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Restoring bone defects caused by conditions such as tumors, trauma, or
inflammation is a significant clinical challenge. Currently, there is a need for
the development of bone tissue engineering scaffolds that meet clinical
standards to promote bone regeneration in these defects. In this study, we
combined the porous Ti6Al4V scaffold in bone tissue engineering with
advanced bone grafting techniques to create a novel “metal-bone” scaffold
for enhanced bone regeneration. Utilizing 3D printing technology, we
fabricated a porous Ti6Al4V scaffold with an average pore size of 789 ±
22.69 μm. The characterization and biocompatibility of the scaffold were
validated through in vitro experiments. Subsequently, the scaffold was
implanted into the distal femurs of experimental animals, removed after
3 months, and transformed into a “metal-bone” scaffold. When this “metal-
bone” scaffold was re-implanted into bone defects in the animals, the results
demonstrated that, in comparison to a plain porous Ti6Al4V scaffold, the scaffold
containing bone tissue achieved accelerated early-stage bone regeneration. The
experimental group exhibited more bone tissue generation in the early stages at
the defect site, resulting in superior bone integration. In conclusion, the “metal-
bone” scaffold, containing bone tissue, proves to be an effective bone-promoting
scaffold with promising clinical applications.
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1 Introduction

Bone defects often result from various causes such as trauma, tumors, inflammation,
and more. Smaller defects can typically heal on their own, but larger bone defects often
cannot undergo self-repair (Henkel et al., 2021). In clinical practice, autologous bone
transplantation is considered as the gold standard for treating these challenging non-healing
bone defects. However, due to the difficulty in sourcing autologous bone, this approach can
lead to secondary injuries. Allogeneic bone grafts face issues related to immune rejection
(Nayak et al., 2023). To promote bone regeneration at the site of bone defects, bone tissue
engineering has emerged as a highly promising technique. Bone tissue engineering generally
involves a scaffold, cells, and bioactive substances. Given the specific biological
requirements of bone, the scaffold must possess adequate mechanical strength, excellent
biocompatibility, and osteoconductivity (Wang et al., 2020). Hence, Ti6Al4V scaffolds have
found wide application in bone tissue engineering. Nevertheless, since pure Ti6Al4V
scaffolds can merely fill defects and have limited potential to enhance bone
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regeneration, it is essential to incorporate osteoinductive
components into the scaffold (Li et al., 2023). Considering that
the gold standard for bone defect treatment in clinical practice is
bone transplantation, the development of a novel “metal-bone”
scaffold that combines bone tissue with a metal scaffold holds
the potential to significantly enhance bone regeneration outcomes.

Titanium alloy, Ti6Al4V, is a commonly used biomaterial in
orthopedic surgery. Titanium alloys are favored due to their
excellent biocompatibility, osseointegration properties, higher
strength, and corrosion resistance compared to pure titanium
(Gu et al., 2022; Liu et al., 2022). However, as a type of alloy,
Ti6Al4V possesses a significantly higher strength than human bone
tissue. Consequently, when Ti6Al4V implants are placed inside the
body, stress shielding phenomena occur, leading to stress
concentration and hindering optimal bone healing (Naghavi
et al., 2023b). To address this issue, the current consensus
suggests the use of porous Ti6Al4V scaffolds, effectively reducing
the relative strength of the scaffold and mitigating stress shielding
problems (Abbasi et al., 2020).

The preparation of porous Ti6Al4V scaffolds commonly
involves the use of 3D printing technology, a method prevalent
in current research (Subasi et al., 2023). 3D printing, also known as
additive manufacturing, is a technology that fabricates three-
dimensional objects layer by layer based on three-dimensional
models. Utilizing 3D printing technology, it is possible to
precisely and conveniently manufacture Ti6Al4V scaffolds with
specific porous structures (Altunbek et al., 2023).

In previous research, extensive studies have been conducted on
the optimal pore size of porous Ti6Al4V scaffolds for promoting
osteogenesis (Zhang et al., 2022). Research has shown that pores that
are too small (<400 μm) can lead to excessive scaffold strength,
severe stress shielding, and hinder the ingrowth of new bone tissue
(Chen et al., 2020). Conversely, pores that are too large (>1,000 μm)
can result in insufficient scaffold strength, providing ineffective
mechanical support, and impeding bone tissue ingrowth,
ultimately causing loosening of the implant at the bone-tissue
interface (Wang et al., 2021a). Some research findings have
suggested that a pore size around 600 μm is considered optimal
(Wang et al., 2017). However, for titanium alloy, strength is a crucial
consideration as well. Smaller pores might lead to excessive strength
and serious stress-shielding effects, while larger pores can mitigate
stress-shielding effects (Zeng et al., 2022; Naghavi et al., 2023a).
Taking into account both scaffold strength and pore size, in this
study, 3D-Printed Ti6Al4V porous scaffolds were designed with a
pore size of 800 μm, consistent with the previously established
optimal pore size from experimental research (Wang et al.,
2021b). The porosity was set at 70%, aligning with the porosity
found in physiological bone trabeculae, ensuring the best osteogenic
outcomes (Cui et al., 2021).

In this study, a novel “metal-bone” scaffold was developed for
the treatment of bone defects. Initially, a porous Ti6Al4V scaffold
was 3D printed. Subsequently, the scaffold was implanted into the
bone defect site in experimental animals. After a sufficient amount
of bone tissue had grown inside the scaffold, the scaffold was
removed from the bone defect site, resulting in the formation of
the “metal-bone” scaffold. This “metal-bone” scaffold was then
implanted into the bone defect and compared with a control
group using a porous Ti6Al4V scaffold without bone tissue, to

evaluate the ultimate effects on bone regeneration and integration, as
illustrated in Scheme 1.

2 Materials and methods

2.1 Materials

The Ti6Al4V powder was obtained from AK Medical Co., Ltd.
(Beijing, China). The low Glucose Dulbecco’s Modified Eagle’s
Medium (DMEM), streptomycin–penicillin dual Antibiotics, and
fetal bovine serum (FBS) were purchased from Gibco (Grand Island,
NY, United States). Pareformaldehyde and Phosphate buffer (PBS)
were obtained from Solarbio (Beijing, China). The Live-Dead
staining kit was obtained from Bioss (Beijing, China). The
Hematoxylin and Eosin (H&E) stain, Masson’s trichrome stain,
and Van Gieson (VG) stain were purchased from Thermo Fisher
Scientific (Shanghai, China). Rhodamine phalloidin and 4′,6-
diamidino-2-phenylindole (DAPI) were obtained from Thermo
Fisher Scientific (Shanghai, China). The double-distilled water
used in this study was obtained from a Milli-QA10 filtration
system (Milipore, Billerican, MA, United States). BMP-2 and
OCN antibodies used in immunofluorescence were purchased
from Abcam (Cambridge, United Kingdom).

2.2 Preparation and characterization of the
3D-printed porous Ti6Al4V scaffolds

The preparation method for the 3D-Printed porous Ti6Al4V
scaffolds utilized in this study is consistent with the description
provided in previously published articles (Bai et al., 2020). In brief,
we initiated the process by creating a three-dimensional cylindrical
model with a specified diameter of 5 mm and a height of 10 mm. Key
parameters were set to include a pore size of 800 μm, a porosity of
70%, and a strut diameter of 300 μm. The material employed for
printing the scaffolds was biomedical-grade Ti6Al4V powder, and
the 3D printing equipment used was an Electron Beam Melting
(EBM) printer (Q10, Arcam, Sweden). The scaffolds, characterized
by a uniform pore structure, were printed layer by layer. Following
the printing process, all scaffolds underwent ultrasonic cleaning to
remove any unadhered Ti6Al4V powder from their surfaces.
Subsequently, they were subjected to repeated cleaning with
acetone, alcohol, and deionized water. Prior to cell experiments
and in vivo implantation, the scaffolds were sterilized through high-
pressure autoclaving. To validate the fidelity of the final printed
scaffolds to the design specifications, post-printing visual
inspections of scaffold morphology were conducted. Optical
microscopy (Olympus Ⅸ, Japan) was employed to magnify
observations, and scanning electron microscopy (SEM, JEOL,
Tokyo, Japan) was utilized to scrutinize surface topography.
Energy-dispersive X-ray spectroscopy (EDS, Aztec software,
Oxford Instruments, Abingdon, United Kingdom) analysis was
then performed to qualitatively assess the elemental composition
of the material, ensuring the absence of impurities or contamination
during the fabrication process.

To assess the surface hydrophilicity of the printed scaffolds,
water contact angle measurements were conducted in this study
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using a water contact angle goniometer (DM-500, Kyowa Interface
Science Co., Ltd.) Initially, the 3D-Printed Ti6Al4V scaffolds to be
tested were prepared, ensuring that their surfaces were dry, clean,
and free from impurities. A microliter syringe was employed to
dispense a droplet of deionized water onto the material surface, and
the shape of the water droplet on the material surface was recorded
using the goniometer’s integrated camera. Subsequently, the water
contact angle was measured from the images using ImageJ 1.53c
software (National Institutes of Health, Bethesda, MD,
United States). Three samples were tested, with each sample
subjected to three repeated measurements to obtain a reliable
average contact angle value.

2.3 Extraction and cultivation of bone
marrow mesenchymal stem cells

The method for extracting bone marrow mesenchymal stem
cells (BMSCs) was as follows: New Zealand White rabbits aged
1 week were selected. The long bones of the rabbit’s limbs were
extracted, and bone marrow was flushed from the long bones using a
sterile 1 mL syringe and sterile PBS. The flushed cells were then

cultured in low-glucose DMEM medium containing 10% fetal
bovine serum and 1% penicillin-streptomycin. The cell culture
dishes were placed in a constant temperature incubator for cell
cultivation. On the third day of cultivation, the cells in the culture
dish underwent partial medium replacement, and subsequently, the
medium was changed every 3 days. When the cells reached 80%–
90% confluence, they were passaged after digestion with trypsin. In
this study, the BMSCs used were all from the third generation or
higher of mesenchymal stem cells.

2.4 Live/dead staining

In a 12-well plate, 40,000 BMSCs were seeded in each well. In the
control group, only an equivalent number of BMSCs were seeded into
the respective wells. In the experimental group, in addition to seeding an
equivalent number of cells, sterile and disinfected Ti6Al4V porous
scaffolds were placed in the corresponding wells of the plate. The plate
was then placed in a constant temperature incubator for 24 h of
cultivation, after which a live-dead staining assay was conducted.

Initially, the plate was centrifuged at 3,000 rpm for 2 min, and
the culture medium was aspirated. Live staining solution was added,

SCHEME 1
Schematic illustration of the metal-bone and new scaffolds in bone defects. (A) Animal experiments of metal-bone implants and new implants. (B)
The interface between two types of implants and surrounding bone tissue.
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and the plate was returned to the constant temperature incubator for
30 min of staining. After live staining, the wells were washed three
times with PBS. Subsequently, dead staining solution was added, and
the plate was stained for 5 min. After staining was completed, the
wells were again washed three times with PBS. The live-dead
staining results were observed under a fluorescence microscope
(Olympus IX71, Tokyo, Japan). All staining and observation
procedures were conducted under subdued light conditions.

2.5 Immunofluorescence staining of the cell
cytoskeleton

To observe the influence of Ti6Al4Vporous scaffolds on the cellular
morphology of BMSCs, in this study, staining and observation of the
BMSCs’ cytoskeleton were conducted using Rhodamine-labeled
phalloidin staining solution. Initially, 10,000 BMSCs were seeded in
each well of a 12-well plate. In the experimental group, Ti6Al4V porous
scaffolds were placed in the corresponding wells, while the control
group contained cells only. After 3 days, the staining and observation
were performed as follows.

First, the culture medium in the wells was aspirated, and fixation
was carried out using a 4% paraformaldehyde solution for 10 min.
Subsequently, the cells were washed three times with PBS. Then,
they were subjected to light-protected staining with Rhodamine-
phalloidin staining solution for 30 min. After 30 min, the cells were
washed three times with PBS. DAPI staining solution was applied for
light-protected staining for 5 min. Following staining, the cells were
washed three times with PBS. After the final washing, the staining
results were observed using a fluorescence microscope. All
procedures involving staining and observation were conducted
under subdued light conditions.

2.6 Initial implantation of scaffolds

All animal experimental protocols were approved by the Animal
Care and Use Ethics Committee of Jilin University (2022142).
Twenty-four adult male New Zealand rabbits were selected for
this study. The animals were anesthetized via intravenous
injection of 0.5% pentobarbital sodium into the marginal ear
vein. The surgical site was selected as the right distal femur for
implantation. Prior to surgery, the fur around the knee joint area was
shaved using clippers. During the surgical procedure, the rabbits
were secured on the operating table. After standard sterilization
procedures, a 1–2 cm incision was made on the outer edge of the
rabbit’s distal femur using a scalpel. Hemostatic forceps were used
for blunt dissection of the subcutaneous muscles, ligaments, and
blood vessels around the distal femur, exposing the lateral condyle.
A specialized orthopedic core drill with an inner diameter of 4 mm
and an outer diameter of 5 mm was then used to create a borehole
with a depth of 10 mm, resulting in a bone defect matching the size
of the printed scaffold precisely.

The bone debris at the defect site was carefully removed and the
defect was rinsed with physiological saline. Subsequently, the
scaffold was implanted into the distal femur. The incision was
closed layer by layer, with absorbable sutures used for suturing
muscles, tendons, ligaments, etc., in the inner layer, and

non-absorbable sutures for suturing the skin in the outer layer.
Postoperatively, penicillin was administered for 3 days, and the
animals’ condition was observed for 1 week.

2.7 Secondary implantation surgery

After 3 months from the initial implantation surgery, the same
anesthesia, shaving, and sterilization procedures were performed on
the rabbits. The 24 rabbits were randomly divided into two groups:
the control group with the new scaffolds (Con) implanting
consisting of 12 rabbits, the experimental group with the “metal-
bone” scaffolds (MB) implanting group consisting of 12 rabbits.
During the surgery, the Ti6Al4V scaffold from the right hind limb’s
distal femur was first removed. For the MB group, the removed
scaffold, which contained bone tissue, was re-implanted into the
same rabbit’s opposite hind limb at an equivalent anatomical
position in the distal femur. For the control group, after
removing the scaffold from the right side, an identical new
Ti6Al4V porous scaffold was implanted into the defect site in the
other hind limb. Similar to the initial surgery, the incision was closed
layer by layer. Postoperatively, penicillin was administered for
3 days to prevent infection, and the rabbits were closely observed
for 1 week.

The scaffolds containing bone tissue, taken from the control
group, were subjected to Micro-computed tomography (Micro-CT)
scans (SkyScan 1076 scanner, Bruker Micro-CT NV, Kontich,
Belgium), SEM observation, and mechanical testing. The
mechanical testing was conducted using a universal testing
machine (H25KS, Hounsfield, United Kingdom), with the
scaffolds placed on the sample platform of the testing machine.
Compression tests were performed at a rate of 1.0 mm/min until the
scaffolds reached their maximum force and maximum deformation.
The maximum compressive strength and maximum force that the
Ti6Al4V scaffolds with and without bone tissue could withstand
were recorded. The mechanical performance differences between
the “metal-bone” scaffolds and the new scaffolds were compared.

2.8 Micro-CT analysis

At 6 and 12 weeks post the second implantation surgery,
euthanasia of the rabbits was carried out using carbon dioxide
asphyxiation. The left femoral scaffold implantation sites were
then harvested for evaluation. Micro-CT scans were performed to
assess bone regeneration at the implantation sites. A cylindrical
region of interest with a diameter of 5 mm and a height of 10 mm
was selected for three-dimensional reconstruction and subsequent
analysis of bone tissue parameters. Specific analyses included
volume/tissue volume ratio (BV/TV, %), trabecular thickness
(Tb.Th, mm), trabecular separation (Tb.Sp, mm), and trabecular
number (Tb.N, 1/mm).

2.9 Hard sectioning and staining

Following the completion of Micro-CT scanning, the specimens
were fixed in 4% formalin solution. Subsequently, the scaffold
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implantation sites were subjected to hard sectioning and staining
using Masson’s trichrome staining and Van Gieson (VG) staining.
Stained sections were then observed and photographed under an
optical microscope.

2.10 H&E, Masson’s trichrome, and
immunohistochemical staining

After fixation, the specimens were subjected to decalcification
using 10% EDTA. Following decalcification, sections were prepared
using a microtome and subjected to H&E, Masson’s trichrome, and
immunohistochemical staining. The specific procedures were
consistent with those described in previously published articles
for immunohistochemical staining of osteogenic-related genes in
the scaffold implantation sites. In brief, bone tissue sections were
incubated with BMP-2 and OCN antibodies overnight at 4°C.
Subsequently, the samples were washed three times with PBS.
The scaffold implantation sites in the sections were then
observed and photographed under an optical microscope. The
expression intensity of the relevant proteins around the scaffold
was quantitatively analyzed using image analysis software ImageJ.

2.11 Push-out tests

A standard mechanical push-out test was conducted to assess
the interfacial strength between the scaffold and the surrounding
bone tissue in each group. Mechanical push-out tests were
performed using a universal testing machine. Initially, the
samples were placed on the test platform for the mechanical
push-out test, with a displacement rate of 1.0 mm/min. The force
applied during the scaffold push-out process was recorded using
software, with the endpoint being when the scaffold completely
disengaged from the bone. By recording the maximum push-out
force during the experiment, the interfacial strength between the
scaffold and the surrounding tissue was validated.

2.12 Statistical analysis

All data are presented as the mean ± standard deviation of at
least three independent experiments. Statistical analysis was
performed using t-test followed by post hoc multiple comparison
tests using SPSS 19.0 software (SPSS Inc., Chicago, Illinois,
United States) to determine the minimum significant differences.
Statistical significance was considered at p < 0.05.

3 Results and discussion

3.1 Characterizations of the 3D-printed
porous scaffolds

The final 3D-Printed Ti6Al4V porous scaffold exhibited the
characteristics shown in Figures 1A, B. It is evident that the scaffold,
matching the model parameters, took the form of a porous cylinder
with a diameter of 5 mm and a height of 10 mm. This scaffold’s

dimensions were entirely consistent with the bone defect size
prepared for the subsequent animal experiments. Furthermore, as
shown in Figure 1C from the scanning electron microscopy results,
during the printing process of the scaffold, it was primarily formed
through the fusion of powder particles. The scaffold’s surface was
filled with Ti6Al4V particles of varying sizes, resulting in a rugged
surface structure.

On one hand, this rough surface structure enhances the
adhesion of cells to the scaffold, particularly the migration and
adhesion of mesenchymal stem cells, thereby promoting the bone
formation process (Montero et al., 2020). On the other hand, the
uneven surface structure provides a certain degree of fixation,
making it more favorable for the scaffold to be firmly secured in
the defect site, preventing implant displacement (Calore et al., 2023).
From the scanning electron microscopy results, it can be observed
that the pore size of the final printed scaffold was 789 ± 22.69 μm,
which closely matched the parameters designed before printing.

Through EDS analysis, as shown in Figure 1D, the results
indicated that the main component of this scaffold was Ti6Al4V.
There were no impurity elements detected during the scaffold’s
preparation, meeting the clinical implantation requirements.

Furthermore, the hydrophilicity of the scaffold’s surface was
assessed using a water contact angle measurement device, with
results displayed in Figure 1E. It can be observed that the water
contact angle on the surface of the 3D-Printed Ti6Al4V porous
scaffold was 71.26° ± 5.41°. In previous studies, when the water
contact angle is less than 90°, it is considered that the material
surface has a certain degree of hydrophilicity. A smaller water
contact angle indicates better surface hydrophilicity. Good
hydrophilicity suggests that the scaffold possesses excellent
biocompatibility and promotes cell adhesion (Sokoot et al., 2023).

In this study, the 3D-Printed porous Ti6Al4V scaffold exhibited
a water contact angle of less than 90°, indicating good surface
hydrophilicity. This characteristic is beneficial for the adhesion of
mesenchymal stem cells after implantation in vivo.

3.2 Cell viability and morphology

To validate the biocompatibility of the scaffold, it was co-
cultured with the most commonly used orthopedic cells, BMSCs.
The influence of the scaffold on BMSC growth was assessed by
monitoring cell viability and morphology. The results of live-dead
staining are shown in Figure 2A. It can be observed that, compared
to the control group where BMSCs were growing normally, the
addition of the scaffold did not significantly affect the viability of
BMSCs, as indicated by the statistical results in Figure 2B.
Quantitative analysis revealed that adding the scaffold did not
impact the cell survival rate, suggesting that the scaffold material
itself does not affect the normal survival of BMSCs.

Microfilaments are important components of the cell
cytoskeleton (Jockusch et al., 2004; Muranova et al., 2022). In
this study, immunofluorescence staining was used to observe cell
morphology by staining the microfilaments in BMSCs. The results
are displayed in Figures 2C, D. The F-actin filaments were stained by
rhodamine-phalloidin in red, and nuclei were stained by DAPI in
blue. It can be observed that in the control group, BMSCs exhibited
good spreading, and the microfilament morphology within the cells
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was clear. In the experimental group, BMSCs adhered well to the
scaffold surface. While their cell size appeared slightly smaller, they
exhibited longer extensions compared to the control group. The cells
on the scaffold showed regular morphology, with a distinct spindle-
shaped structure and longer pseudopods. Similar to the control
group, the microfilament morphology within the cells was clear.
This result suggests that the 3D-Printed porous Ti6Al4V scaffold
used in this study allows BMSCs to effectively adhere to its surface.
The adhered BMSCs exhibit typical cell morphology, and the cell
cytoskeleton is clearly distinguishable.

Taken together, the results of live-dead staining and cell
cytoskeleton staining demonstrate that the 3D-Printed Ti6Al4V
scaffold used in this study exhibits excellent biocompatibility. It
does not adversely affect the survival of BMSCs, and the scaffold
surface promotes cell adhesion and spreading without affecting cell
morphology.

3.3 Osseointegration of the porous scaffold
with surrounding bone

This animal experiment consisted of two surgeries. The first
surgery involved the routine implantation of the orthopedic
prosthesis, as illustrated in Figure 3A. After a period of
3 months, the scaffold had tightly integrated with the

surrounding bone tissue. The second surgery was depicted in
Figure 3B. First, the scaffold from the initial surgery was
removed. In the MB group, the removed scaffold was re-
implanted into the corresponding site on the contralateral limb.
This group simulated the process of using the “metal-bone” scaffold
for re-implantation, a less common clinical practice. In contrast, the
control group also removed the scaffold but discarded it, then used
an entirely new scaffold to be implanted in the same location on the
contralateral limb. This control group simulated the more
commonly used clinical strategy of re-implanting a new scaffold
into the original site.

In Figure 3B, it can be observed that the removed prosthesis had
integrated well with the surrounding bone tissue, and there was
evident ingrowth of new bone tissue into the pores of the scaffold.
Three-dimensional reconstruction based on Micro-CT results is
illustrated in Figure 3C. A comparison with the plain Ti6Al4V
scaffold (a) reveals that the “metal-bone” scaffold is filled with bone
tissue in the pore. It shows a tight integration between the scaffold
and bone tissue (b). Upon removing the Ti6Al4V scaffold section,
abundant bone tissue (c) is observed within the scaffold pores.
Quantitative analysis indicates that the bone tissue is approximately
41.68% ± 2.53% of the scaffold volume. This result validates the
expected composition of the “metal-bone” scaffold, demonstrating
the stable presence of internal tissue within the scaffold. Further
observation of the bonding between bone tissue and the scaffold in

FIGURE 1
Characterization of the 3D-Printed Ti6Al4V porous scaffolds. (A)General appearance of the scaffold. (B)Microscopic images of the scaffold. (C) SEM
images of the scaffolds at various magnifications. (D) Elemental composition of the Ti6Al4V scaffolds. (E) Water contact angle measurements of the
Ti6Al4V scaffolds.
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“metal-bone” scaffolds was conducted using SEM, as depicted in
Figure 3D. It is evident that the porous Ti6Al4V scaffold is filled with
bone tissue, and there is a tight integration between the bone tissue
and the scaffold surface. During the removal of the prosthesis in the
second surgery, it was also noted that the scaffold had a strong
integration effect with the bone tissue interface, resulting in
significant resistance when pulling out the scaffold. The
mechanical testing of the removed scaffold, as shown in Figures
3E, F, revealed that in MB group when the Ti6Al4V scaffold
contained bone tissue, its strength significantly increased, and it
could withstand greater forces. On one hand, this result indicates
that the scaffold indeed contained a certain amount of bone tissue.
On the other hand, it suggests that the bone tissue inside the “metal-
bone” scaffold was tightly integrated with the scaffold, providing
stronger mechanical support. This finding aligns with previous
research, which also demonstrated that Ti6Al4V porous scaffolds
exhibit excellent bone integration effects, especially with pore sizes
in the range of 600–900 μm and a porosity of 70% (Taniguchi et al.,
2016). The appropriate pore size facilitates the ingrowth of new bone
tissue and nutrient supply, while a 70% porosity rate closely
resembles the porosity rate of physiological bone trabeculae,
making it a biomimetic physiological condition that achieves
optimal bone integration effects (Pan et al., 2021).

To validate the osseointegration effectiveness between the
scaffold and the surrounding bone tissue at the site of bone
defects, mechanical push-out tests were conducted on the
scaffold to measure the maximum force exerted when pushing
the scaffold out of the bone tissue, as depicted in Figure 3G. It is
evident that in the early stages of implantation, at 6 weeks, the MB
group exhibited significantly greater bonding strength with the
surrounding bone tissue in comparison to the control group,
displaying a statistically significant difference (p < 0.5). By
12 weeks, the MB group also experienced a significantly higher
maximum push-out force compared to the control group (p <
0.1). These findings suggest that the MB scaffold, which
incorporates bone tissue, demonstrates enhanced osseointegration
effects, characterized by higher bonding strength with the
surrounding tissues when contrasted with the control group.

In order to evaluate the formation of new bone in the control
and MB groups, Micro-CT scans were conducted at 6 and 12 weeks,
and the results are presented in Figure 4A. From the 3D
reconstruction results, it is evident that at both 6 and 12 weeks,
the scaffolds containing some bone tissue in the MB group,
following the secondary surgery, had a greater amount of new
bone tissue compared to the control group. Quantitative analysis,
as shown in Figures 4B–E, indicates that the MB group had a higher

FIGURE 2
Biocompatibility of the porous scaffolds. (A) Calcein AM/PI staining of live cells (green) and dead cells (red). (B) Quantitative analysis of cell survival
rate (n = 3). (C) Fluorescent images of the cellular morphology. (D)Quantitative analysis of the fluorescence intensity in different groups (n = 3). The data
are expressed as the mean ± SD. *indicates significant differences between groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
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proportion of regenerative bone tissue and a greater number of bone
trabeculae compared to the control group.

From theMicro-CT results at 6 weeks, it is apparent that the MB
group had a higher content of newly formed bone tissue than the
control group. This suggests that the bone tissue contained within
the “metal-bone” scaffold survived and integrated well with the
surrounding tissues of the new bone defect after the revision surgery.
After the secondary surgery, the Micro-CT results at 6 weeks

indicate that the bone tissue in the “metal-bone” scaffold group
is approximately 37.97% ± 2.67% (BV/TV), while the control group
exhibits about 31.75% ± 1.29% bone tissue. The increased
regenerated bone tissue in the “metal-bone” scaffold group is
likely attributed to the survival of the original bone tissue within
the scaffold. This surviving bone tissue contributes to accelerated
bone defect repair by integrating with surrounding newly formed
bone tissues, while the remaining internal bone tissues within the

FIGURE 3
Two-Stage Surgical Procedure in Implantation. (A) Initial Implantation of Scaffolds. (B) Secondary implantation surgery procedure. (C) Micro-CT
analysis: Representative 3D reconstruction image of a) the new scaffold (Con), b) the metal-bone scaffold (MB), c) the bone tissue inside the metal-bone
scaffold. (D) SEM images of the bone tissue inside the metal-bone scaffolds (The area indicated by the yellow arrows is the Ti6Al4V scaffold region, and
the area indicated by the blue arrows is the bone tissue region). (E)Compressive strength testing for themetal-bone scaffolds and new scaffolds (n =
3). (F)Maximum force in the biomechanical test of two types of scaffolds (n = 3). (G)Maximumpushing force of the Con andMB groups after implantation
(n = 3). The data are expressed as the mean ± SD. *indicates significant differences between groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
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scaffold undergo absorption. Therefore, it can be inferred that the
“metal-bone” scaffold containing some bone tissue accelerated the
regeneration process following the initial prosthesis implantation,
leading to faster bone repair. Moreover, the bone tissue within the
“metal-bone” scaffold is the patient’s own tissue, eliminating the risk
of immune rejection and allowing it to thrive.

To get a clearer view of the bone regeneration within the
scaffold, hard sectioning was performed on specimens obtained
6 weeks after the second surgery, as illustrated in Figure 5A. The
black area represents the location of the scaffold. The red areas in
blue VG and blue areas in Masson’s trichrome represents
regenerated bones. Results from VG and Masson’s trichrome
staining show that in the MB group, the depth of bone ingrowth
around the scaffold was greater than that in the control group, and

there was also a higher amount of newly formed bone tissue
surrounding the scaffold, consistent with the Micro-CT results.

To further assess the bone regeneration at the site of bone defect,
Ti6Al4V scaffolds were removed six and 12 weeks after the second
surgery, followed by decalcification and sectioning. H&E staining as
well as immunohistochemical staining for bone regeneration-related
proteins were performed. The results for the bone tissue around the
scaffold stained by H&E and Masson’s trichrome are shown in
Figure 5B. From the H&E staining results, it can be observed that at
6 and 12 weeks, the bone trabeculae around the “metal-bone”
scaffold containing bone tissue were more tightly integrated and
there were more trabeculae compared to the control
group. Masson’s staining reveals a higher content of newly
formed bone tissue around the “metal-bone” scaffold, with active

FIGURE 4
Micro-CT analysis of osseointegration around the prosthetic interfaces. (A) 3D reconstruction images around the prosthetic interfaces (The
regenerated bone tissue is indicated in yellow and scaffolds are white). Quantitative analysis of (B) BV/TV, (C) Tb.Th, (D) Tb.N, and (E) Tb.Sp in two groups
at 6 and 12 weeks after secondary implantation surgery (n = 3). The data are expressed as the mean ± SD. *indicates significant differences between
groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
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proliferation of bone trabeculae and the formation of more new
bone trabeculae.

The results of immunohistochemistry are presented in
Figure 6A, with OCN protein being a hallmark protein for bone
formation (Zhou et al., 2023), and BMP-2 being an important
protein in the bone regeneration process (Wang et al., 2022).
Immunohistochemical staining for these two proteins has been
widely used in previous studies to assess bone regeneration
strength (Santinoni et al., 2021; Fiorin et al., 2022).

From the immunohistochemical results of each group, it can
be seen that at 6 weeks, the expression levels of both bone-
forming marker proteins were significantly higher in the MB
group than in the control group, as shown in Figures 6B, C. These
differences were statistically significant. This suggests that in the
MB group, the pre-existing bone tissue within the scaffold
remained viable, leading to a faster bone formation process at
the site of the bone defect. At this point, the bone regeneration
effect at the bone defect site was superior to that in the
control group.

By the 12th week, the expression level of OCN protein in the MB
group remained higher than that in the control group, but the

expression of BMP-2 was lower than that in the control
group. Considering that BMP-2 is an osteogenic growth factor
that promotes bone formation (Zhang et al., 2019; Bi et al.,
2023), this result suggests that the strong bone-promoting effect
in the control group was achieved at 12 weeks, later than in the
MB group.

The analysis of the animal experiment results leads to the
conclusion that the MB scaffold containing some bone tissue is
superior to a new scaffold. The reason for this could be the presence
of host bone within the original scaffold. When re-implanted into
the bone defect site, the tissue inside the scaffold can survive and
integrate with the surrounding tissues, thereby accelerating the bone
regeneration process. Compared to a new scaffold, the bone tissue
around the MB scaffold can initiate the bone formation process
more quickly, facilitating the migration of BMSCs and osteogenic
cells to the scaffold site, thereby reducing the time required for bone
repair and achieving better results.

In this study, we have combined the widely used Ti6Al4V
scaffold in bone tissue engineering with clinical bone
transplantation techniques to fabricate a “metal-bone” scaffold,
which exhibits superior osteoinductive properties compared to

FIGURE 5
Histological analysis of bone regeneration around the scaffolds. (A) Van Gieson and Masson’s trichrome staining of the regenerated bone around
scaffolds at 6 weeks (without removal of the scaffold). (B) H&E and Masson’s trichrome staining of the regenerated bone around scaffolds (after removal
of the scaffold).
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pure Ti6Al4V scaffolds, thus accelerating bone healing. Ti6Al4V
scaffolds are widely adopted in bone tissue engineering due to their
excellent mechanical strength, biocompatibility, and
osseointegration (Liao et al., 2021). However, their high
mechanical strength often leads to stress shielding phenomena.
To overcome this limitation, porous structures are commonly
produced using 3D printing technology. On one hand, these
porous structures mitigate stress shielding effects, while micro-
porosities promote bone tissue ingrowth, enhance bone
formation, and aid in scaffold fixation. Nevertheless, due to the
biologically inert nature of Ti6Al4V, efficient bone regeneration
often necessitates the incorporation of bioactive substances into
porous scaffolds, especially in the case of larger bone defects (Koju
et al., 2022).

Considering the clinical challenges associated with treating
substantial bone defects, autografting is a well-established
approach. However, in cases of extensive bone loss, autograft
availability may be limited, and the excessive use of autografts
can lead to iatrogenic damage, while allografts may trigger
immune rejection responses (Baldwin et al., 2019). In this study,
we have innovatively combined 3D-printed porous Ti6Al4V
scaffolds with autografting techniques. Our findings confirm that
the addition of a small amount of autograft within the porous
scaffold can efficiently promote bone regeneration. Furthermore,
our animal experiments demonstrate that the “metal-bone” scaffold
outperforms plain porous Ti6Al4V scaffolds by expediting early-
stage bone regeneration, thus reducing the time required for peri-
implant endosseous healing. This research provides valuable clinical
insights, substantiating the effectiveness of incorporating a small

amount of viable autograft around Ti6Al4V scaffolds to accelerate
bone healing and facilitate osteogenesis.

Compared to clinical implants, our study innovatively employs a
3D-printed porous Ti6Al4V scaffold, with its design parameters
informed by prior research findings to optimize osteogenesis.
Additionally, we integrate clinical bone grafting techniques with
porous titanium alloy scaffolds in this study, creating a novel “Metal-
Bone” scaffold through implantation. This scaffold contains
bioactive bone tissue internally, and observations indicate a tight
integration between the scaffold and its internal bone tissue.
Following implantation into bone defects, it significantly
enhances osteointegration, accelerates bone healing compared to
titanium alloy scaffolds without bone tissue, promoting the
integration of the implant with the surrounding bone tissues. In
terms of clinical applications, considering the substantial extraction
of bone tissue during orthopedic implant surgeries (Wazzan et al.,
2023), incorporating a small amount of autologous bone tissue into
implants is conceivable. This strategy has the potential to accelerate
bone regeneration and strengthen the bone integration around the
implanted prosthetic. The primary challenges lie in whether the
bone tissue obtained during replacement surgery can maintain its
vitality after fragmentation. Additionally, there is a requirement for
the implant to be porous to accommodate sufficient bone tissue. In
clinical translation, numerous challenges will be encountered,
requiring further in-depth investigation for the potential clinical
application of the “Metal-Bone” scaffold.

Furthermore, the “metal-bone” scaffold employed in this study
shares similarities with the old scaffolds removed during orthopedic
revision surgeries. Consequently, this research also furnishes

FIGURE 6
Immunohistochemical analysis of bone regeneration around the scaffolds. (A) Immunohistochemical staining of BMP-2 and OCN expression in
each group. (B)Quantitative analysis of relative intensity of BMP-2 expression (n = 3). (C)Quantitative analysis of relative intensity of OCN expression (n =
3). The data are expressed as the mean ± SD. *indicates significant differences between groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
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empirical evidence regarding the choice between using old
prostheses containing some bone tissue or opting for entirely
new prostheses in orthopedic revision procedures.

Joint replacement surgery is one of the top five most common
surgeries annually and one of the top five fastest-growing
procedures (Schwartz et al., 2020; Pigeolet et al., 2021). The
increasing number of patients receiving prosthetic joint
replacement surgery is driven by factors such as osteoporosis,
trauma, and tumors (Hunter and Bierma-Zeinstra, 2019). As the
number of joint replacement surgeries rises, so do postoperative
complications, including prosthesis sinking, loosening, and
displacement (Howard et al., 2023). Currently, over 30% of
joint replacement patients undergo one or more joint
replacement surgeries in 20 years (Lee et al., 2023). In clinical
practice, when addressing postoperative complications following
joint replacement, it is common to replace the old prosthesis with
a new one during revision surgery (Gong et al., 2023). However,
intraoperatively, it is often observed that the original prosthesis
remains intact, with complications primarily arising due to
inadequate bonding between the prosthesis and surrounding
bone tissue. Using new prostheses in revision surgery not only
results in the wastage of medical materials but also imposes an
economic burden on patients and their families (Cimatti et al.,
2022). Currently, there is no definitive research comparing the
efficacy of retaining the original prosthesis versus using a new
one in revision surgery. This study addresses this clinical issue
through experimental animal research by comparing the
outcomes of these two prosthesis approaches. The results
confirm that, in orthopedic revision surgeries, prostheses
containing some bone tissue, when still viable, exhibit
osteoinductive properties similar to new prostheses.
Consequently, this study offers a novel perspective to some
extent for revision surgeries, carrying certain clinical
implications.

4 Conclusion

In summary, this study combines 3D-printed porous Ti6Al4V
prostheses commonly used in bone tissue engineering with clinical
bone transplantation techniques to create a novel “metal-bone”
scaffold for promoting bone regeneration in cases of bone
defects. Firstly, the scaffold’s consistency with expectations was
validated through SEM, EDS, and similar methods. Subsequently,
cell experiments confirmed the scaffold’s biocompatibility. Finally,
through animal experiments involving a two-stage surgical
approach, wherein a “metal-bone” scaffold with bone tissue was
first prepared over 3 months and then implanted into the
contralateral limb bone defect, it was compared against a new
scaffold lacking bone tissue. The results substantiated the survival
of bone tissue within the “metal-bone” scaffold post-transplantation,
achieving more effective bone regeneration and expediting the
healing process. This research opens up significant prospects for
the clinical application of orthopedic prostheses preparation and
revision surgeries.
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