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Introduction: Dementia is a condition (a collection of related signs and
symptoms) that causes a continuing deterioration in cognitive function, and
millions of people are impacted by dementia every year as the world
population continues to rise. Conventional approaches for determining
dementia rely primarily on clinical examinations, analyzing medical records,
and administering cognitive and neuropsychological testing. However, these
methods are time-consuming and costly in terms of treatment. Therefore, this
study aims to present a noninvasive method for the early prediction of
dementia so that preventive steps should be taken to avoid dementia.

Methods: We developed a hybrid diagnostic system based on statistical and
machine learning (ML) methods that used patient electronic health records to
predict dementia. The dataset used for this study was obtained from the Swedish
National Study on Aging and Care (SNAC), with a sample size of 43040 and 75
features. The newly constructed diagnostic extracts a subset of useful features
from the dataset through a statistical method (F-score). For the classification, we
developed an ensemble voting classifier based on five different ML models:
decision tree (DT), naive Bayes (NB), logistic regression (LR), support vector
machines (SVM), and random forest (RF). To address the problem of ML model
overfitting, we used a cross-validation approach to evaluate the performance of
the proposed diagnostic system. Various assessment measures, such as accuracy,
sensitivity, specificity, receiver operating characteristic (ROC) curve, and
Matthew’s correlation coefficient (MCC), were used to thoroughly validate the
devised diagnostic system’s efficiency.

Results: According to the experimental results, the proposed diagnostic method
achieved the best accuracy of 98.25%, as well as sensitivity of 97.44%, specificity of
95.744%, and MCC of 0.7535.

Discussion: The effectiveness of the proposed diagnostic approach is compared
to various cutting-edge feature selection techniques and baseline ML models.
From experimental results, it is evident that the proposed diagnostic system
outperformed the prior feature selection strategies and baseline ML models
regarding accuracy.
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1 Introduction

Dementia is a severe neurological condition that causes memory,
thinking, behavioral issues, and a steady decline in cognitive abilities
(Creavin et al., 2016).Worldwide, millions of people are impacted by
dementia. Around the globe today, 50 million people are thought to
be affected by dementia. Dementia incidence is expected to triple by
2050. The prevalence of dementia will keep rising as the global
population ages, putting enormous strain on healthcare systems
worldwide (Iadecola, 2016). Early dementia diagnosis and
prediction are crucial because they allow for quick intervention,
improved patient treatment, and possible preventive measures; thus,
prevention is essential for addressing this public health issue
(Nichols et al., 2022).

The standard procedures for diagnosing dementia rely on
clinical evaluations, which can be arbitrary and vulnerable to
discrepancies between various assessors. These evaluations
involve reviewing the medical records and conducting cognitive
and neuropsychological tests Hsiu et al. (2022). Cognitive diagnostic
tests or pathological characteristics diagnose dementia in its early
stages. Pathological features can be found through neuroimaging.
The alteration in neuronal structure is examined using magnetic
resonance imaging (MRI) Studholme et al. (2004); Duchesne et al.
(2008). These techniques are helpful but cannot address the minor
alterations in brain activity that characterize dementia’s early stages.
Electroencephalography (EEG) is another method to assess
individuals in the initial phases of dementia Ahiskali et al.
(2009). EEG and MRI imaging were coupled by Patel et al. to
enhance the identification of dementia in its early stages Patel et al.
(2008). However, due to the unacceptably high cost of testing and
the excessively drawn-out and intrusive nature of the testing process,
such instruments are insufficient for diagnosing dementia.
Additionally, new studies advise using computed tomography
(CT) or MRI of the brain to rule out structural explanations for
the clinical phenotype. According to estimates, primary care
physicians misdiagnose between 29% and 76% of people with
dementia or are likely to develop dementia Patnode et al. (2020).
This highlights the critical need for new diagnostic methods to
identify dementia in its earliest stages reliably. Recent years have
seen the emergence of machine learning (ML) as a potent tool for
predictive analytics and pattern identification, providing exciting
chances for advancements in this field Tanveer et al. (2020). Large-
scale data sets can be examined by ML algorithms, which can also
reveal hidden patterns that were previously undetected and make
predictions. Numerous data sources, such as genetic markers, brain
imaging data, lifestyle factors, and neuropsychological tests, have
been used by researchers to test the efficacy of ML for dementia
detection (Basheer et al., 2021). There are substantial potential
advantages to ML’s capacity to identify dementia with early
onset. Through prompt action when a disease is initially
identified, it is possible to treat it optimally and enhance patients’
quality of life. Early dementia prediction aids researchers in their
search for novel biomarkers and drug targets that will enable them to
create more potent treatments (Spooner et al., 2020). There are still
difficulties utilizing ML for dementia prediction despite the
encouraging findings. For the efficient training and validation of
ML models, big, meticulously assembled datasets covering a variety
of variables are required (Sivakani and Ansari, 2020).

The aim and purpose of this study is given as follows:

1. Constructing a dataset for dementia by integrating data from four
distinct SNAC sites (Blekinge, Kungsholmen, and Skåne)
employing data integration and harmonization criteria.

2. Significant features are selected from the dataset using a statistical
method (F-score).

3. For the classification of dementia, an ensemble voting classifier
based on DT, NB, SVM, LR, and RF was constructed.

4. The effectiveness of the proposed hybrid system, which combines
an ensemble voting classifier and a statistical method (F-score), is
also evaluated in comparison to three other feature selection
techniques.

5. Experimental results show that the proposed model outperforms
the baseline machine learning models, such as AdaBoost,
Random Forest, Support Vector Machines, Linear Regression,
Logistic Regression, Naive Bayes, and Decision Tree, according to
the three commonly used evaluation metrics of accuracy, ROC
curves, and AUC.

1.1 Literature review

Numerous studies have been conducted on applying ML
approaches to solve problems across various medical applications
and disease prediction. Researchers have developed several ML and
deep learning (DL) based algorithms for the early prediction of
dementia, such as Salihović et al. (Salihović et al., 2018), discovered
dementia predictors and deficits in multiple cognitive functions in
vascular cognitive diseases. A recent study by Nyholm et al. (Nyholm
et al., 2023) used machine learning to identify the risk factors for early
prediction of dementia based on sleep disturbances in older adults.
Wang et al. (Wang et al., 2019), examined the association between the
difference in expected and chronological brain age and the development
of dementia in a large population-based cohort of adult and older
individuals using a deep learningmodel. According to the outcomes, the
difference between expected and historical brain ages is a biomarker
associated with dementia risk. It could be used as an additional
biomarker for dementia threat assessment. Shigemizu (Shigemizu
et al., 2019) constructed an optimal risk prediction model based on
several MLmethods, including penalized regression, RF, support vector
machines, and gradient boosting decision tree, employing blood
miRNA expression data from 478 Japanese adults. Ryu et al. (Ryu
et al., 2020), address the subject of population aging and the growth of
geriatric illnesses, notably dementia, which is lethal to the daily activities
of the elderly. The authors provide a dementia prediction paradigm
based on XGBoost, an ML algorithm that uses the derived variable
extraction method. By extracting variable significance from traditional
independent variables, they use gradient boosting to generate derived
variables. The obtained variables’ findings are utilized to perform
variable significance analysis, leading to the development of a Top-N
group. Hyper-parameter alteration is used to achieve the best efficiency
compatible with the data features for each Top-N group. The authors
compare the performance of the proposed model to that of current ML
classification methods. The effects of biomarker-based dementia risk
estimation on quality of life (QoL) in mild cognitive impairment (MCI)
patients and their immediate relatives have not been adequately
examined.
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Furthermore, Rostamzadeh (Rostamzadeh et al., 2021)
provided empirical information on the effects of prediction on
QoL and developed an ethical and legal framework for
biomarker-based dementia risk assessment in MCI. Kühnel
et al. (Kühnel et al., 2021), conducted a study to develop and
validate a continuous biomarker-based model for estimating an
individual’s cognitive level at any point in the future. Ghazal et al.
(Ghazal et al., 2022), used ML classifiers to predict cancer,
dementia, and diabetes using different datasets. Their
proposed approach for multiclass classification used support
vector machines (SVM) and K-nearest neighbor (KNN) ML
algorithms to forecast three circumstances and compare the
accuracy of these tactics.

For reliable dementia prediction, Javeed et al. (Javeed et al.,
2022b), presented a hybrid diagnostic system based on ML
algorithms. In their proposed method, they constructed an
autoencoder that extracted features from the dataset, and an
ensemble learning model was used for classification. In another
study, Javeed et al. (Javeed et al., 2023d), presented a pair of
automated diagnostic systems that use genetic algorithms for
feature selection. At the same time, artificial neural networks
(ANN) and deep neural networks (DNN) are used for dementia
classification. Based on a genetic algorithm and a deep neural
network, the suggested model had the highest accuracy of
93.36%, sensitivity of 93.15%, and specificity of 91.59%.
Moreover, ML models tend to favor the majority class in the
dataset. To solve this problem, Javeed et al. (Javeed et al., 2023e)
proposed a diagnostic system for the early detection of dementia
using an adaptive synthetic sampling technique (ADASYN) to
solve the problem of imbalance in the dataset. They proposed
novel feature extraction techniques, namely, feature extraction
batteries (FEB) and optimized support vector machines (SVM)
using radical basis functions (RBF), for dementia classification.
The grid search method was used to calibrate the SVM
hyperparameters. Their proposed model (FEB-SVM) increased
the dementia prediction accuracy of the standard SVM by 6%.
The proposed model (FEB-SVM) achieved a training accuracy of
98.28% and a test accuracy of 93.92%. The proposed approach
achieved a precision of 91.80%, a recall of 86.59%, and an F1 score
of 89.12%. M. A. Maito et al. (Maito et al., 2023) presented a fully
automated computational approach based on classical statistical
and machine learning methods for dementia prediction by
identification of risk factors for dementia. The classification of
Alzheimer’s disease (AD) and frontotemporal dementia (FTD)
patients was shown to be accurate based on the results. With an
accuracy of 0.91%, a machine learning model generated the
optimal values to distinguish AD patients from FTD patients.
M. Bucholc et al. (Bucholc et al., 2023) proposed a novel
prognostic machine learning (ML) framework to identify mild
cognitive impairment (MCI) patients who are susceptible to
dementia by utilizing longitudinal data encoded in effective,
affordable, and non-invasive markers. By their proposed
method, RF and ensemble models had the highest reported
accuracy, at 87.5% and 86.8%, respectively. Another study by
Javeed et al. (Javeed et al., 2023c) aims to thoroughly evaluate the
automated diagnostic systems previously presented by the
researchers based on ML, using multiple data modalities such
as images, medical variables, and audio data.

2 Materials and methods

2.1 Dataset description

The data for this study was obtained from the Swedish National
Study on Ageing and Care (SNAC). In 1999, the Swedish Ministry of
Social Affairs launched and funded a nationwide initiative to monitor
and analyze the Swedish elderly care system. Four longitudinal,
individual-based data-gathering projects characterizing the aging
process and embracing the whole care system have been launched
to accomplish these goals. The Swedish National Study on Aging and
Care (SNAC) was the name given to this initiative. The SNAC is a
long-running organization that collects multimodal data from
Sweden’s aging population to offer reliable, efficient, and long-term
data sets for aging research (Lagergren et al., 2004).

The SNAC program was developed to assess the quality of
healthcare provided to older adults in multiple ways. Medical
records, social variables, lifestyle factors, metacognitive data, and
physical examination are only a few topics covered by SNAC’s
databases. As a result, variables were chosen from the SNAC
databases (Blekinge, Kungsholmen, and Skåne) based on previously
published research in eight areas, including demographics, social
factors, lifestyle, medical history, physical exam, biochemical testing,
psychological exam, and evaluation of various health devices
(Arvanitakis et al., 2019; Yu et al., 2020). In total, 75 variables were
selected from the areasmentioned above. Table 1 provides the overview
of selected variables from the SNAC databases.

For this investigation, we acquired data from three SNAC facilities
(Blekinge, Kungsholmen, and Skåne). Forty-three thousand forty data
samples were collected, with 3,461 coming from SNAC-
Kungsholmen, 7,304 from SNAC-Blekinge, and 32,275 from
SNAC-Skåne. The primary purpose of the data collection was to
integrate and harmonize the SNAC data from the three sites. The
dataset was standardized by following the harmonization rule for the
dataset’s variables. In the acquired dataset, there are 18,312 men and
24,728 women. Only 819 of the 18,312 males and 1,059 of the
24,728 females are affected by dementia. Table 2 displays the
demographic information for the participant group. Because this
study is based on broad criteria, no boundaries exist between
urban and rural areas. Subjects excluded from this study based on
the following criteria: Participants with dementia at baseline;
participants with missing data for the outcome variable (dementia
diagnosis); participants withmore than 10%missing data for the entry
variable; participants who died before the 10-year study or were
diagnosed with advanced dementia were excluded (Figure 1) group.

2.2 Methodology

Real-world datasets come in a variety of sizes and forms. As a
result, their nature imposes several significant limits on both learning
models and feature selection techniques (Liu and Yu, 2005). Sample
sizes and feature counts for datasets may be substantial, and problems
with redundant, noisy, multivariate, and nonlinear scenarios may also
arise. As a result, most currently usedmethods need help to solve these
issues. Additionally, there is no such thing as “the best feature
selection method” in general, which makes it challenging for users
to choose oneway over another. A user is expected to comprehend the
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technical specifics of the various algorithms and have a thorough
understanding of each dataset’s domain and features to make the best
decision (Tuv et al., 2009).

Many businesses today depend on machine learning techniques
to extract meaningful data and expertise from escalating large
datasets. For classification problems, feature selection methods
are employed to mine the most relevant features in a feature
space (Ali et al., 2019b; Akbar et al., 2020; Javeed et al., 2020;
2023d). In this sense, we employed a feature ranking method based
on the statistical technique F-score. The F-score based on the feature
ranking model (Chen and Lin, 2006) measures the discriminating
between two sets of real numbers. If the number of samples
associated with healthy participants is v+ and the number of
samples of the patient group is v− for a specific dataset with li,
i = 1, 2, 3,. . ., n occurrences, the F-score of the nth feature is
determined as:

M1 � 1
v+ − 1( ) ∑

v+

i�1
�l

+( )
i,n − �l

+( )
n( )2

(1)

M2 � 1
v+ − 1( ) ∑

v−

i�1
�l

−( )
i,n − �l

−( )
n( )2

(2)

From Eqs 1 and 2, we get Eq. (3)

H n( ) �
�l

+( )
n − �ln( )2

+ �l
−( )
n − �ln( )2

M1 +M2
(3)

Here, �ln, �l
+
n and

�l
−
n are means of the nth feature of the positive and

negative samples in the complete dataset. Furthermore, �l
−
n is nth

feature of the ith negative sample, and �l
+
n is i

th the positive sample of
the nth feature. A further distinction between the positive and
negative sets is made in 3’s numerator, while the denominator
designates the singular value within each of the two sets (Akay,
2009). The F-score value is inversely correlated with a feature’s
discriminative capacity. Following the statistical model-based
ranking of features by their F-score, we must choose a threshold
for the F-score, meaning only those features will be chosen if their
F-score exceeds the threshold. In the current work, we use the hybrid
grid search algorithm (HGSA) to find the ideal threshold to yield an
ideal subset of the selected features. The extracted feature subset is
supplied to the proposed ensemble model for classification.

This study presents a framework using the F-score statistical
method for feature selection and a voting ensemble classifier based
on five machine learning (ML)-based models such as DT, SVM, NB,
LR, and RF (Naseem et al., 2022) as shown in Figure 2. The
complicated voting process determines the class with the most
votes as the expected outcome (Bauer and Kohavi, 1999; Zhang
et al., 2014). The proposed voting classifier used hard voting scheme
for expected outcome. The next part also briefly explains each
algorithm employed in our investigation.

2.3 Decision tree (DT)

DT comprises massive classifications of samples into specific
categories Salzberg (1994). The utilization of specimens is made
possible by patterns that combine nominal and numerical
information to provide precise group descriptions. These
indicators are then represented as models, producing decision

TABLE 1 Overview of selected variables (features).

Variable_Category Variable_Names Sum

Demographic Gender, Age 02

Social Support Network, Education, Loneliness, Religious Belief, Social Network, Voluntary Association, Religious Activities 07

Lifestyle Physical-Workload, Past Smoker, Physically Demanding Activities, Present Smoker, Alcohol Quantity, Leisure Activities, Number of
Cigarettes a Day, Social Activities, Work Status, Alcohol Consumption, Light Exercise

11

Medical History High Blood Pressure, Myocardial Infarction, Head Trauma, Arrhythmia, Sleep Apnea, TIA/RIND, Diabetes Type 1, Stroke, Thyroid
Disease, Family History of Importance, Cancer, Epilepsy, Number of Medications, Diabetes Type 2, Parkinson’s Disease, Other
Psychiatric Diseases, Snoring, Atrial Fibrillation, Hip Fracture, Cardiovascular Ischemia, Heart Failure, Developmental Disabilities,
Depression

22

Physical Examination Blood Pressure on the Right Arm, Number of Teeth, Body Mass Index (BMI), Assessment of Rising from a Chair, Heart Rate Sitting,
Heart Rate Lying, Hand Strength in Right Arm in a 10s Interval, Hand Strength in Left Arm in a 10s Interval, Single-Leg Standing with
Right Leg, Single Leg Standing with Left Leg, Pain in the last 4 weeks, Dental Prosthesis, Feeling of Safety from Rising from a Chair

13

Biochemical Test C-Reactive Protein Analysis, Hemoglobin Analysis 02

Psychological Sense of Identity, Memory Loss, Personality Change, Memory Decline, Abstract Thinking, Memory Decline 2 06

Health Instruments Backwards Digit Span Test, Digit Span Test, Livingston Index, Sense of Coherence EQ5D Test, Instrumental Activities of Daily
Living, Mini-Mental State Examination, Activities of Daily Living, Comprehensive Psychopathological Rating Scale, Physical
Composite Score of the SF-12 Health Survey, Clock Drawing Test, Mental Composite Score of the SF-12 Health Survey

12

TABLE 2 Summary of samples population.

Female Male

Age_Group +ve -ve +ve -ve

60–70 334 2,471 319 2,414

70–80 203 6,372 192 5,603

80–90 88 5,701 82 4,411

90+ 434 9,125 226 5,065

Total 1,059 23,669 819 17,493
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frameworks or collections of if-then procedures that may be used to
discriminate new samples, emphasizing the importance of creating
clear and precise designs. The C4.5 calculus chooses the test that
extracts the most data from a group of specimens without confining
themselves to evaluating a single characteristic. They then apply
equations based on theoretical data to estimate the ‘goodness’ of the
test. Dealing with the overfitting and unknown values problem is

DT’s main drawback. Unknown values are a problem that can be
solved using the DT C4.5 approach, especially since samples with
unknown values are usually ignored. A classifier that classifies every
sample in the training set might not be as efficient as a DT.
C4.5 implements an error rate-based pruning process for all
subtrees to get around this. This method removes the subtree
when the computed error is high. This method is more efficient
and yields superior outcomes (Moslehi et al., 2022).

2.4 Support vector machines (SVM)

SVM is a supervised machine learning algorithm that
constructs a linear discriminant function by using support
vectors, which are an adequate number of samples. SVM
resolved the linear constraints (Awad et al., 2015). A maximum
hyperplane margin can be seen by partitioning the SVM data
linearly into two classes. After choosing the suitable mapping, the
new samples are linearly fitted or seem linearly separable in the
high-level plane. The classification is done by graphing the best
hyperplane, which can categorize the data objects according to
their features (Javeed et al., 2023e). The following is a
representation of the hyperplane:

ω.ρ + β � 0 (4)
where the offset is represented by β and ω by the plane’s normal

vector. Following the formation of the hyperplane, classifications
based on the input vectors can be made. The following is a
representation of the prediction hypothesis:

H xi( ) � +1ifω.x + β≥ 0
−1ifω.x + β< 0

{ } (5)

When the input point is either above or on the hyperplane, it is
categorized as positive, or ω.x + β ≥ 0. If it is under the hyperplane, it
is defined as negative, or ω.x + β < 0. In the SVM, improvements are

FIGURE 1
Samples overview in the collected dataset.

FIGURE 2
Working of proposed framework.
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typically made by increasing the hyperplane’s separation from the
support vectors.

2.5 Naive Bayes (NB)

The NB method is proposed using the Bayes theorem (Yager,
2006). The Bayes theorem and the precise processes can be used
to revise the NB classifier in the following ways (Zheng et al.,
2018). We conclude that a training set of examples S exists. These
specimens bear group markings. The names of the groupings are
G1, G2, . . . , Gn. Every specimen is an agent with n dimensions,
denoted by formula D = d1, d2, . . . , dn. It claims that because D
has n dimensions, it has n characteristics. If the likelihood that
group i depends on a given specimen, D, is higher than the
likelihood that each of the other groups depends on D, then D is
projected to belong to group Gi, as given:

P Gi|D( )>P Gj|D( ) for 1≤ j≥ kj � i (6)

P (Gi|D) is determined by the Bayes’ Theorem as follows:

P Gi|D( ) � P D|Gj( )P Gi/P D( )( ) (7)

2.6 Logistic regression (LR)

LR is a supervised classification technique that predicts a
category based on input attributes. LR is a predictive approach
that makes predictions using probability values ranging from
0 to 1. As a result, an S-curve, also known as the sigmoid
function, is formed. If the anticipated probability value exceeds
a certain threshold, it is classified as positive; otherwise, it is
classified as negative (Boateng and Abaye, 2019). The LR can be
calculated using the formula below. A straight-line’s equation
for LR is:

N � α0 + α1β1 + α2β2 +/ + αnβn (8)
If the value of N is between 0 and 1, divide N by 1 − N.

N

1 −N
[ ] � α0 + α1β1 + α2β2 +/ + αn (9)

2.7 Random forest (RF)

From the feature vectors, the RF approach generates n-tree
bootstrap samples. Each sample is used to build a classification tree
that has not been trimmed. Each tree node evaluates a random
collection of ‘F’ features and chooses the optimal split from them
(Javeed et al., 2019; 2022a). This algorithm predicts the class of new,
unknown data by aggregating the predictors of n trees using the
majority voting technique (Paul et al., 2018).

Two hyperparameters are crucial for the classification job by RF
model, such as D, the depth of each tree, and E, the number of trees
making up the forest (Liu et al., 2015; Javeed et al., 2023f). In order to
guarantee the enhanced performance of the random forest model,
the best E and D were found in this study using the random search

algorithm (RSA). In addition, a new sample is added, and an RF
model is created. In the same manner, the decision tree determines
and evaluates the new sample type. The final classification of a
sample can be ascertained using the total number of votes cast in the
decision tree within the forest. The bootstrap technique builds the
RF formation trees from repeated samples by using training data. To
apply the replacement method for model interactions, bootstrap is a
straightforward and practical solution (Aprilliani and Rustam,
2018). Using bootstrap random sampling, a predetermined
number of samples are taken from the training set. The number
of samples that were extracted, the number of samples that were
returned to the training set, and the number of bootstrap samples
that were produced. It is also possible that the extracted samples will
be re-sampled once the training set is returned. Thus, it is better to
sample the previously extracted samples after storing them.

3 Experimental results

3.1 Evaluation metric

Several validation techniques, including holdout validation
and cross-validation, are used in data mining and machine
learning to assess how well a developed ML model performs.
The cross-validation method has certain advantages over the
holdout method, such as each partition of the data set used for
training and testing of the MLmodels (Javeed et al., 2023b). Hence,
to validate the performance of the proposed method for the
prediction of dementia, we employed cross-validation schemes
(Ali et al., 2019b; Liu et al., 2023b; Saleem et al., 2023).

The performance of the newly proposed method is assessed on
several evaluation metrics, such as accuracy, sensitivity, specificity,
and area under the curve (AUC), by employing the receiver
operating characteristic curve (ROC) (Ali et al., 2019a; Liu et al.,
2023a). Accuracy is given as follows:

Accuracy � No. of correct prediction

Total samples
(10)

Sensitivity and specificity are defined as follows:

Sensitivity � TP

TP + FN
(11)

Specificity � TN

TN + FP
(12)

When evaluating a classification model, TN represents true
negatives, FN represents false negatives, FP represents false
positives, and TP represents true positives.

The performance of predictive models must be measured using
statistical analysis. In our statistical analysis of binary classification,
we employed the Matthews correlation coefficient (MCC). The test’s
accuracy is ascertained using MCC, a variable with values ranging
from −1 to 1. Where −1 represents poorer predictions and
1 indicates exact predictions. The mathematical formulation of
MCC is given as follows:

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (13)
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4 Results

4.1 Experiments no: 1 perfromance of
baseline ML models

This section summarizes the findings and presents the baseline
models against which our suggested model was compared. We
compare the proposed model’s performance to numerous machine
learning classifiers and other approaches. All of the algorithms in this
study were performed with their default parameters. Table 3 presents
the results of baseline ML models on the given dataset. Furthermore,
we have also employed the ROC curve to validate the performance
results of based line MLmodels, as given in Figure 3. The MLmodel’s
performance was evaluated by utilizing all the features present in the
dataset. Table 3 and Figure 3 show that the highest accuracy and AUC
are achieved through the LR model by using all the dataset features.
While the worst performance for the prediction of dementia in terms
of accuracy 82.90% is given by LDA.

In the next phase, we validate the performance of the proposed
method, where useful features are selected from the dataset by
employing the statistical method F-score. We constructed a voting
classifier based onDT, SVM, NB, LR, and RF for the classification job.

We have extracted different sizes of subsets of features from the
dataset and measured their performance using a voting classifier.
Table 4 presents the performance of the proposed model on different
subsets of features. The performance of the proposed model is
measured in terms of accuracy, sensitivity, specificity, and MCC.

4.2 Experiments no: 2 perfromance of
propsoed model

In this section, we evaluate the performance of the proposed
model, where features from the dataset are selected based on the
statistical method (F-score) and the ensemble voting classifier
performs the classification task. We have stacked five different ML
models for the voting classifier, i.e., DT, SVM, NB, LR, and RF. To
validate the efficiency of the newly developed method for the
prediction of dementia, we employed a cross-validation scheme
(k = 5) to avoid the problem of model overfitting. Table 4 presents
the performance of the proposed model based on accuracy, sensitivity,
specificity, and MCC by using a subset of features (Sub_Fe) extracted

TABLE 3 Performance of baseline ML Classifier.

ML models Accuracy Sensitivity Specificity MCC

LR 88.90 90.76 87.85 0.6699

NB 87.20 95.68 22.74 0.5423

LDA 82.90 88.14 72.49 0.6260

AdaBoost 89.50 92.51 84.52 0.6844

kNN 89.00 91.42 88.00 0.6733

DT 87.10 86.41 90.57 0.6577

SVM 85.20 88.00 82.36 0.6468

RF 88.70 92.87 84.14 0.6600

FIGURE 3
ROC curve analysis of baseline ML models.

TABLE 4 Performance of proposed model.

Sub_Fe. Accuracy Sensitivity Specificity MCC

02 94.64 95.64 48.50 0.6513

04 92.10 96.42 79.00 0.5944

06 95.62 96.82 92.50 0.6852

07 95.05 96.91 85.45 0.6600

08 98.12 98.00 93.00 0.7515

09 98.25 97.44 95.74 0.7535

10 97.90 96.77 94.40 0.7412

12 98.00 97.69 95.00 0.7500

FIGURE 4
Confusion matrix.
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by the F-score. Table 4 shows that the highest accuracy achieved by the
proposedmodel was 98.25%, using only nine features from the dataset.

The performance of the proposed model is also assessed based on
a confusion matrix, as seen in Figure 4. In binary classification
problems, the efficiency of ML models is often validated using the
ROC curve. A larger area under the curve (AUC) indicates a more
efficient model. We also used the ROC curve to evaluate our proposed
model’s performance. Figure 5 shows that our model achieved the
highest AUC of 97% through the cross-validation (k = 5) scheme.

4.3 Experiments no: 3 performance of other
feature selection methods

In this section, we conducted the experiment where the
performance of different feature selection methods, i.e., chi-

square test, mutual information (mutinfo), recursive feature
elimination (RFE), least absolute shrinkage, and selection
operator (lasso), was evaluated with a constructed voting
classifier for the classification.

Furthermore, we compared the performance of the proposed
model with the feature mentioned above selection algorithms.
Figure 6 presents the performance comparison regarding the
proposed model’s accuracy and the four state-of-the-art feature
selection techniques (chi-square, mutinfo, RFE, and lasso). The
accuracy is measured through the cross-validation scheme, where
the value of k was set to 10. The proposed model achieved the
highest accuracy of 98.25%, while mutinfo, along with the
constructed voting classifier, obtained the lowest accuracy of
96.75%.

5 Discussion

For this work, we developed a large dataset from the Swedish
National Study on Ageing and Care (SNAC) for the early
prediction of dementia and its risk factors. SNAC is a cohort-
based study collecting data from older Swedish adults since 2002.
For this study, we gathered data from three distinct locations in
Sweden (Blekinge, Kungsholmen, and Skåne). In total,
43,040 data samples were collected, comprising 75 features for
each sample. The description of selected features for this study is
given in Table 2, where features belong to eight different
categories such as lifestyle (11), demography (02), social (07),
medical history (22), health instruments (12), biochemical tests
(02), psychological (06) and physical examination (13). We
employed data harmonization rules to integrate the data from
three SNAC centers. After data collection, we clean the dataset by
performing data standardization and normalization techniques.
This study aimed to design a diagnostic system that can predict
the early onset of dementia in older adults and detect the risk
factors that cause dementia. For this purpose, we proposed a
hybrid diagnostic system based on statistical methods and
machine learning techniques. Form feature space, highly
significant features are selected through statistical method
(F-score). We designed an ensemble voting classifier based on
5 ML classifiers (DT, NB, SVM, LR, and RF) for the classification
task. The proposed system generated a subset of significant
features, which were tested by constructed voting classifiers to
accurately predict dementia. As dementia is rare, the number of
instances of dementia in comparison to the healthy instances is
less. The MLmodels tend to overfit due to the majority class in the
dataset.

To avoid this problem, we deployed several evaluation metrics
based on a cross-validation scheme to assess the efficiency of the
newly constructed model. From Table 4, it is evident that the
proposed model achieved the highest accuracy of 98.25% by using
only nine features from the dataset. Table 5 describes nine highly
significant features selected by the proposed model that help to
predict dementia. Most of the features selected by the proposed
model for the prediction of dementia are related to subject health
conditions such as heart disease, TIA/RIND, head trauma,
psychosis, and arrhythmia. While few are associated with social
interaction, such as receiving low assistance regarding personal

FIGURE 5
ROC curve analysis.

FIGURE 6
Performance comparison of the proposed method with other
feature selection methods.
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care and entertaining with abstract ideas, One selected feature (the
mental rotation test) is related to psychology, where subjects with
low scores are more prone to dementia. Subjects with a massive
BMI also have dementia in older age.

The constructed voting classifier also evaluates the performance
of other feature selection (chi square, ref, mutinfo, lasso) methods.
Figure 6 shows that the proposed model obtained the highest
accuracy compared to the rest of the feature selection methods.

Furthermore, we also evaluated the performance of the conventional
MLmodels using all features from the dataset. Table 3 shows that the
AdaBoost obtained the highest accuracy of 89.59% while LDA
achieved the lowest accuracy of 82.90%.

Furthermore, we have also compared the performance of the
proposed method’s classification accuracy to other methods in the
literature using the dementia dataset. Table 6 provides a succinct
summary of these approaches. The newly proposed method
outperforms the eighteen recently proposed methods in terms of
accurate prediction of dementia. Furthermore, the presented
framework has two components, and they work in sequential
coordination. The first component is used for the feature
selection from the dataset, and the second component is
employed for the classification. Thus, the computational
complexity of the proposed framework is O(logn).

Although the newly proposed method has shown evident
performance in terms of accuracy, there are a few concerns that
need to be addressed in future research work. One of the limitations
of this study is that it uses only electronic health record data.
Therefore, in the future, researchers should focus on
multimodality datasets for the prediction of dementia. Hybrid
diagnostic systems are complex in nature, especially in terms of
computational and time complexity; thus, novel diagnostics should
be developed in the future based on machine learning and deep
learning that are simple and easily integrated into the real-world
scenario.

TABLE 5 Significant features selected by the proposed model.

Feature. Description

E18 Heart disease

E19 TIA/RIND*

E23 Head Trauma with loss of consciousness/syncope

E44 Psychosis

E58_C ECG - Arrhythmia

F155 I happily, and often, entertain myself with abstract ideas or theories

FP10 Mental Rotations Test- Total number of correct respones (0–10)

H27 Receive not enough assistance regarding personal care

BMI Body Mass Index

*TIA/RIND: transient ischaemic attack reversible ischaemic neurological deficit.

TABLE 6 The proposed method’s classification accuracy compared to other methods in the literature using the EHR of dementia.

S.No Study Method Validation Accuracy (%)

01 Cho and Chen (2012) PNNs Holdout 83.00

02 Gurevich et al. (2017) SVM K-Fold 89.00

03 Stamate et al. (2018) Gradient Boosting K-Fold 88.00

04 Visser et al. (2019) XGBoost + RF K-Fold 88.00

05 Dallora et al. (2020) DT K-Fold 74.50

06 Karaglani et al. (2020) RF Holdout 84.60

07 Ryzhikova et al. (2021) ANN + SVM K-Fold 84.00

08 Salem et al. (2021) RF K-Fold 88.00

09 Garcia-Gutierrez et al. (2022) GA K-Fold 84.00

10 Hsiu et al. (2022) MLP K-Fold 70.32

11 Shahzad et al. (2022) SVM K-Fold 71.67

12 Javeed et al. (2022b) Autoencoder + Adaboost Holdout 90.23

13 Bucholc et al. (2023) Ensemble Model K-Fold 87.50

14 Maito et al. (2023) Anova test + SVM K-Fold 91.00

15 Nyholm et al. (2023) Gradient Boosting K-Fold 92.90

16 Javeed et al. (2023d) GA + DNN Holdout 93.36

17 Javeed et al. (2023e) FEB + SVM Holdout 93.92

18 Javeed et al. (2023a) LDA + DT Holdout 97.77

19 Proposed Method (2023) F-Score + Voting Classifier K-Fold 98.25
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6 Conclusion

This study presented a hybrid diagnostic system that helps predict
dementia in its early stages by using the medical health records of
older adults. The newly developed diagnostic system consists of two
modules: statistical models and ensemble ML models. There are
75 features in the dataset. To eliminate the irrelevant features from
the feature space, we deployed a statistical (F-score) model that helps
construct a subset of useful features from the dataset. We developed a
voting classifier based on DT, SVM, NB, LR, and RF for the
classification. The extracted subset of features from the first
module of the developed diagnostic system is fed into the second
module for the classification of dementia. To assess the performance
of the developed diagnostic system, we employed a cross-validation
scheme to overcome the problem of ML model overfitting. Various
evaluationmetrics were adopted to rigorously validate the efficiency of
the developed diagnostic system, such as accuracy, sensitivity,
specificity, ROC, and MCC. The experimental results show that
the proposed diagnostic system achieved an accuracy of 98.25%,
with a sensitivity of 97.44%, a specificity of 95.74%, and an MCC
of 0.7535. Furthermore, the performance of the proposed diagnostic
system is also compared with the baseline ML models as well as other
state-of-the-art feature selection methods. In this context, four
different feature selection methods, such as chi square, mutinfo,
ref, and lasso, were tested along with the constructed voting
ensemble classifier for the classification. Regarding accuracy, the
proposed model outperformed the rest of the feature selection
methods and baseline ML models.
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