NS, (F) multiple core-single shell NS (Behera et al., 2020).
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2Ag+ + Cu → 2Ag + Cu2+

Jang et al. (2020)Moreover, the inclusion of appropriate capping
agents, surfactants, and coordination compounds has been
demonstrated to have a substantial impact on the structure,
shape, size, and characteristics of CS NPs (Zhao et al., 2022; Boas
et al., 2023).

Several specific core-shell structures of Ag-Cu nanoparticles
have been reported, including core-shell-shell particles (Bouazizi
et al., 2018), metal Ag-Cu core-shell clusters with incomplete
fractional phases (Benetti et al., 2019), cluster-within-cluster
structures, triple onion-like core-shell structures, (Ferrando et al.,
2008), multiple core-shell microspheres, and hollow core-shell
structures (Ghosh Chaudhuri and Paria, 2012). These structures
frequently exhibit outstanding antibacterial properties, concurrently
mitigating the adverse reactions attributed to nanocomposites.

The hybrid structures

Hybrid structures can adopt either ordered or random
arrangements. When the atomic sizes of the two elements closely
resemble each other, the resulting alloy tends to exhibit a random
configuration. Conversely, when there is a significant disparity in the
sizes of the metal atoms, and the molar ratio of the two elements is
simple enough, an intermetallic compound forms, resulting in a
distinct structure (Zaleska-Medynska et al., 2016).

Much like the intricate factors governing CS nanostructures,
those shaping alloy nanostructures are equally diverse. An array of
synthesis conditions, encompassing variations in reduction potential
(Tojo and Vila-Romeu, 2014), precise control of calcination
temperature (Cybula et al., 2014), modulation of radiation dose
(Treguer et al., 1998), and meticulous management of precursor
concentration and sequence (Tojo and Vila-Romeu, 2014),
collectively contribute to the diversity observed in bimetallic alloy
nanoparticle structures.

The physicochemical attributes of BNPs are governed by a
diverse array of factors, spanning from precursor concentration
and sequential introduction to the chosen synthesis modality,
bimetallic composition, and the utilization of surfactants and
terminal agents. Furthermore, extraneous parameters like
variance in reduction potential, temperature, and radiation
dosage throughout the synthesis procedure significantly impact
the eventual nanoparticle attributes.

Enhanced antimicrobial efficacy and
reduced toxicity

Enhanced antimicrobial properties

Bimetallic nanoparticles are highly prized for their significant
potential across various fields. A multitude of studies has
consistently demonstrated that BNPs inhibit bacterial growth
through the following mechanisms: i) Adhesion to the cell
membrane: BNPs can change the structure of the membrane,
leading to altered permeability and deficiencies in cell functions
such as ATP secretion and transport activity. ii) Penetration inside

the cell and nucleus: BNPs can disrupt mitochondrial function,
destabilize and denature proteins, destabilize ribosomes, and
interact with DNA. iii) Cellular toxicity and ROS generation:
BNPs have the ability to induce cellular toxicity and generate
reactive oxygen species (ROS), which can oxidize proteins, lipids,
and DNA bases. iv) Modulation of cellular signaling: BNPs can
modify the phosphotyrosine profile, thereby influencing cellular
signaling pathways (Abbasi et al., 2018; Kushwah et al., 2019;
Fanoro and Oluwafemi, 2020; Medina-Cruz et al., 2020).

Van Hengel et al. discovered that in Minimum Inhibitory
Concentration (MIC) and Minimum Bactericidal Concentration
(MBC) experiments, the synergistic effect of Ag-Cu NPs was
significantly enhanced, with a respective increase of 2 and
10 times (van Hengel et al., 2020). The underlying mechanisms
involve the production of more endogenous ROS, leading to a
stronger oxidative stress response and reduced bacterial cell
activity (Xie et al., 2022). Furthermore, Ag-Cu NPs release
higher quantities of metal ions (Zhou et al., 2022), display a
more dispersed structure (Pourjafari et al., 2022), diverse
morphologies and sizes (Gu et al., 2018), enhance cellular
permeability in prokaryotes (Garza-Cervantes et al., 2017), and
the charge transfer effect further amplifies their antibacterial
activity (Yang L. et al., 2019). In the review, the minimum
inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) were utilized as crucial parameters for
evaluating the bactericidal activity of bimetallic nanoparticles
(BNPs), and Table 2 presents the antibacterial effect of Ag-Cu
NPs in the retrieved articles.

Negligible genotoxicity

The fundamental mechanisms underlying NPS (nanoparticle)
toxicity encompass oxidative stress, inflammatory response,
immunotoxicity, with genotoxicity being the primary factor
impacting human host cells (Magdolenova et al., 2014). The
mechanisms underlying nanoparticle-induced genotoxicity
remain a subject of intrigue, with the degree of their impact on
DNA specificity remaining unclear. Barnes et al. put forward the
hypothesis that genotoxicity may arise from interactions between
nanoparticles and genetic material or result from damage induced
by reactive oxygen species (ROS) generated by nanoparticles or the
release of toxic ions from soluble NPs (Barnes et al., 2008). Agnihotri
et al. propose that nanoparticle-induced inflammation may give rise
to secondary genotoxicity. In this process, activated phagocytes like
neutrophils and macrophages release reactive oxygen species (ROS)
that initiate oxidative damage to host cell DNA (Magdolenova et al.,
2014; Agnihotri et al., 2020).

Ag NPs and Cu NPs exhibit potent antibacterial potential and
have been extensively studied. The most widely accepted genotoxic
mechanisms currently encompass direct DNA interactions, protein
engagement, and the induction of oxidative stress, potentially
resulting in host DNA damage and cellular dysfunction
(Magdolenova et al., 2014). Ag NPs might enter mammalian cells
via Ag+ release, generating reactive oxygen species and disrupting
redox systems, leading to cellular toxicity in cells (Yin et al., 2020).
Saifi discovered that exposure pathways to Ag NPs can lead to the
accumulation of toxic concentrations in the body, possibly resulting
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TABLE 2 Antibacterial effect of Ag-Cu NPs in the retrieved articles.

BNPs Bacteria MIC (mg/L) MBC(mg/L) References

Ag-Cu NPs Bacillus subtilis 0.054 — Kalińska et al. (2019)

E. coli 0.076 —

S. aureus — —

Ag-Cu NPs P. aeruginosa 1.25 2.5 Pourjafari et al. (2022)

Ag-Cu NPs E. coli 0.23–0.25 0.65–0.8 Valodkar et al. (2011)

S. aureus 0.3–0.34 1.2–1.6

Ag-Cu NPs P. aeruginosa ≥125 — Valdez-Salas et al. (2021)

S. marscescens >500 —

S. enterica >250 —

E. coli >500 —

S. aureus >500 —

Ag-Cu NPs E. coli 20 — Ghosh et al. (2021a)

S. aureus 20 —

Ag-Cu NPs E. coli 260–270 300–350 Długosz et al. (2021)

S. aureus 290–350 300–400

C. albicans 350–400 450–460

Ag-Cu NPs E. coli 20 — Yang et al. (2019a)

S. aureus 2 —

Ag-Cu NPs E. coli 2.5 — Wang et al. (2019)

S. aureus 3 —

Ag-Cu NPs E. coli 15 — Malik et al. (2023)

S. aureus 5 —

K.pneumoniae 10 —

S.epidermidis 5 —

Ag-Cu NPs E. coli 0.054 — Zain et al. (2014)

B. subtilis 0.076 —

Ag-Cu NPs E. coli 500 250 Mohammadi et al. (2018)

L. monocytogenes 250 250

B. cepacian 250 250

Ag-Cu NPs E. coli 0.22 0.5 Kushwah et al. (2019)

S. aureus 0.3 0.9

Ag-Cu NPs/Cu-Ag NPs E. coli 25 50 Alavi and Karimi (2018a)

S. aureus 5–10 10–20

P. aeruginosa 0–10 0–20

Ag-Cu NPs/Cu-Ag NPs E. coli —/75 75/75 Sabira et al. (2020)

S. aureus 100/75 100/75

P. aeruginosa 100/20 100/20
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in organ toxicity, including impacts on the brain, liver, spleen,
lymph nodes, and other organs (Saifi et al., 2018). Research into
the toxicity of Cu NPs is currently limited. Carmona et al. reported a
variety of adverse effects from Cu-NPs onmouse kidneys, livers, and
spleens, both in vitro and in vivo experiments (Carmona et al., 2018).
Sadiq et al. detected DNA strand breaks and oxidative DNA damage
induced by Cu NPs, correlating cellular toxicity with released Cu
ions (Sadiq et al., 2015). The low stability and aggregation of Cu NPs
in aqueous solutions should be considered when interpreting their
nanotoxicological effects.

Emerging research confirms that Ag-Cu NPs exhibit not only
synergistically enhanced antibacterial efficacy but also a reduced
potential for nanoparticle-induced bodily toxicity (Yin et al., 2020).
Van Hengel believes that the synergistic effect of Ag-Cu NPs boosts
antibacterial effectiveness while minimizing cytotoxicity by reducing
the required Ag NPs (van Hengel et al., 2020). Długosz et al. contend
that the reduced toxicity of Ag-Cu NPs primarily stems from their
synergistic capacity to generate larger, less mobile nanoparticles.
This inhibits the formation of detrimental free radicals and the
binding process with -SH groups (Długosz et al., 2021). Further
research has highlighted that in conventionally synthesized
nanoparticles, aggregation serves as the primary source of
toxicity. In Ag-Cu NPs, Ghadiri observed a more uniformly
dispersed single nanoparticle, providing strong evidence of the
safety performance of BNPs (Ghadiri et al., 2020). Furthermore,
the genotoxicity of BNPs can be affected by various factors,
encompassing aspects like their shape, surface characteristics,
physicochemical parameters (such as pH and temperature),
solubility, in addition to variables like the dosage of
nanoparticles, duration of exposure, and the type of cells
involved (Magdolenova et al., 2014). These findings hold
significant implications for the future development of
antimicrobial products.

Outstanding attributes and influential
factors in antibacterial domain

Stability of BNPs

Silver nanoparticles (AgNPs) and copper nanoparticles (CuNPs)
exhibit excellent antibacterial activity, along with higher safety and
longer activity cycles compared to organic nanomaterials, even at
low concentrations. Additionally, the susceptibility of CuNPs to
oxidation in ambient aerobic conditions leads to the formation of
irregularly shaped, often spherical, agglomerated particles during
the preparation process, potentially compromising their
physicochemical and antimicrobial performance (Dlugosz and
Banach, 2020).

Relevant studies suggest that the incorporation of silver
components significantly reduces the oxidation tendencies of
CuNPs. The formation of Ag-Cu NPs reduces oxygen ingress,
resulting in a more stable structure compared to monometallic
conditions, allowing for slow ion release, both favorable for
synergistic interactions between the two metals (Cruces et al.,
2022). Ahmadinejad et al. investigated the aging of synthesized
Ag-Cu alloy nanoparticles and found them to be more stable than
pure Cu nanoparticles, attributing this stability to the protective

effect of a thin Ag shell (Ahmadinejad and Mahdieh, 2022).
Similarly, Tsai demonstrated, through experiments, that the
formation temperature of Cu oxide in Ag-Cu NPs is at least
150°C higher than in similarly sized pure Cu nanoparticles,
owing to the protective role of the thin Ag shell (Tsai et al., 2013).

The stability of nanoparticles is closely linked to their high
surface-to-volume ratio and rapid, uncontrolled release
characteristics. Ongoing research in the quest for long-term
stable NPs includes Dlugosz et al.’s suggestion that the addition
of higher concentrations of tannic acid during CuNPs synthesis
favors the generation of more stable CuNPs products (Dlugosz and
Banach, 2020). Cruces emphasizes the importance of carriers,
suggesting that negatively charged surfaces of zeolite (Zeo) and
montmorillonite (Mtt) facilitate a more uniform loading and even
release of Ag-Cu NPs, significantly enhancing their stability (Cruces
et al., 2022). Recently, Ahmadinejad discovered a correlation
between the presence and intensity of an applied electric field
and the size and stability of Ag-Cu alloy NPs. Under appropriate
field strength, Ag-Cu NPs become increasingly stable with
increasing field intensity, providing theoretical support for new
development strategies (Ahmadinejad and Mahdieh, 2022).
Furthermore, studies on the addition of stabilizers such as
polyvinyl pyrrolidone (PVP)polyvinyl alcohol (PVA) have been
reported to enhance stability (Zhu et al., 2021).

Dispersion of BNPs

Numerous studies have substantiated the superior antibacterial
capabilities of nanomaterials compared to their larger counterparts,
attributed to their smaller size and higher dispersion. Nevertheless, the
challenge of nanoparticle aggregation persists during synthesis.
Kalinska attributes the aggregation tendency of Ag-Cu NPs to
nanoparticle size heterogeneity (Kalińska et al., 2019), while
Manikam and colleagues propose that high surface energy and
thermodynamic instability are the primary aggregation causes
(Manikam et al., 2011). Ghadiri argues that nanoparticle
aggregation is an inherent outcome of their synthetic pathways. He
posits that conventional methods of nanoparticle synthesis might
induce substantial particle aggregation, consequently significantly
enhancing their toxicity (Ghadiri et al., 2020). To maximize the
antibacterial efficacy of Ag-Cu NPs and mitigate toxicity, it is
crucial to employ diverse strategies to reduce nanoparticle aggregation.

Numerous strategies exist to enhance Ag-Cu NPs dispersion.
Research findings highlight that precursor type, proportion, and
addition order impact complex formation and nanoparticle
dispersion. Furthermore, Ghorbi’s suggestion to moderate the
acceleration rate of silver precursors has been shown to notably
improve the dispersion of silver cores in CS NPs, effectively
preventing aggregation in the resulting Ag-Cu NPs; however,
surpassing an optimal precursor concentration may reduce
nanoparticle dispersion and lead to increased cluster formation,
adversely affecting overall performance (Ghorbi et al., 2019).
Researchers stress the vital role of surfactants as essential
stabilizers to prevent nanoparticle aggregation, while capping
agents are emphasized for their potential to boost the
antibacterial performance of nanoparticles and avert particle
aggregation (Manikam et al., 2011; Joel T and Shobini, 2018).
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In addition to these points, Perdikaki’s research indicates that a
significant increase in the surface area ratio of Ag-Cu NPs often
reduces aggregation, enhancing antibacterial effects while lowering
genetic toxicity (Perdikaki et al., 2016). Długosz further highlights
that an increased proportion of Cu NPs results in Ag-Cu NPs with
noticeably larger sizes than Ag NPs, effectively improving stability
and dispersion while mitigating aggregation-related risks (Długosz
et al., 2021).

Dimensions of BNPs

Based on their geometric shapes, BNPs can be categorized into
zero-dimensional NPs, one-dimensional NPs, and two-dimensional
NPs. Zero-dimensional nanoparticles, such as nanospheres and
polyhedra, are predominantly synthesized using wet-chemical
methods. One-dimensional nanoparticles consist of nanowires,
nanorods, and nanotubes, while two-dimensional nanoparticles
are composed of nanoplates, nanosheets, and nanobelts. These
BNPs exhibit distinct properties and catalytic performance
depending on the available active sites (Duan and Wang, 2013).

Some researchers emphasize that the higher surface area ratio of
BNPs is inherently linked to their smaller nano size. Smaller
nanoparticle sizes are more favorable for the release of metal ions
from regions rich in low-coordination atoms (Ghasemi et al., 2017;
Sabira et al., 2020). S Simultaneously, the reduction in size
significantly enhances the generation of reactive oxygen species
(ROS), resulting in a more potent oxidative stress damage during
the antimicrobial action of Ag-Cu NPs (Manke et al., 2013). These
two synergistic mechanisms collectively enhance their
antibacterial efficacy.

The study conducted by Dulgosz indicates that enhancing the
ratio of Cu NPs leads to the formation of larger Ag-Cu NPs. This
results in the creation of nanocomplexes characterized by improved
stability and reduced toxicity (Długosz et al., 2021). Consequently, a
substantial enhancement in bactericidal efficiency occurs, propelled
by the advantageous interplay of synergistic effects—an insightful
finding within their research (Długosz et al., 2021). However, Zhang
presents a differing viewpoint, suggesting that the miscibility and
orderliness of the bimetallic structure can be affected, potentially
resulting in smaller BNPs compared to their individual NP
counterparts. This increase in surface-to-volume ratio,
accompanied by a higher number of active sites and lower
energy barriers, significantly enhances the catalytic activity of
BNPs (Zhang and Zhang, 2018). Furthermore, it is important to
note that the presence of Ag-Cu NPs has a synergistic effect,
reducing the requirement for Ag NPs and effectively mitigating
the genotoxicity associated with BNPs (van Hengel et al., 2020).

Impact of carrier presence on Ag-Cu NPs

As a significant constituent within loaded nanoparticles, the
carrier has been extensively examined by numerous scholars.
Montmorillonite (Roy et al., 2018), sepiolite (Li et al., 2020),
nanofibers (Liu et al., 2018), carbon nanotubes (Jiang et al.,
2022), carbon nanospheres (Li et al., 2016)), nano-SiO2 (Ermini
and Voliani, 2021), and biopolymeric materials (Arfat et al., 2017b)

have garnered attention as carriers (Table 3). Based on their
functionality, Yang et al. categorized carriers into two main
types: biocompatible (Figure 4A) and absorptive (Figure 4B).
Among the biocompatible carriers are hydroxyapatite and
bioactive glass, which mitigate immune responses upon
introduction into organisms. Zeolite and clay minerals, classified
as absorptive carriers, offer conducive environments for the loading
and dispersion of inorganic nanometals (Yang et al., 2022). Yang
et al. ascribed the antibacterial mechanism of the carriers to their
sturdy pore structure and expansive specific surface area. These
attributes facilitated the efficient absorption and release of active
ingredients through diverse mechanisms, simultaneously playing a
pivotal role in averting the agglomeration of high-surface-energy
nanoparticles (Yang et al., 2022).

Numerous studies have shown that Ag-Cu NPs with support
have better activity than those without support (Ahmad et al., 2016).
Perdikaki contends that the presence of carriers plays a crucial role
in augmenting oxidative stress and cell membrane disruption by
BNPs, while also ensuring the uniform distribution of nanoparticles
on the surface (Perdikaki et al., 2016). Conversely, Targhi attributes
the heightened antibacterial efficacy in the presence of carriers to the
sustained-release effect exhibited by the nanoparticles. Carriers can
ensure that nanoparticles maintain a more prolonged in vitro
antibacterial and anti-biofilm effect at lower doses, thus eliciting
a more enduring bactericidal action (Targhi et al., 2021). In addition,
it has been well-documented that the partial carrier possesses
intrinsic antibacterial capabilities and exhibits mechanisms that
synergistically amplify oxidative stress damage in conjunction
with nanoparticles, thereby enhancing their antibacterial
effectiveness (Ahmad et al., 2016).

It is important to note that the application of most carrier
materials is often constrained by various factors. These limitations
include complex synthesis processes, unclear in vivo reaction
mechanisms, and severe inflammation in vital organs such as the
kidneys. Consequently, it is imperative to carefully evaluate the
selection of carrier materials in future research, development, and
application (Fan et al., 2020).

pH of the external environment

Teixeira posits that pH can directly modulate the surface charge
and electron transfer properties of BNPs, consequently influencing
their photocatalytic capabilities and antibacterial attributes (Teixeira
et al., 2019). Pelgrift et al., in their observation, found that the
antibacterial potential of nanoparticles becomes readily activated in
acidic conditions at the infection site (Pelgrift and Friedman, 2013).
Further confirming this effect, Yan et al. demonstrated that BNPs
exhibit increased bactericidal efficacy in a low pH environment
(pH 5.0) compared to a physiological environment (pH 7.4). This
enhancement is likely attributed to the substantial release of Cu2+

and Ag+ ions at low pH conditions (Yan et al., 2020).

Optical and electrical properties of BNPs

Existing research has demonstrated that Cu NPs, a common
p-type semiconductor, have gained widespread application in the
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TABLE 3 Summarized applications and advantages of various nanoparticle carriers.

Nanocarriers Carriers
type

Nanomaterials Advantages References

MMT Adsorbable types Ag/MMT、Cu/MMT A cost-effective and non-toxic clay nanomaterial, exhibits strong
adsorption capabilities and stabilizes nanoparticles, preventing

clumping

Roy et al. (2018)

Ag/OMMT/QCS-QOMA Chen et al. (2016b)

(Ag-Nacre-like
KGM)/MMT

Zhu et al. (2018)

Ag/MMT Costa et al. (2011)

Ag/OMMT Zhang et al. (2018b)

Ag/MMT/Agar–CMC Makwana et al. (2020)

Ag/glassy/matrix/MMT Esteban-Tejeda et al.
(2010)

Ag-Bi2O3/MMT Tun et al. (2020)

Sep Adsorbable types Ag/Sep Carrier Sep has abundant Si−OH ion clusters, ensuring strong
adsorption, covalent bond formation, and enhancing thermal

stability

Li et al. (2020)

Si/Sep Gómez-Avilés et al.
(2013)

MgO/Sep Sidhu et al. (2020)

TiO2/Sep Bouna et al. (2011)

Si-Al/Sep Belver et al. (2013)

ZnO/Fe3O4-SeP Akkari et al. (2017)

Carbon Nanostructure Adsorbable types Ag/CNF Leveraging carbon nanostructures for eco-friendly, non-toxic,
highly biocompatible, degradable carriers, enhancing

photocatalysis, with flexibility in size, shape, and surface
properties

Liu et al. (2018)

Ag-Pulp/CNF Zhu et al. (2020b)

Pd/SCNT-500 Jiang et al. (2022)

G/ZnO2/CNF Ahmadi et al. (2021)

Ag/CNSs、Au/CNSs Li et al. (2016)

HA Adsorbable types Zn/HA HA possesses unique nanoscale properties, is widely sourced,
non-toxic, with strong adsorption, significantly enhancing the
surface area of loaded metal nanoparticles, and comes with

inherent antibacterial properties

Murugesan et al. (2018)

TiO2、Au、Pt/Chitosan/
PLA/HA

Radwan-Pragłowska et al.
(2020)

Al2O3/HA Ghosh et al. (2010)

Fe3O4/HA Singhal et al. (2017)

Ag/HA Qu et al. (2013)

Graphene Adsorbable types FeAg/Graphene Graphene’s properties like large surface area, mechanical
strength, electrical stability, and inherent antibacterial capacity
significantly enhance nanocomposite activity and stabilize loaded

nanoparticles

Ahmad et al. (2016)

Au/Graphene Chen et al. (2016a)

Ag/RGO、Cu/RGO Bhattacharjee et al. (2021)

Au/Graphene Barani et al. (2021)

Au/Graphene Bakhtiary et al. (2022)

Bioactive glass Biocompatible
types

Ce/BG Biologically active materials, as carriers, possess therapeutic
properties while effectively enhancing the dispersion of loaded
nanoparticles, mitigating immune responses, and exhibiting

excellent biocompatibility

Farag et al. (2019)

γ-Fe2O3/BG Kesse et al. (2020)

CHT/BG-NPs Correia et al. (2015)

GelMA/BG Mei et al. (2022)

Glycerol plasticized agar
solution

Ag-Cu NPs Arfat et al. (2017a)

Cur Cu NPs、Ag NPs Targhi et al. (2021)
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fields of photocatalysis and sterilization due to their cost-
effectiveness, unique physicochemical properties, high surface
area, and promising prospects (Noman et al., 2020). Similarly, as
a well-known active photocatalyst, Ag NPs possess tunable
plasmonic resonance effects that can significantly mitigate
infections caused by numerous bacteria (Asgari et al., 2022).
While both Ag NPs and Cu NPs have their individual advantages
in the field of photocatalysis, research on harnessing their synergistic
effects for the synthesis of BNPs to enhance their antibacterial
performance is scarce.

Scholars suggest that the photocatalytic antibacterial mechanism
of hybrid semiconductor–metal nanoparticles (Ag-CuNPs) relies on
charge separation and transfer between the metal and
semiconductor materials (Kushwah et al., 2019). This charge
separation was substantiated by Waiskopf et al. through the
observation of fluorescence quenching effects in HNPs (Waiskopf
et al., 2018). Therefore, the heightened bactericidal effect of Ag-Cu
nanoparticles may be linked to the charge transfer mechanism.
Panchal discovered that HNPs exhibited higher hydroxyl radical
concentrations under light, thanks to electrons transferring from
semiconductors to metal nanoparticles (Panchal et al., 2020)
Similarly, Ag NPs with surface plasmon resonance released
electrons to interact with oxygen, producing additional ROS.
These amplified free radicals and ROS bolstered the oxidative
stress response of Ag-Cu NPs (Zhu M. et al., 2020).

Various factors influence charge separation and hole removal
between HNPs particles. Ben-Shahar indicated that surface and
chemical properties of the surroundings impact HNPs charge
separation. They linked charge separation to HNPs size, with a
denser state-of-states inmetal compounds boosting transfer rates for
larger metal domains (Ben-Shahar et al., 2016). Waiskopf suggested
that the metal composition plays a role in influencing charge transfer
kinetics and efficiency. It was observed that more efficient charge
transfer occurs in semiconductor nanorods modified with multi-
island structures (Waiskopf et al., 2018). Moreover, it has been
documented in the literature that environmental variables, including
the presence of organic ligands and highly alkaline conditions,
significantly enhance the process of charge separation (Simon
et al., 2014).

Oxidative stress response

Reactive oxygen species (ROS) are highly active oxygen-
containing molecules, including unstable radicals like superoxide
anions, hydroxyl radicals, and hydrogen peroxide. Research has
demonstrated that cells can generate reactive oxygen species (ROS)
through both endogenous pathways, such as NADPH oxidase, and
exogenous pathways, including metal-catalyzed Fenton reactions
(Manke et al., 2013). After exposure to nanoparticles (NPs),

FIGURE 4
Classification of carriers for transporting nanomaterials according to their functions. (A). Biocompatible carriers loaded with metal antibacterial
active components; (B). Adsorbable carriers loaded with metal antibacterial active components. (“A and B ” reprinted with permission from Ref (Yang
et al., 2022).
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Dharmaraja observed an elevation in reactive oxygen species (ROS)
production within microbial cells, resulting in oxidative damage to
biomacromolecules such as lipids, proteins, and nucleic acids
(Dharmaraja, 2017). The generation mechanism and bactericidal
action of ROS are illustrated in Figure 5.

Manke has advanced the idea that when faced with an
overabundance of ROS generation, host cells employ a regulatory
mechanism involving the expression of cytokines (MAPK, PTPs,
Src, NF-κB, AP-1) to mitigate oxidative stress-induced genotoxicity.
This regulation is facilitated by the coordinated action of non-
enzymatic antioxidants, including enzymes (SOD, CAT, PER), as
well as other substances (Vc, VE, GSH, Cys) (Manke et al., 2013).

Previous studies have shown that compared to other metal
nanoparticles, Ag NPs and Cu NPs tend to generate a richer
pool of ROS, consequently leading to more pronounced oxidative
stress damage (Długosz et al., 2021). Meghana discovered that under
aerobic conditions, CuNPs not only rapidly degrade cell membranes
but also generate extremely high concentrations of ROS. This ROS-
induced oxidative stress damage serves as one of the primary
mechanisms behind the antibacterial properties of copper
nanoparticles (Meghana et al., 2015). Liao et al. proposed that
the oxidative stress bactericidal mechanism of Ag NPs is linked
to the significant inhibition of redox-related enzymes in bacterial
cells, such as CAT and POD (Liao et al., 2019). Recently,
Bondarenko identified a relatively novel phenomenon. He
observed a strong correlation between the dissolution rate of Ag
NPs and their primary bactericidal mechanism and toxic effects. Ag

NPs with a high dissolution rate tend to primarily employ the
bactericidal mechanism through the release of Ag+. In contrast, Ag
NPs with a low dissolution rate demonstrate a greater tendency to
induce ROS-mediated damage and exhibit minimal genotoxicity
(Bondarenko et al., 2018).

Emerging research highlights the potent synergistic effect of Ag-
Cu NPs, significantly elevating ROS levels within microbial systems,
influenced by a variety of factors. Długosz observed that BNPs can
enhance their antibacterial performance by increasing their surface-
to-volume ratio, accelerating ion release, and intensifying ROS
content and oxidative stress reactions (Długosz et al., 2021).
Ahmad et al. emphasized the significance of carriers in ROS
generation within BNPs systems (Ahmad et al., 2016; Targhi
et al., 2021). Additionally, Metryka suggested that the presence of
transition metals (Cu NPs) on the surface of BNPs contributes to the
generation of additional ROS through Fenton, Fenton-like reactions,
and the Haber-Weiss reaction, broadening our understanding of the
multifaceted antibacterial mechanisms of NPs (Metryka et al., 2021).

The impact of the external environment should not be
underestimated. Moussa proposed that under illuminated
conditions, photo-excited charge-carrier interactions in the
Fenton reaction enhance ROS levels within bacterial cells,
facilitating BNPs’ effective oxidative stress bactericidal activity
(Moussa et al., 2016). Zhang et al. emphasized the indispensable
role of oxygen in oxidative stress reactions within the BNPs system
(Zhang et al., 2017). André suggested that the reduced activity of
BNPs in anaerobic environments primarily stems from decreased

FIGURE 5
Generation and function of oxidative stress response. (A) Metal-induced oxidative stress-mediated adverse pathophysiological outcome (Khalid
et al., 2020). (B) Sources of oxidative stress for bacteria. (C) The potential mechanism of reactive oxygen species (ROS) in antibacterial action. (“B and C″
reprinted with permission from (Dharmaraja, 2017). Copyright 2017 American Chemical Society).
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macrophage and neutrophil activity (André et al., 2022).
Additionally, the influence of pH levels and temperature
conditions in the surrounding environment on the oxidative
stress damage caused by Ag-Cu NPs has been substantiated by
relevant scholars (Sun et al., 2021; Hosny et al., 2022), offering
insights for optimizing the antibacterial effectiveness of NPs.

Conclusion and outlook

In conclusion, Ag-Cu NPs exhibit remarkable bactericidal efficacy
and minimal genotoxicity compared to their individual nanoparticle
counterparts. The incorporation of BNPs not only addresses the
inherent aggregation susceptibility of Cu NPs, but also mitigates the
significant genotoxic effects associated with AgNPs, thereby optimizing
the beneficial attributes of single nanoparticle species. Moreover, the
synergistic mechanisms intrinsic to BNPs facilitate a substantial
elevation of ROS levels, with robust oxidative stress damage
emerging as the primary bactericidal mechanism. The performance
of bimetallic nanoparticles is significantly modulated by external factors
such as pH, carrier presence, oxygen levels, and light conditions. For
potential clinical applications, the pursuit of enhanced BNPs
performance undoubtedly represents a burgeoning Frontier with
considerable promise.

Past research has predominantly employed conventional
methods to synthesize Ag-Cu NPs, which are expensive,
hazardous, and time-consuming. Hence, green synthesis
presents an appealing alternative for creating non-toxic, cost-
effective, and environmentally friendly metal nanoparticles. In
this approach, unicellular and multicellular organisms like
microorganisms and plants are utilized for nanoparticle
synthesis. Despite the lower cost, improved efficacy, smaller
particle sizes, and environmentally friendly bio-compatibility
associated with green synthesis, its limitations cannot be
overlooked. Challenges include uneven dispersion of NPs, slow
production rates, and difficulties in achieving precise control
over size distribution, shape, and crystallinity. These factors
make the implementation of these biological methods
challenging for large-scale production. Future endeavors may
focus on exploring bio-synthesis methods to overcome the
constraints of microbial and plant-based preparation routes.
Simplicity, safety, absence of toxic chemicals, enhanced
stability, and improved physical and chemical properties are
key factors when considering the green synthesis method.

Research has demonstrated the critical influence of the carrier
on the physical properties of Ag-Cu NPs. Current studies on the
clinical application of nanocarriers mainly focus on the loading and
dispersion of nanoparticles, drug release, and delivery mechanisms.
Therefore, the assessment of nanocarrier’s hepatorenal toxicity has
become increasingly important during application. Future research
may focus on the development of nanocarriers with enhanced safety
features, such as biodegradable nanocarriers or naturally derived
carriers from plants (e.g., curcumin, humic acid). Additionally, to

enhance the antimicrobial effects of nanocomposites, research into
carriers with intrinsic antimicrobial properties could emerge as a
current research focus.

Moving forward, gaining a deeper understanding of novel
mechanisms is essential for synthesizing unique metal
nanocomposites and exploring their potential applications. The
synthesis of inorganic metal nanocomposites with stronger
bactericidal ability and no toxicity is desired for clinical trials.
Scalable applications from laboratory to commercial scale are
also valuable. This review summarizes the bactericidal
mechanism and influencing factors of silver and copper nano
complexes and their oxides, providing clues for future research in
this important field.
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