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Garden waste, one type of lignocellulosic biomass, holds significant potential for
the production of volatile fatty acids (VFAs) through anaerobic fermentation.
However, the hydrolysis efficiency of garden waste is limited by the inherent
recalcitrance, which further influences VFA production. Granular activated carbon
(GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic
fermentation. This study developed a strategy to use GAC to enhance the
anaerobic fermentation of garden waste without any complex pretreatments
and extra enzymes. The results showed that GAC addition could improve VFA
production, especially acetate, and reach the maximum total VFA yield of
191.55 mg/g VSadded, which increased by 27.35% compared to the control
group. The highest VFA/sCOD value of 70.01% was attained in the GAC-
amended group, whereas the control group only reached 49.35%, indicating a
better hydrolysis and acidogenesis capacity attributed to the addition of GAC.
Microbial community results revealed that GAC addition promoted the
enrichment of Caproiciproducens and Clostridium, which are crucial for
anaerobic VFA production. In addition, only the GAC-amended group showed
the presence of Sphaerochaeta and Oscillibacter genera, which are associated
with electron transfer processes. Metagenomics analysis indicated that GAC
addition improved the abundance of glycoside hydrolases (GHs) and key
functional enzymes related to hydrolysis and acidogenesis. Furthermore, the
assessment of major genera influencing functional genes in both groups
indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the
primary contributors to upregulated genes. These findings underscored the
significance of employing GAC to enhance the anaerobic fermentation of
garden waste, offering a promising approach for sustainable biomass
conversion and VFA production.
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1 Introduction

Currently, the critical issue of energy shortage has drawn
increasing attention toward the quest for alternative fossil fuels
and the exploration of emerging green and sustainable technologies.
Garden waste, a form of lignocellulosic biomass, comprises various
organic materials (e.g., grass and flower cuttings, hedge trimmings,
tree pruning, small branches, fallen leaves, and wood debris) (ten
Hoeve et al., 2019; Li et al., 2020). The pruning of green leaves
possesses a significant amount of organic matter and is abundant in
quantity. In comparison to other garden wastes, leaves exhibit a
relatively low lignin content, making them highly potential for
energy conversion (Ramprakash and Incharoensakdi, 2022). The
intricate composition of garden waste offers the potential for
transformation into a variety of biofuels and intermediate
chemicals, thereby producing high-value products (Ren et al., 2016).

In recent years, the anaerobic digestion of lignocellulosic
biomass has been increasingly developed, compared to ethanol
and other alcohols, carboxylic acids are thermodynamically
favored when methanogenesis is inhibited during anaerobic
digestion and could still achieve high product yields without
sterile conditions (Darvekar et al., 2019). Volatile fatty acids
(VFAs) have attracted attention from many researchers due to
their widespread applications across the industries, such as food,
pharmaceuticals, chemicals, agriculture, and wastewater treatment
(Soares et al., 2010; Ramos-Suarez et al., 2021). VFAs exhibit
significant potential for conversion into green chemicals and as
substitutes for fossil fuels. Hence, the production of high-value VFAs
by anaerobic fermentation emerges as a viable alternative to
anaerobic digestion.

However, the composition of lignocellulosic biomass,
particularly comprising cellulose, hemicellulose, and lignin,
results in a highly resistant and recalcitrant structure due to the
interactions between these components. As a consequence, the
hydrolysis of lignocellulose is usually the rate-limiting step
considered during traditional anaerobic digestion
(Sawatdeenarunat et al., 2015). Therefore, the low hydrolysis
efficiency of garden waste in the anaerobic fermentation process
leads to a large amount of incompletely treated waste, which
decreases the resource utilization efficiency. In this regard,
various pretreatment techniques, including chemical, physical,
biological, and their combinations, have been developed to
improve the efficiency (Zhao et al., 2022; Fang et al., 2023).
Nonetheless, these pretreatment methods suffer from a range of
drawbacks, such as complex operational processes, high costs,
secondary pollution, high energy consumption, and possibly
other issues as well (Fonoll et al., 2021; Mankar et al., 2021).
Given the above considerations, it is essential to find an eco-
friendly approach to enhance the conversion efficiency of garden
waste and VFA production during anaerobic fermentation, without
resorting to conventional sophisticated pretreatment processes (Cao
et al., 2023).

Granular activated carbon (GAC), serving as a conductive
material with a notably specific surface area, provides additional
attachment sites for microbes. This shortens the distance between
syntrophic partners and enhances mass transfer (Li et al., 2021),
leading to elevated biofilm formation and improved the yield of the
target products (Ma et al., 2022). GAC facilitates electron transfer,

modulates metabolic pathways, and enables the formation of an
electron transfer chain, promoting electron sharing and interactions
among bacteria (Lovley, 2017; Yang et al., 2017; Zhang et al., 2017).
This optimization further optimizes the hydrolytic fermentation and
acid production process. Presently, the majority of research on the
anaerobic fermentation of lignocellulosic biomass primarily
emphasizes pretreatment techniques (Kumar et al., 2022). There
have been no studies that have investigated the impact of adding
GAC on both the VFA production and microorganisms in
lignocellulosic biomass without employing any complex
pretreatments or enzymes.

Therefore, batch tests were conducted in this study with the
same pruning of green leave concentrations to clarify the role of
GAC in enhancing anaerobic fermentation. The main objective of
this research was to examine whether the inclusion of GAC could
enhance the efficiency of anaerobic fermentation in treating garden
waste, eliminating the need for additional enzymes or complex
pretreatment processes. Furthermore, the impact of GAC on
VFA production and the underlying mechanisms were explored
through 16S rRNA gene and metagenomics analysis. These findings
shed new light on the anaerobic fermentation of lignocellulosic
biomass for VFA production, providing an approach that avoids
complex pretreatment operations and high costs while promoting
resource utilization and minimizing environmental pollution.

2 Materials and methods

2.1 Substrate and inoculum

In this particular investigation, garden waste comprises the
discarded pruning green leaves collected from lawnmower
clippings in Beijing Forestry University, China, 40.005875°N
116.347459°E. The leaves were dried at 60°C for 12 h before
being ground to a particle size of less than 1 mm using a
laboratory high-speed multifunctional mill (CHAORAN, CR-100,
China). The ground material was sieved through a 40–80 mesh
(Tyler Standard Screen Scale). Subsequently, particles in the range of
0.180–0.425 mm were carefully chosen. Afterward, the large
particles were collected and ground again to obtain the desired
size, and they were then sealed in plastic bags and stored at ambient
temperature before conducting experiments. Anaerobic sludge was
obtained from a full-scale up-flow anaerobic sludge bed (UASB)
reactor located in Beijing, China, and stored at 4°C, which was
broken up before being utilized as inoculum for anaerobic tests.
Table 1 shows the characteristics of both the garden waste and
inoculum utilized in this study.

2.2 Reactor set-up and operation conditions

Two batch experiments for anaerobic fermentation were carried
out using 1-L glass serum bottles with a working volume of 0.7 L,
both bottles containing 250 mL of anaerobic sludge, 10% total solids
(TS) of garden waste, and 15 mM sodium 2-bromoethanesulfonate
(BES) to inhibit methane production for VFA accumulation
(Chidthaisong and Conrad, 2000). One of the reactors was
supplemented with 50 g/L of GAC, characterized by a particle
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size of 8–20 mesh, a volume of approximately 120 cm3, and a
geometric surface area of approximately 900 cm2. Prior to
commencing the experiment, carbon dioxide gas was employed
to purge both test bottles for 10 min, displacing the air and
establishing an anaerobic environment. Subsequently, both bottles
were placed in a shaking incubator set to mesophilic temperature
(35°C) and operated at 120 rpm. A gas-sampling bag was affixed to
the outlets situated at the top of both reactors. The reactors were
running for a total of 28 days, and a schematic diagram of these
reactors is presented in Supplementary (Supplementary Figure S1).

2.3 Analytical methods

The composite samples were retrieved from the serum bottles at
predetermined intervals and subsequently centrifuged at 10,000 rpm
for 5 min. The supernatant was filtered through a 0.45-μm
membrane for the subsequent analysis of soluble chemical
oxygen demand (sCOD) and filtered through a 0.22-μm
membrane for the analysis of VFAs.

The COD, TS, and volatile solids (VS) were determined with
standard methods (APHA, 2005). Acetate, propionate, butyrate,
valerate, and caproate were measured by high-performance liquid
chromatography (HPLC) (Bio-Rad, Hercules, California) using
5 mM H2SO4 as the mobile phase (Huang et al., 2022). The
cumulative VFAs, calculated as acetate (g/L), were the sum of
acetate, propionate, isobutyrate, and n-butyrate during
fermentation. pH was measured with a pH meter (HACH,
United States). The gas volume collected in a 1-L sampling bag
was measured using an air pump every 1–3 days, and then, the gas
was transferred back into the bag. The hydrogen content in both the
gaseous samples in the sampling bag and the headspace was
measured using gas chromatography apparatus equipped with a
thermal conductivity detector (TCD) (Tianmei, GC7900, China). In
addition, the decomposition of garden waste was assessed by
Fourier-transform infrared (FT-IR) spectroscopy (Bruker;
VERTEX 70; Germany) through a full scan across the
wavenumber range of 400–4,000 cm−1.

2.4Microbial community analysis—16S rRNA
gene

DNA was extracted from 2 mL sludge samples collected from
both reactors at the end of the day (on day 28) using the RNeasy
PowerSoil DNA Elution kit, according to the manufacturer’s
instructions. The 16S rRNA gene fragments from extracted DNA
samples were amplified via the polymerase chain reaction (PCR)
with universal primer sets (338F/806R). Amplicons were sequenced
on an Illumina HiSeq 2000 platform (Illumina, San Diego,
United States) by Majorbio Bio-Pharm Technology Co. Ltd.

(Shanghai, China). Subsequently, the sequences were categorized
into different operational taxonomic units using Pyrosequencing
Pipeline software (https://pyro.cme.msu.edu).

2.5 Metagenomics analysis

The specific operation of metagenomics analysis is shown in
Supplementary Material.

3 Results and discussion

3.1 Performance of batch reactors

The pH values of both reactors were determined, and Figure 1A
shows the pH variation during the fermentation period. Both
reactors exhibited a similar trend, with pH values rapidly
decreasing in the initial 4 days and the GAC group experiencing
a faster decline. However, from day 4 to day 28 of fermentation, no
significant changes in pH values were observed in either group. The
pH remained relatively stable at approximately 5.0, indicating that
the activity of acidogenic bacteria was inhibited by low pH, leading
to the suppression of accumulated VFA production.

Both reactors had the similar VFA compositions, and the
concentrations of acetate, propionate, isobutyrate, and n-butyrate
in the GAC-amended and non-amended reactors are shown in
Figure 1B. Notably, no valerate or caporate was detected. The acetate
concentration in the GAC-amended reactor rapidly increased in the
initial 4 days, reaching a maximum concentration of 157.41 mM. On
the first day, the acetate concentration in the GAC-amended reactor
was approximately 2.66 times higher (42.83 mM) than that in the
control group (16.09 mM), highlighting GAC’s ability to expedite
acetate production. Overall, the GAC-amended reactor maintained
a higher efficiency, as reflected by the higher concentrations of each
VFA, particularly acetate. The crucial raw components, such as
acetate, propionate, isobutyrate, and n-butyrate, used for
synthesizing various valuable compounds (Xu et al., 2023),
constituted the primary components of VFAs. In the GW-GAC
group, these components averaged 67.01%, 13.40%, 4.62%, and
14.97%, respectively. Therefore, utilizing GAC to improve the
production of acetate, propionate, and butyrate from
lignocellulosic biomass like garden waste is a sustainable
development route. Furthermore, cumulative hydrogen was
measured, revealing an initial increase followed by gradual
consumption (Figure 1C). In the GW-GAC group, the highest
cumulative hydrogen production was 98.65 mL, which was
4.23 times higher than the highest cumulative hydrogen
production in the GW-Control group (23.35 mL). These findings
may suggest that adding GAC increased the abundance of crucial
functional enzymes in the anaerobic fermentation system.

TABLE 1 Characteristics of garden waste and the inoculum.

pH Total solid (TS) (%) Volatile solid (VS) (%) COD (mg/L) Cellulose (%) Hemicellulose (%) Lignin (%)

Garden waste — 99.16 ± 0.06 88.86 ± 0.18 — 12.60 ± 0.18 11.85 ± 0.66 18.12 ± 0.19

Inoculum 7.66 ± 0.02 4.94 ± 0.07 3.74 ± 0.06 304.5 ± 4.95 — — —
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The solubilization of garden waste was expressed in terms of
sCOD. Figure 2A shows the sCOD concentration in the control and
GAC-amended groups gradually increasing over the initial 14 days
and subsequently stabilizing at approximately 3.70 g/L and 3.35 g/L,
respectively. In this study, the observed increase in sCOD was
attributed to the hydrolysis efficiency of cellulose and
hemicellulose present in garden waste biomasses. A lower sCOD
level that was observed in the GW-GAC group might be due to the
adsorption effect of GAC (Yang et al., 2020b; Zusman et al., 2020),
which resulted in a portion of sCOD generated from the hydrolysis
of garden waste being adsorbed. Additionally, VFAs could be
absorbed by GAC (da Silva and Miranda, 2013). However, in this
batch experiment, 50 g/L GAC and 10% TS garden waste were added
in a single dose to the GW-GAC reactor, eliminating repeated
adsorption/desorption. A more intricate interaction between
GAC and VFAs in the anaerobic fermentation system could
exist. The enhancing effect of GAC resulted in a faster and
higher VFA production (Figure 2B), and quickly saturated by
GAC adsorption, thereby achieving a continuous gradual increase
in VFA production during subsequent fermentation periods.

The percentage of sCOD from each VFA and other organic
matters from both groups is shown in Figure 2C. The VFA/sCOD
ratio was a significant indicator, illustrating the extent to which
soluble organics could be transformed into VFAs (Fang et al., 2019).
Figure 2C shows that after anaerobic fermentation, VFA/sCOD in

the GAC-amended reactor surpassed that in the non-amended
control reactor. Further calculation revealed that the peak VFAs/
sCOD reached 70.01% in the GAC-amended group and only 49.35%
in the control group, indicating that the GAC-amended group
exhibited a superior acidogenesis capacity. These findings
provided additional confirmation that GAC addition enabled
efficient hydrolysis and acidogenesis of garden waste.

The change in cumulative VFA production followed a nearly
identical trend as that of acetate, and the concentration was higher
throughout the whole 28 days in the GAC-amended group
(Figure 2B). The results indicated that the addition of GAC may
promote electron transfer among fermentative bacteria, specifically
enhancing the production of acetate. On the other hand, VFA
concentrations in the GW-GAC reactor slightly decreased from
day 19. This phenomenon could be attributed to the inhibition of
bacterial hydrolysis and acidogenesis activities caused by excessively
high VFA concentrations, a phenomenon similar to what was
reported by Liang et al. (2023). Such limitations can be overcome
if the products were removed from the system continuously (Zhou
et al., 2018). Figure 2D shows the maximum total VFA yield in both
reactors. The maximum total VFA yield was 191.55 mg/g VSadded in
the GAC-amended reactor, which increased by 27.35% compared to
the control group. The yield of VFAs in this study exceeded the yield
reported by Yu et al. (2022), who utilized microwave-assisted ionic
liquids as the pretreatment method and then inoculated rumen

FIGURE 1
Variation in (A) pH, (B) acetate, propionate, iso-butyrate, and n-butyrate concentration, and (C) hydrogen accumulation in GW-GAC and GW-
Control reactors during anaerobic fermentation.
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microbes to ferment wheat stalk, resulting in a VFA yield of 0.180 g/
g in a sequencing batch experiment. Therefore, the GAC-amended
reactor achieved a high VFA yield during the 28-day anaerobic
fermentation period. The notable efficiency in acidogenesis was
primarily attributed to that GAC provided a suitable
fermentation environment for microbes to produce VFAs and
enhanced the mutual metabolism between bacteria. Given the
absence of additional enzymes, the VFA production process with
GAC amendment offers advantages for garden waste utilization. It
minimizes operational costs and enables the direct generation of
products without the need for complex pretreatments. As a result,
this strategy could provide benefits, such as cost savings, simplified
operation, and high yield.

3.2 FT-IR analysis of garden waste
decomposition

FT-IR analysis was utilized to assess the decomposition of
garden waste in anaerobic fermentation reactors. Figure 3 shows
the FT-IR spectra of the raw garden waste and matters from both
reactors at the end of the experiment. While the stretching vibration

FIGURE 2
(A) sCOD concentration, (B) cumulative VFA production (calculated as acetate), (C) proportion of VFAs in sCOD (the left column represented the
GW-Control reactor, and the right represented the GW-GAC reactor), and (D) the maximum yield of VFAs in GW-Control and GW-GAC reactors.

FIGURE 3
FT-IR spectra of raw garden waste matters in GW-Control and
GW-GAC reactors.
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peak types did not display a noticeable difference between both
reactors with or without GAC and the raw garden waste, there was a
reduction in peak intensity observed in the presence of GAC,
especially for peaks at 2,917 cm−1, 1,637 cm−1, and 1,060 cm−1.
The stretching vibration peaks at 2,917 cm−1, 1,637 cm−1, and
1,060 cm−1, represent the saturated C–H stretches related to
methyl and methylene groups, C=O side chain stretches, and
primary and secondary alcohol (C–O–H) stretches, respectively
(Grűbel and Machnicka, 2014; Li et al., 2018b). These peaks are
indicative of cellulose and hemicellulose characteristics. All the
vibration frequencies corresponding to single-bond stretching
and the molecular skeleton are within the 910–1,300 cm−1 regions
(Abidi et al., 2014).

Figure 3 illustrates the gradual weakening of characteristic peaks
in raw garden waste, non-GAC, and GAC-amended groups,
indicating the cellulose and hemicellulose degradation of garden
waste in both reactors during anaerobic fermentation. Notably, GAC
dosing exhibited a more pronounced effect on garden waste
degradation, aligning with the cumulative VFA production results
(Figure 2B).

3.3 Microbial community structure

The VFA production performances were closely correlated with
the microbial community structure within the fermentation systems
(Li et al., 2018c). In this study, we employed 16S rRNA gene
amplicon sequencing to assess the microbial community in both
groups and any changes that occurred in their compositions at the
phylum and genus levels.

Bacterial alpha diversity was quantified using metrics such as the
number of ASVs, Chao1, Shannon diversity index, and Simpson
diversity index (Supplementary Table S1). The GW-Control sample
had higher Chaos and Shannon indices, and a lower Simpson index
compared to the GW-GAC sample, representing that the GW-

Control group had a higher richness of microbial community
and diversity of microbial community compared to the GW-
GAC group (Li et al., 2018a). The results are attributed to the
addition of GAC that helps enrich the reactor with more functional
bacteria, and some bacteria that were not adapted to high VFA
concentrations were eliminated.

Figure 4A shows the relative abundance (RA) of the eight major
phyla, each with a contribution of over 0.50% to the total bacterial
sequences in both fermentation systems. In the GW-Control group,
the top four phyla were Firmicutes, Actinobacteriota, Bacteroidota,
and Chloroflexi, constituting approximately 88.19% of the total
abundance. In the GW-GAC group, the predominant phyla were
Firmicutes, Spirochaetota, Actinobacteriota, and Bacteroidota, with
a combined abundance of approximately 89.96%. These bacteria
have the ability to break down complex polymeric organic
compounds and ferment monomeric sugars in anaerobic
fermentation systems (Zhao et al., 2020). Firmicutes and
Spirochaetota, constituting 66.88% and 10.65% of the total,
respectively, were the predominant bacteria in the GW-GAC
group. These proportions were higher compared to the control
group, which had 47.47% of Firmicutes and 0.30% of Spirochaetota.
The RA of Actinobacteriota, Bacteroidota, and Chloroflexi was
lower in the GW-GAC reactor (7.41%, 5.02%, and 2.78%,
respectively) compared to the GW-Control reactor (18.50%,
13.76%, and 8.47%, respectively). These results suggested that
GAC might influence the activity of these phyla and lead to
alterations in the microbial structure.

Various acidogenic bacteria belonging to the phylum of
Firmicutes were well-known to produce proteases, lipases, and
various extracellular enzymes to biodegrade multiple complex
organics (like proteins and carbohydrates) to VFAs (Chen et al.,
2017; Wang et al., 2019). The phylum Spirochaetota is a type of
acidogenic bacterium capable of converting carbohydrates into
simple VFAs (Yang et al., 2020a). The substantial increase in
Firmicutes and Spirochaetota in the GW-GAC reactor suggested

FIGURE 4
RA of the microbial community during anaerobic fermentation in GW-Control and GW-GAC groups. (A) phylum level and (B) genus level.
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that GAC addition promoted the acidification process, leading to a
higher VFA concentration in the GW-GAC group. Actinobacteriota
can produce hydrolytic enzymes or organic acid and help degrade
organic matters (Jang et al., 2014). Relevant studies have shown that
Bacteroidota can produce various lytic enzymes and degrade
glucose, cellobiose, and amino acids to VFAs, CO2, and H2

during the degradation of organic materials, respectively (Dykstra
and Pavlostathis, 2017; Ros et al., 2017). The phylum Chloroflexi can
utilize glucose and VFAs (Ros et al., 2017). A lower RA value of
Chloroflexi in the GW-GAC reactor (2.78%) compared to the GW-
Control reactor (8.47%) indicated that GAC addition might
suppress the activity of this phylum and be conducive to the
VFA accumulation. Based on the above analysis, it can be
inferred that the accumulation of VFAs in the GW-GAC group
may be related to the increase in the RA of Firmicutes and the
decrease in the RA of Chloroflexi.

Figure 4B shows the top 10 genera abundance in the GW-GAC
fermentation system. Three genera—Caproiciproducens,
Clostridium and Sporolactobacillus, all belonging to the phylum
Firmicutes—predominated in the GW-GAC group. The genus
Caproiciproducens had an RA of 36.99% in the GW-GAC group,
almost twice that of the GW-Control group (18.95%). It was
reported that the primary metabolites of organic acids, including
acetate, butyrate, and caproate, can be produced by species within
the genus Caproiciproducens (Kim et al., 2015). We have not
detected the presence of caproate during the tests, thereby
suggesting a potential inhibition of caproate production under
the condition of pH 5, which is similar to the observation
reported by Feng et al. (2018).

The RA value of Clostridium was 7.33% in the GW-Control
group and 16.68% in the GW-GAC group, and Clostridium was
identified as the dominant genus in the anaerobic fermentation
system and played a crucial role in the transformation of organics to
VFAs (Shen et al., 2014). The RA of Clostridium_sensu_stricto_12
was found to be 2.57% and 3.61% in the GW-Control and GW-GAC
groups, respectively. It was reported that Clostridium_sensu_stricto_
12 was a butyrate-producing bacterium with transferases of acetyl-
coenzyme and butyrate kinase. These enzymes facilitate the
generation of butyrate through the conversion of intracellular
and extracellular acetate (Ma et al., 2017; Wang et al., 2020; Li
et al., 2022a). This may explain the higher butyrate concentration
observed in the GW-GAC group (Figure 1B). RA of Sphaerochaeta
in the GW-GAC group was 10.59%, whereas it disappeared in the
other group. Sphaerochaeta belonging to the phylum Spirochaetota
had the ability of producing organic acids (Wang et al., 2023).
Ritalahti et al. (2012) conducted a study using glucose as substrates
in the pure cultures, and it was observed that Sphaerochaeta species
exhibited the ability to convert soluble Fe (III) oxides into Fe (II).
Although their capability of electron transfer to carbon-based
conductive materials had not been assessed, they exhibit
significant potential of stimulating electron transfer between
bacteria (Li et al., 2020). Remarkably, in the presence of GAC,
the abundance of Sphaerochaeta increased sharply (Figure 4B),
suggesting that GAC stimulated their growth and increased the
VFA production conversion rate of garden waste. Furthermore,
Oscillibacter, capable of producing organic acids through indirect
extracellular electron transfer using hydrogen as an electron
mediator (Ma et al., 2022), was exclusively identified in the GW-

GAC group at a proportion of 1.08%, indicating a promoted growth
and enrichment of Oscillibacter by the addition of GAC. Therefore,
hydrogen would stimulate the enrichment of Oscillibacter (Dessì
et al., 2021), which was corresponding to the results in Figure 1C.

3.4 Metagenomics analysis

There was no significant difference in metabolic function
between GW-Control and GW-GAC groups in terms of level
2 and 3 metabolic function categories (Supplementary Figure S2).
Metabolism, genetic information processing, environmental
information processing, and cellular process were the four main
metabolic pathways identified in each group. In GW-Control, the
primary secondary metabolic pathways were distributed as follows:
global and overview maps (28.81%), carbohydrate metabolism
(9.00%), amino acid metabolism (7.48%), and energy metabolism
(7.49%). Similarly, in GW-GAC, the proportions of these pathways
were 28.36%, 9.06%, 7.46%, and 6.96%, respectively (Supplementary
Figure S2A). The main metabolic functions of carbohydrate
metabolism were glycolysis/gluconeogenesis, amino sugar, and
nucleotide sugar metabolism and pyruvate metabolism in both
groups (Supplementary Figure S2B), which played a dominant
role in the hydrolysis process, providing sufficient available
substrates for subsequent acidogenesis.

CAZymes have the function of breaking down the complex
carboxylates. All the detected genes coding for CAZymes were
further assigned to seven functional classes (Table 2): glycoside
hydrolases (GHs), glycosyltransferases (GTs), polysaccharide lyases
(PLs), carbohydrate esterases (CEs), carbohydrate-binding modules
(CBMs), and auxiliary activity enzymes (AAs). It was apparent that
GTs and GHs were the main abundant enzymes, representing the
majority of all the CAZyme genes. On the contrary, PLs and SLHs
were very scanty in the community. It was worth noting that the
abundance of GHs in the GW-GAC reactor showed the highest
increase rate (34.88%) compared to the GW-Control reactor.

Importantly, GH families, such as GH5, GH8, and GH51, are
known for their versatile functions and ability to hydrolyze both
cellulose and hemicellulose, which is dependent on the specific
subfamily (Lombard et al., 2014; Peng et al., 2021). Major bacterial
cellulases include GH5 and GH9. GH10, GH11, GH26, and
GH43 belong to hemicellulases (Peng et al., 2021). The abundance
is shown in Supplementary Table S2, and we can dedicate that the

TABLE 2 Abundance of seven functional classes of CAZymes in GW-Control and
GW-GAC groups.

Class GW-Control GW-GAC

AAs 102582 112656

CBMs 40814 38552

CEs 204384 258864

GHs 674000 909094

GTs 926132 959574

PLs 33906 34896

SLHs 320 236
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addition of GAC promoted the degradation of garden waste from the
higher abundance of GHs in the GW-GAC reactor.

To accurately depict the principal metabolic pathways in both
non-GAC and GAC-amended groups, the functional metabolic
analyses specific to hydrolysis and acidogenesis of each group
were identified based on the metagenomics information and
KEGG metabolic pathways. Figure 5 shows the principle
metabolic pathways and a heatmap based on the abundance of
key enzymes related to hydrolysis and acidogenesis in the two
groups (Li et al., 2022b). Specific data on key enzymes-encoding
genes related to hydrolysis and acidogenesis at each group are shown
in supplementary (Supplementary Table S3).

Exoglucanase acts progressively from the ends of the cellulose
chains, and endoglucanase has the ability to break down cellulose
polymers into their respective reduced sugar and polysaccharide
components, with beta-glucosidase (bglB) facilitating the final stage
of cellulose hydrolysis. Endo-1,4-beta-xylanase, one type of
hydrolases, can depolymerize xylan, which is a plant cell
component (Tiwari et al., 2023; Tong et al., 2023). The
abundances of the above enzymes were higher in the GW-GAC
group (Figure 5), which demonstrated that bacteria capable of
degrading cellulose and hemicellulose to monosaccharide in the
GAC-amended reactor were more abundant. RA of beta-
galactosidase (lacZ) (4.04‰) in the GW-GAC group was nearly
twice as much as that in the GW-Control group (2.38‰). The results
above explained the high hydrolysis efficiency of cellulose and
hemicellulose. Subsequently, glucose was hydrolyzed to pyruvate,
which was further transformed into acetate, propionate, and
butyrate. In the GW-GAC group, there was a higher abundance
of pyruvate kinase (pyk), which is associated with pyruvate
formation. Additionally, functional enzymes related to acetate,
propionate, and butyrate formation were identified in both

fermentation reactors. RA of acetate kinase (ackA) related to
acetate formation was higher compared to that of propionate
CoA-transferase (pct) and butyrate kinase (buk) related to
propionate and butyrate formation. This corresponded to the
significantly higher acetate concentration compared to propionate
and butyrate in this study (Figure 1B). These results indicated that
parts of functional enzymes associated with hydrolysis and
acidogenesis were promoted by GAC addition during the
fermentation of garden waste.

To thoroughly investigate the metabolic response of hydrolysis
and acidogenesis of garden waste with and without GAC addition,
RA values of major genera contributing to the five functional genes
(bglB, lacZ, pyk, pct, and ackA) in both groups were evaluated based
on metagenomics analysis. Figure 6A shows that in terms of bglB in
the GW-Control group, the top three genera were f__
Anaerolineaceae, Caproicibacterium and Flexilinea; Brooklawnia,
Seramator, and Anaerolinea for lacZ; Brooklawnia, f__
Anaerolineaceae, and Weissella for pyk; Brooklawnia, f__
Oscillospiraceae, and Weissella for pct; and Brooklawnia, Weissella
and Lactiplantibacillus for ackA. In the GW-GAC group, the top
three genera were changed as follows: f__Anaerolineaceae,
Sphaerochaeta, and Caproicibacterium for bglB; Clostridium,
Sphaerochaeta, and Brooklawnia for lacZ; Caproicibacter,
Brooklawnia, and Anaerolinea for pyk; f__Oscillospiraceae,
Brooklawnia, and Clostridium for pct; and Brooklawnia,
Sphaerochaeta, and Caproicibacter for ackA (Figure 6B).
Figure 6C depicts the RA of bacteria with increased gene
contribution after the addition of GAC. Sphaerochaeta exhibited
a significant increase in gene contribution to functional genes,
reaching 6.67%, 10.95%, and 9.72% for bglB, lacZ, and ackA,
respectively. The contributions of Clostridium for lacZ and pct
were increased by 757.44% and 450.74%, respectively. The

FIGURE 5
Principal metabolic pathways and a heatmap displaying the abundance of key enzymes related to hydrolysis and acidogenesis in the GW-Control
and GW-GAC reactors, with abundance represented by log2 values.
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contribution of Caproicibacter for pyk and ackA was apparently
improved from 0.62% to 18.60% and from 4.58% to 8.18%,
respectively. The results above may explain the higher VFA
production observed in the GW-GAC group. Since the
abundance of these five functional genes was higher in the GW-
GAC group (Figure 5), they contributed to the improvement of
hydrolysis and acidogenesis efficiency.

4 Conclusion

In this study, GAC was used to promote the VFA production of
the garden waste. Acetate, propionate, and butyrate were the main
VFA components, which hold significant potential for broad
utilization across various industries, potentially substituting fossil
fuels in the future. The experimental results showed that GAC
addition can achieve a high VFA conversion rate and effectively
increase the yield of VFAs with the maximum yield of 191.55 mg/g
VSadded in the anaerobic fermentation system. In addition, the
enrichment of phylum Firmicutes and its genera Caproiciproducens
and Clostridium was identified as the key factor contributing to the
substantial increase of VFA production in the GAC-amended
fermentation system, and the GAC-amended reactor exhibited a
higher RA of Sphaerochaeta and Oscillibacter that are capable of

electron transfer. Furthermore, by metagenomics analyzing, GAC
addition improved the abundance of key functional enzymes related
to hydrolysis and acidogenesis. Furthermore, the main contributors of
upregulated genes (bglB, lacZ, pyk, pct, and ackA) were Sphaerochaeta,
Clostridium, andCaproicibacter. In summary, the gardenwaste can be
used as the feedstock of efficient VFA production by addition GAC
without any complex pretreatments and extra enzymes, which offers a
novel perspective on the anaerobic fermentation of lignocellulosic
biomass for VFA production, potentially leading to cost savings for
energy recovery from lignocellulose and simplification of the
treatment process.
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