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Markerless pose estimation based on computer vision provides a simpler and
cheaper alternative to human motion capture, with great potential for clinical
diagnosis and remote rehabilitation assessment. Currently, the markerless 3D
pose estimation is mainly based on multi-view technology, while the more
promising single-view technology has defects such as low accuracy and
reliability, which seriously limits clinical application. This study proposes a
high-resolution graph convolutional multilayer perception (HGcnMLP) human
3D pose estimation framework for smartphone monocular videos and estimates
15 healthy adults and 12 patients with musculoskeletal disorders (sarcopenia and
osteoarthritis) gait spatiotemporal, knee angle, and center-of-mass (COM)
velocity parameters, etc., and compared with the VICON gold standard
system. The results show that most of the calculated parameters have
excellent reliability (VICON, ICC (2, k): 0.853–0.982; Phone, ICC (2, k):
0.839–0.975) and validity (Pearson r: 0.808–0.978, p<0.05). In addition, the
proposed system can better evaluate human gait balance ability, and the
K-means++ clustering algorithm can successfully distinguish patients into
different recovery level groups. This study verifies the potential of a single
smartphone video for 3D human pose estimation for rehabilitation auxiliary
diagnosis and balance level recognition, and is an effective attempt at the
clinical application of emerging computer vision technology. In the future, it is
hoped that the corresponding smartphone program will be developed to provide
a low-cost, effective, and simple new tool for remote monitoring and
rehabilitation assessment of patients.
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1 Introduction

Human motion capture systems can quantify and analyze
complex sports injuries and balance abilities and have been
widely used as a basic technology in biomechanics research
(Scott et al., 2022). The parameters captured by the system can
provide objective and reliable information for clinical decision-
making, for example, auxiliary diagnosis and rehabilitation
assessment of musculoskeletal diseases (Aleixo et al., 2019; Kim
et al., 2023). Currently, the gold standard for human motion capture
is marker-based multi-camera and reflective systems. For example,
the VICON motion capture system has the advantages of high
precision and stability (Aoyagi et al., 2022). Some studies have
demonstrated that marker systems are also proficient in identifying
other motor tasks, such as upper limb or trunk balance control
(Mailleux et al., 2017; Haberfehlner et al., 2020). However, marker-
based motion capture systems also have obvious limitations: a) the
system requires dedicated hardware and software; b) the optical
markers need to be placed very accurately, which is unfriendly to
patients; c) the system is limited to a closed environment and
required a professional physical therapist for calibration (Biasi
et al., 2015), the above disadvantages limit the promotion of
systematic clinical balance estimation and home telerehabilitation.

Markerless pose estimation algorithms based on computer
vision and deep neural networks offer a simpler and cheaper
alternative to human motion capture (Moro et al., 2022).
Compared with marker-based motion capture methods, the
markerless method is simple and does not require reflective
markers to be placed on the patient, thereby reducing clinician
workload and improving efficiency (Avogaro et al., 2023).
Furthermore, the data can be easily acquired through common
household devices (e.g., webcams, smartphones), which offers the
potential to deploy such systems with minimal cost (Stenum et al.,
2021a). A markerless system typically consists of four main
components: the camera system, the 3D skeletal model, the
image features, and algorithms for determining the model shape,
pose, and position (Colyer et al., 2018). Among them, the pose
estimation algorithm is mainly based on the marked video data to
train the neural network, then estimate the human body pose when
inputting the user image or video into the trained network, such as
the joint center and bones, and finally obtain the pose information
(Nakano et al., 2020). Several studies have shown that markerless
human 3D pose estimation techniques have great potential for
motion capture and remote rehabilitation assessment (Hellsten
et al., 2021).

The deep learning-based markerless approach starts with 2D
pose estimation, which automatically estimates human joint centers
from 2D RGB images and outputs 2D coordinates (Wei et al., 2016;
Papandreou et al., 2018). Kidziński et al. detected key points from
2D images for gait analysis, then extracted joint angles, and analyzed
their changes during the gait period (Kidziński et al., 2020). Moro
et al. investigated the gait patterns of 10 stroke patients and
performed quantitative balance analysis, but the 2D
characteristics of the images limited the analysis to a subset of
elevation and spatiotemporal parameters (Moro et al., 2020). The
Carnegie Mellon University research team released the OpenPose
processing framework, which can identify multiple human skeletons
in the same scene and become the most popular open-source pose

estimation technology (Cao et al., 2017). Yagi et al. used OpenPose
to detect multiple individuals and joints in the image to estimate gait,
step length, step width, walking speed, cadence and compared it with
a multiple infrared camera motion capture (OptiTrack) system
(Yagi et al., 2020). Stenum et al. used OpenPose to compare
spatiotemporal and sagittal motion gait parameters of healthy
adults with optical marker-based features captured during
walking (Stenum et al., 2021b). Recently, some researchers have
detected 3D skeletons from images based on 2D human pose
detectors by directly using image features (Martinez et al., 2017;
Moreno-Noguer, 2017; Zhou et al., 2018). Martinez et al. used a
relatively simple deep feed-forward network to efficiently lift 2D
poses to 3D poses (Martinez et al., 2017). Nakano et al. compared the
joint positions estimated by the OpenPose-based 3D markerless
motion capture technique with the results of motion capture
recordings (Nakano et al., 2020). For clinical diagnosis and
posture balance assessment, 3D human motion capture can
obtain more dimensional posture information (e.g., center of
mass, step width, step length, etc.) and provide a more reliable
basis for clinical decision-making, which only relies on 2D key
points is difficult to achieve. Therefore, even though currently
extracting 2D key points is more accurate than 3D models (many
3D key point extraction relies on the input of 2D key points), the
latter shows more potential clinical biomechanical applications than
2D models (Hellsten et al., 2021).

There are twomain categories of 3D human pose estimation: the
first is to directly regress 3D human joints from RGB images
(Pavlakos et al., 2017); the second is the 2D-to-3D pose
enhancement method (Li and Lee, 2019; Gong et al., 2021),
which uses 2D pose detection as input, and then design a 2D to
3D lifting network to finally achieve optimal performance. The
second method has become a mainstream method due to its
efficiency and effectiveness. When identifying 2D key points,
most existing methods take input according to network transfer,
and go from high-resolution to low-resolution sub-networks in a
concatenated manner (Sun et al., 2019), and finally increase the
resolution, which generally reduce resolution and affect accuracy
(Newell et al., 2016; Xiao et al., 2018). Therefore, a novel high-
resolution network (HRNet) architecture is proposed and is able to
maintain high-resolution representation throughout the process
(Nibali et al., 2019). On the other hand, during the 2D to 3D
pose conversion process, multiple 3D joint positions may
correspond to the same 2D projection in the image, which will
affect the accuracy of the results. The graph convolutional networks
(GCN) have been intensively used to solve the problem of 2D to 3D
pose enhancement (Wang et al., 2020). However, although GCN-
based methods can effectively aggregate adjacent nodes to extract
local features, they ignore the global information between body
joints, which is crucial for overall body pose (Cai et al., 2019).
Modern multi-layer perceptron (MLP) with global views have
shown great power on various vision tasks and are used to
extract joint global information (Shavit et al., 2021). Nevertheless,
there are still two flaws: 1) the connection between all relevant nodes
is simple, and the model is inefficient in terms of graph-structured
data; 2) the model is not good at capturing local interactions due to
the lack of fine design between adjacent joints. To overcome the
above limitations, this study intends to adopt the GraphMLP
framework, which is a global-local-graph unified architecture that
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establishes strong collaboration between modern MLP and GCN for
learning better skeletal representations (Zhao et al., 2023). In
addition, the GraphMLP framework has the advantages of being
lightweight and low computational cost, making it very suitable for
clinical needs of low-cost, simple, and effective evaluation (Li
et al., 2022).

Additionally, the markerless pose estimation systems include
multi-view and single-view techniques (Desmarais et al., 2021). In
general, multi-view systems are more accurate and popular for
human 3D pose estimation, but they require hardware and
synchronization between different cameras. From a physical
therapy perspective, the most promising technique is single-view
3D markerless pose estimation, which enables advanced motion
analysis of the human body while requiring only a single camera and
computing device (Hellsten et al., 2021). Pavlakos and Bogo et al.,
2016 estimated 3D human pose from a single image and pointed out
that this method provides an attractive solution for directly
predicting 3D pose (Pavlakos et al., 2018). Colyer et al. pointed
out that it is unclear whether markerless 3D motion capture is
suitable for telerehabilitation of human motion studies due to low
accuracy (Needham et al., 2021). Kim et al., 2023 performed plantar
pressure and 2D pose estimation on patients with musculoskeletal
diseases through smart insoles and mobile phones, and the results
showed that the extracted parameters had the potential to identify
sarcopenia, but lacked 3D pose and reliability analysis. Aoyagi et al.,
2022 tracked 3D human motion in real-time based on smartphone
monocular video, but the accuracy rate needs to be further
improved. To our knowledge, 3D pose estimation and
simultaneous quantitative analysis of balance ability in patients
with musculoskeletal diseases based on a single smartphone
monocular video has not been reported.

In summary, the purpose of this study is to explore the potential
of markerless 3D human pose estimation based on smartphone
monocular video for gait balance and rehabilitation assessment. The
main goals include: 1) Based on the 2D pose estimation high-
resolution network framework, combining the advantages of

modern MLP and GCN networks to construct a markerless 3D
pose estimation model, which can capture local and global
interaction information; 2) Based on the smartphone monocular
video 3D human pose estimation algorithm, extract the parameters
of healthy subjects and patients with musculoskeletal diseases
(sarcopenia and osteoarthritis), and verify the reliability and
effectiveness; 3) Extract sensitivity indicators for balance
evaluation between healthy adults and patients, identify high-low
levels of patient recovery progress, and verify the performance of the
system in practical clinical applications. Overall, we hope that the
proposed markerless human 3D pose estimation algorithm can
provide a simple, effective, and easy-to-operate new tool for
patient monitoring and rehabilitation assessment.

2 Experiment

The flowchart of this study, as illustrated in Figure 1, begins with
a validation experiment to ascertain the reliability and effectiveness
of the proposed method. Subsequently, measurement experiment
are conducted on healthy adults and patients, followed by a
thorough analysis of their respective datasets. Finally, employing
distinctive features displaying significant differences, the data from
healthy adults and patients undergo cluster analysis to achieve a
graded stratification of their functional capabilities.

2.1 Participants

A total of 27 participants were recruited for this study,
comprising 12 patients and 15 healthy adults. All patients were
recruited from the University of Hong Kong Shenzhen Hospital, and
inclusion criteria were as follows: 1) The patient is clinically
diagnosed with musculoskeletal diseases (sarcopenia and
osteoarthritis); 2) All patients have gait instability or balance
dysfunction; 3) Patients were capable of walking independently

FIGURE 1
The flowchart and objectives of this research.
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or with the use of assistive devices; 4) Patients had no cognitive
impairments and were capable of completing all experiments
independently. Healthy participants were laboratory students
aged between 20 and 35 years. Table 1 presents the demographic
characteristics of the participants. Before the experiment,
professional physical therapists will evaluate the participants’
balance ability through clinical scales and gait tests. All
participants signed informed consent forms, and all human-
related experiments received ethical approval from the Medical
Research Ethics Committee of the Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences. SIAT-IRB-
230915-H0671.

2.2 Experimental setup

2.2.1 Measurement equipment and facilities
Video data was collected using an iPhone 14 smartphone (Apple

Inc., Cupertino, CA, United States) with an original image
resolution of 1920 × 1080 pixels and a frame rate of 30 Hz
(auto-focus state). The smartphone, measuring 146.7 × 71.5 ×
7.8 mm, was positioned vertically at a distance of 3.5 m from the
walking path and at a height of 0.6 m (Figure 2A). The measurement
path was set at a length of 3 m and was within the measurement
range of the Vicon equipment (Figure 2B).

2.2.2 Vicon
The VICON system consists of 12 infrared cameras and 2 video

cameras, which are used to capture human motion data during gait
and serve as the gold standard. Before the experimental data

collection, a professional physical therapist placed 39 reflective
markers on the bone landmarks of the participants, including the
head (4), trunk (5), upper limbs (14), and lower limbs (12) (Figures
2E,F). After completing the reflective markers, participants need to
go to the center of the venue for posture calibration to prevent the
loss of data. The size of the VICON system site is about 15 m × 8 m,
which provides enough space for the execution of gait experiments.

2.3 Data acquisition

Participants were requested to wear minimal clothing during the
experiments. Two participants (healthy adults) were involved in the
validation experiment, during which video data were simultaneously
collected by both the VICON system and the smartphone. In the
measurement experiment, video data were exclusively captured by
the smartphone, involving 25 participants (13 healthy individuals
and 12 patients). Actions designed in validation experiments are the
basic building elements of actions designed in measurement
experiments.

2.3.1 Validation experiment
During the gait test (Figure 2D), participants were instructed to

walk at their usual pace along a 3-m-long corridor from the starting
point to the turning point, where they would then turn around and
walk back to the starting point. (Figure 2A).

In the sit-up test (Figure 2C), a chair was positioned at the
midpoint of the corridor. Participants were required to sit
perpendicular to the smartphone’s camera at a 90° angle. Once
the sit-up test commenced, participants were asked to stand up and

TABLE 1 Demographic characteristics of patients and healthy adults.

Cohort information Mean (Standard deviation) p

Healthy adults Patients

Gender Female Male Female Male —

Number 8 7 8 4 —

Age (years) 23.0 (4.87) 24.9 (1.86) 67.9 (5.89) 68.0 (1.41) < 0.01

Height (cm) 161.8 (4.03) 178.9 (7.36) 159.0 (4.47) 164.5 (4.93) 0.04

Weight (kg) 55.5 (7.37) 74.9 (4.10) 66.1 (8.76) 70.3 (4.03) 0.25

FIGURE 2
Experimental Setup, (A) Site setup, (B) Experimental site, (C) Sit-up test (Validation experiment), (D) Gait test (Validation experiment), (E) Markers
(Front), (F) Markers (Back), (G) TUG test (Measurement experiment), and (H) Gait test (Measurement experiment).
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maintain a stationary position for 1 s, after which they were to sit
back down and remain still for an additional 1 s. Both the gait test
and the sit-up test were repeated twice.

2.3.2 Measurement experiment
During the gait test (Figure 2H), participants were instructed to

walk at their customary pace along a 3-m-long corridor, starting
from the starting point, proceeding to the turning point, and then
turning around to walk back to the starting point.

For the Time Up and Go test (TUG test) (Figure 2G), a chair was
positioned at the starting point. Participants were required to sit in a
chair. Once the test commenced, participants were instructed to
walk at their usual pace to the turning point 3 m away, then turn
around and walk back to the starting point before sitting down. Both
the gait test and the TUG test were repeated three times.

3 Method

3.1 Data preprocessing

After collecting video data with the smartphone, the following
editing rules were applied:

• In the sit-up test, the video segments before the start of each
test and after the completion of each sit-up test were trimmed.
(exporting 4 data segments).

• In the TUG test, within the retained video data, segments were
selected where participants approached the chair from a step
away, turned to sit down, then stood up and took a step
forward. (from the end of the previous test to the beginning of
the next test) (exporting 50 data segments).

• In the gait tests conducted during the validation and
measurement experiments, any parts of the video where the
participant’s entire body was not fully visible in the frame were
edited. (Figure 3a) (exporting 8 data segments for the
validation experiment and 100 data segments for the
measurement experiment).

3.2 Extract joint points

3.2.1 Extracting 2D key points
The High-Resolution Network (HRNet) will be employed to

extract precise 2D keypoint information from the video data (Sun
et al., 2019). HRNet is a high-resolution convolutional neural
network specially designed for processing image data with rich
details and multi-scale features, so it is often selected as the 2D
key point input model in many 3D key point detection research. To
conveniently and fairly compare the experimental results, our
research also selected this network as the 2D key point
detection model.

Initially, the OpenCV (Bradski, 2000) library is used to obtain
the width and height information of the video data, and frames are
extracted frame by frame. To ensure the presence of a human body
in each frame, the initial frame of the video undergoes
target detection.

Subsequently, the HRNet model is employed to extract features
from the detected human images, and key point detection is performed
on the features for each frame. The output includes each key point’s
coordinates and their corresponding confidence scores.

Finally, the data is transformed and corrected, resulting in the
output of 2D key point-based human pose estimation (Figure 3b).

3.2.2 Extracting 3D key points
After obtaining the 2D key points, an architecture known as

Graph MLP-Like will be utilized to estimate the three-dimensional
human pose (Li et al., 2022). GraphMLP is a simple yet effective
graph-enhanced multi-layer perceptron (MLP-Like) architecture
that combines MLP and Graph Convolutional Networks,
enabling local and global spatial interactions to capture more
comprehensive information.

Initially, GraphMLP treats each 2D key point as an input token
and linearly embeds each key point through skeleton embedding.
The input 2D pose,P ∈ RN×2, contains N body joints, each regarded
as an input token. These tokens are projected through a linear layer
into high-dimensional token features X0 ∈ RN×C, where C
represents the hidden layer size.

FIGURE 3
The Flowchart of the Method includes Preprocessing, Extracting 2D key points, Extracting 3D key points, Feature extraction, and Data analysis.
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Subsequently, the embedded tokens are passed through the
GraphMLP layer, which is characterized by utilizing Graph
Convolutional Networks for local feature communication. Each
GraphMLP layer consists of a spatial graph MLP (SG-MLP) and
a channel graph MLP (CG-MLP). Formulas 1, 2 describe how the
MLP layers are modified to handle tokens:

Xl′ � Xl−1 + SpatialMLP LN XT
l−1( )( )T + GCN LN XT

l−1( )( )T (1)
Xl � Xl′ + ChannelMLP LN Xl′( )( ) + GCN LN Xl′( )( ) (2)

Here, GCN(·) represents the GCN block, and l ∈ [1, . . ., L]
denotes the index of the GraphMLP layer. Here, Xl′ and Xl are the
output features of the SG-MLP and CG-MLP for the lth block,
respectively.

Finally, the prediction head employs a linear layer for regression.
It operates on the features XL ∈ R(N×C) extracted from the last
GraphMLP layer to predict the final three-dimensional pose
~X ∈ R(N×3). The output is presented as a file containing 3D
coordinates of the key points (Figure 3c).

3.3 Data postprocessing

After acquiring the 3D key point coordinate file, coordinate
centering is applied. This involves subtracting the 3D coordinates of
the sacrum point from the 3D coordinates of all key points, resulting
in a centered key point coordinate file.

Subsequently, all coordinate points are scaled for further feature
extraction. In this study, the lengths of the left and right lower legs,
denoted as Lleft and Lright, were measured and recorded for each
participant. During the scaling process, for all key points’
coordinates Pi in the ith frame, the lengths of the left and right
lower legs are calculated using the key points of the left and right
knees (Kl and Kr) and the left and right ankles (Fl and Fr) for that
frame. The scaling ratio is then computed and applied to scale all
key points:

�Pscaledi � �Pi · Lleft + Lright

‖KlFl

→ ‖ + ‖KrFr

→ ‖
(3)

3.4 3D pose feature extraction

3.4.1 Knee angles
The scaled file provides the coordinates of the hip joint Hi, the

knee joint Ki, and the ankle joint Ai for that frame. The knee joint
angles for the ith frame are determined using the Formula 4:

θi � cos−1
HiKi

→( ) · AiKi

→( )
‖HiKi

→ ‖ · ‖AiKi

→ ‖
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (4)

3.4.2 Knee angular velocity
Given the frame rate of the video data as f (30 Hz), after

calculating the knee joint angle for the ith frame, the knee angular
velocity for the ith frame can be determined using Formula 5:

ωi � f · θi − θi−1( ) (5)

3.4.3 Step lengths
Obtain the coordinates of the left and right ankle joints, denoted

as Ali and Ari, from the scaled file. Then, compute the distance Di

between the ankle joints of the left and right legs for the ith frame:

Di � ‖AliAri

→ ‖ (6)
Subsequently, filter all local maxima based on the threshold to obtain
the step length S.

3.4.4 Step side
For the ith step length Si and its time Ti: Obtain the coordinates

of the sacral vertebrae point SVi, thoracic vertebrae point TVi, and
cervical vertebrae point CVi at the time Ti. Use the coordinates of
these three points to calculate the sagittal plane Sai at the time Ti and
use Formula 7 to calculate the coronal plane Coi at the time Ti:

Coi ⊥ Sai, Coi ⊥ SViCVi

→( ) (7)

Subsequently, calculate the distances from the left and right ankle
joint coordinates Ali and Ari to the coronal plane Coi. Determine the
relative position of both feet to the body at time Ti (step side).

3.4.5 Step period
After obtaining the step side, the step period p corresponding to

each step side can be calculated using the step length’s
corresponding time T:

pi � Ti − Ti−1 (8)

3.4.6 Walking speed
The walking speed v corresponding to each step side can be

calculated using the step length S and step period p:

vi � Si + Si−1
2pi

(9)

3.4.7 Step phase
First, calculate all local maxima ωmax and all local minima ωmin

for knee joint angular velocity ω. Sort all ω values and use the
positions corresponding to the 20th and 80th percentiles as
thresholds. Remove extreme values that do not exceed these
thresholds.

Next, set the time corresponding to ωmin as the moment when
that foot separates from the ground (toe-split), denoted as tsplit.
Starting from ωmax, search along the time direction for the first
instance when ω falls below ten degrees/s and note the
corresponding time as ttouch, representing the moment when that
foot makes contact with the ground (heel-strike).

Finally, calculate the swing phase time tswing and support phase
time tsupport as follows:

tswingi � ttouchi − tspliti−1 (10)
tsupporti � tspliti − ttouchi−1 (11)

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Hu et al. 10.3389/fbioe.2023.1335251

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1335251


3.4.8 Center of mass
Using a kinematic approach and an 11-segment body model,

calculate the COM of the entire body. Firstly, exclude the lighter
parts, which are the hands and feet, and divide the rest of the body
into 11 segments: head, upper trunk, lower trunk, two upper arms,
two forearms, two thighs, and two lower legs (Yang et al., 2014).

Next, based on anthropometric data for the Chinese population
17245–2004 (SPC, 2004), calculate the weight of each segment and
use the extracted 3D coordinates of 17 key points to compute the
COM of the 11 segments. Finally, calculate the whole-body COM by
weighting the relative positions of all body segments Formula 12.

Since the key point coordinates have been subjected to
coordinate centering, the COM obtained here is relative to the
body’s coordinate system. In the validation experiment, the
relative COM position is calculated with respect to the left foot
as the reference point since the Vicon markers on the left foot align
well with the foot key points extracted from the smartphone data. In
the measurement experiment, the relative COM position is
calculated with respect to the hip region as the reference point.

COM � 1
N

∑N
i�0

COMi ·mi

mw
(12)

Where N is the total number of segments, which in this study is 11,
COMi represents the center position coordinates of the ith segment,
mw is the total body mass, and mi is the mass of the ith segment.

Using the COMa of the ath frame, as well as the sagittal plane Saa
and coronal plane Coa, the deviation distances of the COM from
both the coronal and sagittal planes for the ath frame can be
determined. By performing these calculations for all frames, the
range of deviation of the COM from both the coronal and sagittal
planes can be obtained.

3.4.9 Relative center of mass velocity
To better compare the participant’s self-balance ability during

various tasks, the RCOMV will be calculated as follows:

RCOMV � f · COMa − COMa−1( ) (13)
Where the frame rate is denoted as f = 30Hz, and COMa represents
the COM for the ath frame.

3.5 Statistical analysis

For statistical analysis, the key point data collected by Vicon in
the validation experiment will be resampled, reducing the data
frequency from f (100 Hz) to match the data frequency collected
by the smartphone, which is f (30 Hz). Subsequently, the key point
data collected by Vicon and the smartphone will be temporally
aligned. The knee joint angles will be used as the alignment feature
for the two sets of data, where X(t) represents the knee joint angle
data obtained from Vicon, and Y(t) represents the knee joint angle
data obtained from the smartphone:

C τ( ) � ∫∞

−∞
X t( )Y t + τ( ) dt (14)

Where t represents time, τ represents a time shift, and by calculating
the cross-correlation function C(τ), the time shift τmax that

maximizes the cross-correlation value is obtained. Subsequently,
the data is temporally shifted to achieve optimal time-domain
alignment between the two datasets.

Intraclass correlation coefficients (ICC(2,k)) are used to evaluate
all parameters calculated from data obtained from Vicon and the
smartphone in the gait test section of the validation experiment. The
ICC values are interpreted based on Cicchetti’s guidelines, where
ICC < 0.40: poor reliability, 0.40 ≤ ICC < 0.60: fair reliability, 0.60 ≤
ICC < 0.75: good reliability, and ICC ≥ 0.75: excellent reliability
(Cicchetti, 1994).

Pearson’s correlation coefficient (r) is used to examine the
degree of correlation between all parameters calculated from data
obtained from Vicon and the smartphone in the gait test section of
the validation experiment. The correlation strength can be
interpreted based on the r values as follows: r < 0.30: Negligible
correlation, 0.30 ≤ r < 0.50: Low correlation, 0.50 ≤ r < 0.70:
Moderate correlation, 0.70 ≤ r < 0.90: High correlation, 0.90 ≤
r ≤ 1.00: Very high correlation (Mukaka, 2012).

To select suitable features for better clustering results between
patients and healthy individuals in the measurement experiment’s
gait test section, Welch’s t-test (Welch, 1938) is used to assess the
differences in all parameters calculated from Phone data between
patients and healthy individuals. The significance level is set to p <
0.05, following Prescott’s statistical guidelines (Prescott, 2019).

All data are analyzed using Python.

4 Results

4.1 Reliability and validity verification

In terms of reliability, all results for the parameters computed
from data collected from both Vicon and Phone demonstrate
excellent reliability (Vicon, ICC (2,k): 0.853–0.982; Phone, ICC
(2,k): 0.839–0.975). (Table 2).

In terms of validity, a comparison between the parameters
calculated from Phone and Vicon data revealed that all
parameters showed a high to very high level of correlation (r:
0.808–0.978, p < 0.05).

Figure 4 displays the knee angles, angular velocities, the distance
between the feet, and RCOMV measured during the validation
experiment. From the figure, it is evident that there is a
significant correlation between the results obtained from Phone
and Vicon. In the measurement of knee angles, the results obtained
by Phone were consistently slightly higher than those obtained by
Vicon, while the differences in others were relatively small.

4.2 Gait parameter results

Table 3 presents the gait parameter results for each participant,
including step lengths, walking speeds, and swing/support times for
each foot. Figure 5 displays the spatiotemporal distribution of gait
parameters.

The figures show that healthy adults’ results are more
concentrated than those of the patients. Regarding gait spatial
parameters, the results for healthy adults are greater than those
for the patients (Figure 5A). Conversely, regarding gait temporal
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parameters, the results for healthy adults are generally smaller than
those for the patients (Figure 5B).

The difference between healthy adults and patients is relatively
minimal regarding swing time for the left and right feet (with a larger
overlap in peak areas).

4.3 Knee angle results

Figure 6 depicts the range of knee joint angles and knee joint
angular velocities observed among participants during the gait
testing in the observational experiment. Overall, healthy adults’
knee joint angle and angular velocity range are more extensive
than those for patients. In the knee joint angle range plot, data for
healthy adults are relatively concentrated, with values consistently
above 60°. In contrast, data for patients are distributed within the

range of 30°–80°. Within the knee joint angular velocity range plot,
healthy adults generally exhibit values above 300, while patients’
data mostly fall below 300.

4.4 Center of mass results

Figure 7 illustrates the RCOMV, the deviation range from the
sagittal and coronal planes during gait and TUG testing in the
measurement experiment. The horizontal axis represents the time
taken to complete the tests.

Overall, healthy adults complete the tests faster than patients.
The RCOMV for healthy adults during gait and TUG testing is
greater than that for patients. In gait testing, the deviation range
from the coronal and sagittal planes for healthy adults is slightly
lower than that for patients. However, in TUG testing, the deviation

TABLE 2 Reliability and validity of obtained parameters in the validation experiment.

Parameter VICON Phone

Mean(SD) ICC(2,k) Mean(SD) ICC(2,k) r

Average step period(s) 0.71 (0.05) 0.946 0.73 (0.06) 0.965 0.898

Average walking speed (mm/s) 753 (68.7) 0.918 696 (68.9) 0.898 0.942

Right knee angle ROM(°) 55.8 (6.46) 0.982 56.0 (3.87) 0.937 0.953

Left knee angle ROM(°) 55.2 (9.38) 0.957 55.6 (6.74) 0.927 0.973

Right knee angular velocity range (°/s) 518 (53.7) 0.942 525 (42.9) 0.975 0.808

Left knee angular velocity range (°/s) 482 (103) 0.947 490 (100) 0.843 0.934

Average relative center of mass velocity (mm/s) 906 (111) 0.853 899 (127) 0.839 0.978

FIGURE 4
Partial Parameter Results in the Validation Experiment:Vicon data (red) and Phone data (blue).

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Hu et al. 10.3389/fbioe.2023.1335251

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1335251


range from the coronal and sagittal planes for healthy adults shows
little difference compared to that of patients.

4.5 Cluster results

Table 4 displays the differences in characteristics between
patients and healthy individuals in the measurement experiment.
The t-test is used to determine the differences in means between
healthy individuals and patients for each feature. All parameters
obtained from healthy individuals and patients exhibit significant
differences (p < 0.01). Therefore, the features in the table are suitable
as input features for cluster analysis to distinguish different levels of
balance ability.

Figure 8 presents the results of clustering the gait test data of
25 participants (4 data points per person, totaling 100 data points).
All parameters calculated from the gait test data collected via Phone
were used as inputs. The K-Means++ clustering algorithm was
employed with clusters set to 3 to reveal potential patterns within
the data (Arthur and Vassilvitskii, 2007).

Overall, the clustering results are significant. Although one
data point from a healthy adult participant was incorrectly
classified into the patient group, the remaining data were
successfully grouped. Meanwhile, the data points for the patient
group were well clustered into two distinct groups: high and low
levels of rehabilitation progress or balance ability. This
classification helps guide and personalize the patient’s ability to
improve balance control.

TABLE 3 Gait parameter results.

Subject Mean(SD) Swing time/Support
time

Left step
lengths(mm)

Right step
lengths(mm)

Left step
period(s)

Right step
period(s)

Left
walking
speed
(mm/s)

Right
walking
speed
(mm/s)

Left step
phrase
(s/s)

Right
step

phrase
(s/s)

1 627 (26) 611 (39) 0.64 (0.03) 0.64 (0.02) 969 (70) 974 (43) 0.51/0.77 0.48/0.78

2 686 (29) 641 (40) 0.57 (0.02) 0.57 (0.03) 1165 (74) 1197 (82) 0.45/0.68 0.46/0.67

3 661 (27) 666 (32) 0.57 (0.02) 0.56 (0.02) 1181 (72) 1199 (39) 0.41/0.69 0.42/0.69

4 591 (29) 580 (57) 0.52 (0.02) 0.5 (0.01) 1124 (68) 1180 (87) 0.4/0.61 0.4/0.6

5 585 (30) 592 (38) 0.55 (0.02) 0.55 (0.04) 1074 (87) 1079 (96) 0.4/0.68 0.41/0.67

6 600 (26) 583 (50) 0.52 (0.02) 0.52 (0.02) 1145 (53) 1143 (76) 0.41/0.63 0.42/0.62

7 575 (66) 567 (61) 0.52 (0.02) 0.54 (0.03) 1098 (100) 1069 (80) 0.43/0.62 0.42/0.63

8 657 (46) 640 (41) 0.51 (0.02) 0.53 (0.02) 1276 (59) 1232 (65) 0.4/0.62 0.39/0.62

9 530 (57) 562 (58) 0.53 (0.03) 0.52 (0.02) 1019 (79) 1078 (94) 0.43/0.63 0.43/0.62

10 620 (30) 605 (46) 0.57 (0.02) 0.53 (0) 1075 (67) 1159 (12) 0.43/0.64 0.42/0.69

11 549 (25) 539 (45) 0.49 (0.02) 0.53 (0.01) 1122 (66) 1052 (39) 0.39/0.62 0.43/0.58

12 634 (47) 638 (26) 0.54 (0.01) 0.54 (0.02) 1194 (20) 1168 (70) 0.39/0.67 0.44/0.59

13 588 (38) 604 (32) 0.5 (0) 0.49 (0.02) 1199 (39) 1229 (66) 0.38/0.59 0.37/0.59

14 264 (57) 349 (54) 0.8 (0.2) 0.9 (0.2) 422 (125) 358 (102) 0.55/1.1 0.62/1.1

15 461 (26) 454 (50) 0.63 (0.05) 0.61 (0.04) 740 (77) 758 (74) 0.45/0.75 0.48/0.75

16 400 (68) 380 (71) 0.61 (0.14) 0.69 (0.11) 674 (125) 599 (116) 0.41/0.89 0.44/0.86

17 352 (94) 255 (82) 0.7 (0.28) 0.64 (0.18) 536 (253) 508 (155) 0.49/0.83 0.43/0.89

18 497 (104) 553 (45) 0.67 (0.06) 0.65 (0.06) 825 (85) 819 (75) 0.47/0.87 0.4/0.91

19 487 (95) 516 (94) 0.66 (0.06) 0.66 (0.09) 792 (118) 782 (69) 0.49/0.85 0.43/0.81

20 538 (60) 501 (66) 0.67 (0.06) 0.67 (0.04) 800 (78) 785 (85) 0.46/0.85 0.47/0.85

21 345 (62) 314 (52) 0.69 (0.28) 0.81 (0.3) 573 (224) 493 (232) 0.44/1 0.49/0.98

22 299 (52) 326 (33) 0.88 (0.22) 1.14 (0.34) 384 (105) 304 (110) 0.67/1.43 0.67/1.4

23 481 (49) 526 (65) 0.57 (0.03) 0.61 (0.06) 900 (97) 855 (118) 0.41/0.74 0.4/0.76

24 450 (41) 457 (56) 0.67 (0.11) 0.73 (0.07) 698 (130) 632 (79) 0.53/0.84 0.52/0.86

25 366 (28) 392 (67) 0.66 (0.05) 0.65 (0.11) 589 (58) 597 (133) 0.44/0.91 0.48/0.87
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5 Discussion

The purpose of this study is to explore the reliability and
effectiveness of 3D human pose estimation based on smartphone
monocular video, as well as the feasibility of human balance ability
assessment. We propose a novel simple and effective HGcnMLP
algorithm for markerless 3D pose estimation and validate it on
15 healthy adults and 12 patients with musculoskeletal diseases. The
main findings and contributions are: a) The human gait parameters,
knee angle parameters, and RCOMV estimated based on the HGcnMLP
algorithm show high reliability, and show excellent consistency with
VICON gold standard results; b) The 3D pose estimation method based
on smartphone monocular video has the potential to evaluate the gait
balance ability of healthy adults and patients, and is expected to solve the

problem of lack of simple, effective and easy-to-operate systems in the
field of medical diagnosis/rehabilitation evaluation; c) It is the first
motion capture method based on the monocular video to be used in
research on human biomechanics. It is a useful attempt at the clinical
application of this technology and promotes the possibility of emerging
computer vision technology in clinical auxiliary diagnosis and remote
rehabilitation evaluation.

5.1 Reliability and validity of
parameter estimates

Most of the parameters based on VICON and Phone in this study
show very high reliability (ICC (2, k): 0.839–0.982), which is better than

FIGURE 5
Distribution of Gait Spatiotemporal Parameter Results: Healthy adults (blue) and patients (red); (A) Left step lengths, Right step lengths, Left walking
speed, and Right walking speed; (B) Left step period, Right step period, Left swing time, Right swing time, Left support time, and Right support time.

FIGURE 6
Joint Angle Results: Healthy adults (subject 1–13) and patients (subject 14–25). (A) Range of Knee Angles, (B) Box Plot of Knee Angular Velocity.
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FIGURE 7
COM Results: Healthy adults (blue) and patients (red).

TABLE 4 Differences in characteristics between patients and healthy individuals in the measurement experiment.

Parameter Mean (SD) t p

Healthy adults Patients

Average step period(s) 0.54 (0.04) 0.71 (0.12) −9.42 < 0.01

Average step length (mm) 605 (42.2) 416 (85.9) 13.85 < 0.01

Average walking speed (mm/s) 1131 (81.4) 644 (169) 18.1 < 0.01

Right knee angle ROM(°) 74.2 (4.36) 58.5 (11.1) 9.19 < 0.01

Left knee angle ROM(°) 73.5 (5.47) 58.1 (12.6) 7.81 < 0.01

Right knee angular velocity range (°/s) 808 (87.2) 554 (154) 10.1 < 0.01

Left knee angular velocity range (°/s) 808 (89.8) 585 (173) 7.99 < 0.01

Average relative center of mass velocity (mm/s) 6.90 (0.62) 5.77 (1.03) 6.62 < 0.01

Deviation range from COM to sagittal plane (mm) 1.52 (0.24) 2.15 (0.58) −7.11 < 0.01

Deviation range from COM to coronal plane (mm) 3.69 (0.59) 4.51 (0.73) −6.12 < 0.01
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our previous research based on the OpenPose algorithm framework
(ICC: 0.506–0.734) (Liang et al., 2022). Azhand et al. proposed a highly
efficient and reliable gait parameter estimation algorithm based on
monocular video, and all measured gait parameters showed excellent
intra-class correlation coefficient results (ICC (2, k): 0.958 and 0.987),
comparable to ours (Azhand et al., 2021). In addition, comparedwith the
VICON motion capture system, all extraction parameters in this study
also showed high to very high effectiveness (Pearson r: 0.808–0.978, p <
0.05), consistent with the latest research results (r: 0.921) (Srinivasan
et al., 2023). Although the actual interference of participants’ height/
weight on the accuracy of mobile phone and Vicon measurements is
unclear, we still tried tomake the height/weight difference of participants
as small as possible to reduce the impact on reliability (Table 1, height p=
0.04, weight p = 0.25). The average step period error is 0.02s, the average
left-right knee angle ROM error is about 0.3°, and the knee angular
velocity and center of mass velocity are both ≤8°/s (mm/s). We also
noticed that the SD value of the angular velocity range of the left knee is
higher than that of the right knee. It is speculated that in the experiment
we designed, the right leg covers the left leg more than the left leg covers
the right leg, resulting in relatively unstable key points extraction on the
occluded left side. Nonetheless, the above observations provide
preliminary evidence that 3D pose estimation based on smartphone
monocular video is suitable for objectivelymeasuring parameters such as
gait time, joint angles, and center-of-mass velocity of subjects.

Shin et al. performed quantitative gait analysis on a single 2D image
with a pose estimation algorithm based on deep learning. The average
error of walking speed was 8.95 cm/s, while our average error result was
5.7 cm/s, showing better performance (Shin et al., 2021). Steinert et al.
used a smartphone camera and a deep convolutional neural network to
analyze the gait of the elderly on a 3D skeletalmodel. The gait parameters
showed comparable accuracy to ours, but the reliability of parameter
estimation needs to be further improved (ICC (1, 1): 0.125–0.535)
(Steinert et al., 2019). Stenum et al. compared the spatiotemporal and
sagittal motion gait parameters measured using OpenPose (an open-
source video-based human pose estimation) with simultaneously
recorded 3D motion capture results, showing that the average
absolute error in step time and knee angle (step time: 0.02 s/step;
knee angle: 5.6°) was comparable to ours (Stenum et al., 2021b). Gu

et al. calculated the accuracy of knee angles of the lower limbs based on
the OpenPose model by using a single mobile phone to track the joint
coordinates of healthy adults during walking, and the results showed an
error of 10° Gu et al. (2018). Hellsten et al., 2021 reported knee angle
errors of 10° or less in most tracked frames, the accuracy comparable to
marker-based camera systems. In addition, our angular velocity and
center-of-mass velocity achieved excellent results (≤8°/s (mm/s))
compared to the gold standard, which has important implications for
patient balance assessment. We acknowledge that some of the latest
Transformer-based monocular models can improve 2D poses to 3D
poses with smaller joint position errors than this system. For example,
the MotionBERT model (Zhu et al., 2023) and the Graph-based GLA-
GCN network model (Yu et al., 2023), etc. Relatively speaking, the
GraphMLP model is more lightweight, has fewer parameters, has low
computational cost, and is more suitable for our pursuit of low-cost and
simple clinical goals. Overall, the HGcnMLP estimation method
proposed in this study can improve the accuracy of human posture
estimation in monocular videos, and has good reliability and validity,
which meets the clinical requirements for system performance.

5.2 Comparison of healthy adult and patient
pose parameters

To compare the gait balance ability of healthy adults and patients
with sarcopenia (osteoarthritis), the TUG gait test was performed, and
gait parameters, joint angle parameters, and center-of-mass velocity
were extracted (Åberg et al., 2021). The spatiotemporal parameters in
healthy adults showed faster speed, larger step length, and more
centralization, whereas patients showed longer step and support/
swing times with a wider distribution, suggesting a difference
between the two groups (Figure 5; Table 3). In addition, the knee
joint angle of healthy adults showed a larger range of motion (> 60°),
while patients included three levels: 30°–40°, 40°–60°, and ≥60°,
indicating patients tend to slow flexion and extension during
walking, this is detrimental in dealing with some acute events
(Figure 6). This study also estimated the participant’s relative COM
velocities and ranges of COM offset from the sagittal/coronal plane,
which usually requires the help of some 3D motion capture systems
(e.g., Optotrak Certus and VICON) based on markerless monocular
videomotion capture (Yang et al., 2014). Healthy adults showed greater
COM velocities during TUG testing, and a slightly lower range of COM
offsets from the coronal and sagittal planes than patients, indicating
better gait stability (Figure 7).

Shin et al. performed quantitative gait analysis on 2D videos of
Parkinson’s patients based on a pose estimation algorithm and
demonstrated that the proposed method can objectively estimate
gait parameters (Shin et al., 2021). Kim et al., 2023 assessed the
physical abilities of sarcopenic patients using smartphone video pose
estimation and smart insoles to develop patient digital biomarkers.
Azhand et al. demonstrated the effectiveness of a monocular
smartphone video-based 3D pose estimation algorithm for gait
assessment applications in the elderly relative to the gold-
standard gait assessment system GAITRite (Azhand et al., 2021).
Current research mainly focuses on simple analysis of gait
parameters (gait speed, frequency, step length, and step time),
but rarely analyzes related parameters such as joint angles and
COM velocity (Gu et al., 2018). This study compared three groups of

FIGURE 8
Clustering Results:Healthy adults (circles), patients (squares).
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pose features between patients and healthy people, all showing
differences (Table 4, p< 0.01), which implies that the extracted
features can be used for balance and rehabilitation assessment.
To further evaluate the performance of the proposed system in
human gait balance level and rehabilitation progress, the K-Mean++
clustering algorithm was used to successfully distinguish patients
into different groups and achieved consistent results with
professional physical therapist scale evaluations (Figure 8). In
summary, this work demonstrates the potential of single
smartphone 3D human pose estimation for clinical motion
capture, promising comprehensive assessment of balance abilities
between healthy and patients.

5.3 Research limitations and future work

We acknowledge that this study has some limitations. First, we only
performed data collection at 90° in the walking direction, although
previous work has shown that this direction is most conducive to pose
estimation (Rui et al., 2023), and more positions can be used to record
richer motion poses. In addition, the number of participants was
relatively small, and there was no elderly normal subject group,
which may affect the reliability of the study. In clustering patients’
balance ability, although the results were consistent with clinical scale
evaluations, manual classification of the clustering results was
considered a limitation. Finally, the current smartphone video data
relies on offline processing by laptop computers and cannot automate
this preprocessing by detecting critical time points, which limits clinical
and home rehabilitation applications.

In the future, we need to expand the number of participants to
further verify and improve the reliability of the results. Of course, we
admit that more advanced and accurate 2D key point extraction
models will achieve better results, and the latest 2D key point
extraction models will be considered in subsequent clinical
experiments. Furthermore, we need to develop a novel
smartphone application for 3D pose estimation, perform human
motion capture directly from camera 2D images, and develop an
application interface to visualize parameters and provide reliability
and validity results.

6 Conclusion

In this study, we preliminarily observed that the markerless 3D
pose estimation method based on smartphone monocular video can
provide effective and reliable human pose parameters, and can
provide good accuracy for the rehabilitation evaluation of
patients with musculoskeletal diseases. Although in the field of
computer vision algorithms, the performance of the proposed
method can be further improved, this work is a useful attempt to
use single-view technology in clinical disease diagnosis and balance
evaluation and will help promote the application of emerging
computer vision technology in the medical field. Given the
advantages of the proposed model such as simplicity, low cost,
and portability, the markerless 3D pose estimation system is
expected to provide a clinical alternative to human motion
capture and provide a new easy-to-operate tool for remote
monitoring and home rehabilitation assessment.
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