AUTHOR=Hu Rui , Diao Yanan , Wang Yingchi , Li Gaoqiang , He Rong , Ning Yunkun , Lou Nan , Li Guanglin , Zhao Guoru TITLE=Effective evaluation of HGcnMLP method for markerless 3D pose estimation of musculoskeletal diseases patients based on smartphone monocular video JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=11 YEAR=2024 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2023.1335251 DOI=10.3389/fbioe.2023.1335251 ISSN=2296-4185 ABSTRACT=
Markerless pose estimation based on computer vision provides a simpler and cheaper alternative to human motion capture, with great potential for clinical diagnosis and remote rehabilitation assessment. Currently, the markerless 3D pose estimation is mainly based on multi-view technology, while the more promising single-view technology has defects such as low accuracy and reliability, which seriously limits clinical application. This study proposes a high-resolution graph convolutional multilayer perception (HGcnMLP) human 3D pose estimation framework for smartphone monocular videos and estimates 15 healthy adults and 12 patients with musculoskeletal disorders (sarcopenia and osteoarthritis) gait spatiotemporal, knee angle, and center-of-mass (COM) velocity parameters, etc., and compared with the VICON gold standard system. The results show that most of the calculated parameters have excellent reliability (VICON, ICC (2, k): 0.853–0.982; Phone, ICC (2, k): 0.839–0.975) and validity (Pearson r: 0.808–0.978, p