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The transplant community is focused on prolonging the ex vivo preservation
time of kidney grafts to allow for long-distance kidney graft transportation,
assess the viability of marginal grafts, and optimize a platform for the
translation of innovative therapeutics to clinical practice, especially those
focused on cell and vector delivery to organ conditioning and reprogramming.
We describe the first case of feasible preservation of a kidney from a donor
after uncontrolled circulatory death over a 73-h period using normothermic
perfusion and analyze hemodynamic, biochemical, histological, and
transcriptomic parameters for inflammation and kidney injury. The mean
pressure and flow values were 71.24 ± 9.62 mmHg and 99.65 ± 18.54 mL/
min, respectively. The temperature range was 36.7°C–37.2°C. The renal
resistance index was 0.75 ± 0.15 mmHg/mL/min. The mean pH was 7.29 ±
0.15. The lactate concentration peak increased until 213 mg/dL at 6 h,
reaching normal values after 34 h of perfusion (8.92 mg/dL). The total urine
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output at the end of perfusion was 1.185 mL. Histological analysis revealed no
significant increase in acute tubular necrosis (ATN) severity as perfusion
progressed. The expression of KIM-1, VEGF, and TGFβ decreased after
6–18 h of perfusion until 60 h in which the expression of these genes
increased again together with the expression of β-catenin, Ki67, and TIMP1.
We show that normothermic perfusion can maintain a kidney graft viable ex vivo
for 3 days, thus allowing a rapid translation of pre-clinical therapeutics to
clinical practice.

KEYWORDS

normothermic perfusion, kidney transplantation, regenerative medicine, uncontrolled
donation, kidney preservation

Introduction

Ex vivo kidney graft preservation strategies have become a
promising strategy to minimize ischemia–reperfusion
injury with the aim of reducing the risks of primary non-
function and post-transplant delayed graft function
(DGF) (ML and SA, 2013; Hamar and Selzner, 2018; Kataria
et al., 2019; Rijkse et al., 2021). Hypothermic machine perfusion
(HMP) has been demonstrated to improve organ preservation
compared to static cold storage (SCS) and is currently widely
used for kidney graft preservation (Summers et al., 2015;
Tedesco-Silva et al., 2017; Kataria et al., 2019; Tingle et al.,
2019). However, HMP allows a limited evaluation of
graft quality during the preservation period, given that
the organ is not in a physiological setting during HMP (8).
The normothermic machine perfusion (NMP) system
has been developed to provide a more precise metabolic
and functional evaluation of the kidney graft and is
one of the most promising strategies for kidney graft
ex vivo preservation (Chandak et al., 2019; Hamelink
et al., 2022; Mazilescu et al., 2022). Unlike hypothermic
perfusion, NMP provides physiological conditions with full
metabolic and tissue repair activity (Hosgood et al., 2015;
Elliott et al., 2020). NMP raises the possibility of
maintaining the graft under conditions suitable for
transplantation even when the ex vivo time is prolonged
(Kaths et al., 2018; Hosgood et al., 2023). At present, one of
the most important efforts of the kidney transplant community
is focused on prolonging the ex vivo preservation time of kidney
grafts, not only to allow for long-distance kidney graft
transportation but also to assess the viability of marginal
kidney grafts (Kaths et al., 2018). Furthermore, long-term
normothermic perfusion can transform NMP into a valuable
system for the translation of innovative medicine strategies to
clinical practice, especially those focused on cell and vector
delivery to organ conditioning and reprogramming (Gregorini
et al., 2017; Thompson et al., 2021; Mellati et al., 2022;
Thompson et al., 2022).

Here, we describe the first case of successfully preserving a
kidney from a donor after uncontrolled donation after
circulatory death (uDCD) over a 73-h period using NMP.
We analyze the perfusion and hemodynamic parameters
during this preservation time as well as kidney
allograft histology.

Materials and methods

Patients

A single-center study was performed in the Hospital Clinic
of Barcelona on one discarded human kidney for
transplantation. The patient was declared as a potential
donor, and the organs were evaluated according to our center
policy. Only after the decision to be discarded according to
clinical criteria, the kidney was accepted for research purposes.
The study protocol was reviewed and approved by the Research
Ethics Committee of our center (Comité de Ética de la
Investigación con medicamentos, CEIm). Written informed
consent to participate in this study was provided by the
patient’s relatives.

Normothermic perfusion setup and sample
collection

Normothermic Perfusion was performed using the ARK
Kidney device from EBERS Medical®, and urine recirculation
was not performed. The renal artery was cannulated to the
circuit using a 12-Fr cannula; renal vein outflow was collected
via a pump to an oxygenator, whereby blood re-entered the main
circuit. The ureter was directly cannulated to the urine circuit,
and urine was collected without recirculation. A urine flow
sensor monitored the urine output. Instead of urine
recirculation, repositioning with a balanced solution
(Isofundin®) according to the urine output was conducted via
a pump connected to the urine flow sensor. In addition to the
urine outflow, the ARK Kidney device continuously monitors
hemoglobin concentration, oxygen saturation, mean pressure,
arterial flow, renal resistance index, and perfusate temperature.
Hemodynamics were pressure-controlled, establishing a
pressure increase ramp until reaching a set mean arterial
pressure of 70 mmHg during perfusion. The temperature was
set at 37°C during perfusion.

The system was primed with two units of packed isogroup red
blood cells (RBCs) and 500 mL of balanced saline solution
(Isofundin®), with an approximate total volume of 800 mL.
Oxygenation of the perfusate was performed by manual
regulation of air (21% oxygen) at a flow rate of 1.5 mL/min to
maintain an oxygen saturation level of over 97% using an ECMO
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oxygenator. A nutrition solution was continuously infused at 24 mL/
h. The nutrition solution was composed of 10% Aminoplasmal®,
Cernevit® as a multivitamin complex, 5% serum glucose, and 70 UI
of insulin. Verapamil was used as a vasodilator (continuous infusion
rate, 0.4 mg/h). Before kidney connection to the circuit, 1.2 g of
amoxicillin clavulanate, 10 mL of sodium bicarbonate 8.4%, 8 mg of
dexamethasone, 2,000 UI of low-molecular-weight heparin, 5 mL of
glucose 5%, and 0.5 mL of calcium gluconate were added. The same
dose of antibiotic was administered every 24 h. A measure of 10 mL
of sodium bicarbonate 8.4% was administered as required to
maintain a pH > 7.30. Finally, 5 mL of glucose 5% was
administered as required to maintain a perfusate
glucose >100 mg/dL.

Biochemical parameters were measured in the perfusate using
the epoc® Blood Analysis System (Siemens Healthcare). Perfusate
samples were collected hourly during the first 6 h and every 4 h
afterward. Histological samples were collected 15 min after starting
the perfusion (time point 0) and at 6, 18, 24, 36, 48, 60 and 72 h. A
1 × 1 × 1 mm tissue piece of the kidney cortical was taken from the
middle third of the graft and immediately preserved in RNAprotect®

(Qiagen) for 24 h. Afterward, the sample was preserved at −80°C
until analysis. In case of bleeding after the biopsy, the tissue was
carefully sutured to avoid leakage and ensure that renal flow was
not affected.

To assess acute tubular necrosis (ATN) severity in the tissue
samples, a 5-grade classification according to the frequency of ATN
findings in the kidney cortex was performed (Tavares et al., 2012):
ATN grade 0 (normal), ATN grade 1 (only rare tubules with
evidence of necrosis are observed in the cortex), ATN grade 2
(small groups of necrotic tubules discontinuously distributed
throughout the renal cortex), ATN grade 3 (groups of necrotic
tubules are easily found in the renal cortex), and ATN grade 4
(extensive areas of tubular necrosis are scattered throughout the
renal cortex).

Real-time qPCR

The kidney tissue was homogenized, and total RNA was
extracted using the Maxwell® RSC Instrument (Promega). The
Maxwell® RSC miRNA Tissue Kit (Promega) was used, according
to the supplier’s protocol.

cDNA was synthesized from the RNA template using a cDNA
synthesis kit from Invitrogen, according to the manufacturer’s
instructions. The resulting cDNA was diluted and used to
determine expression levels. The reference gene used was human
β-actin, and the expression levels of kidney injury molecule 1 (KIM-
1), vascular endothelial growth factor (VEGF), transforming growth
factor β (TGFβ), tissue inhibitor of metallopeptidase 1 (TIMP1), β-
catenin, and Ki67 were measured.

Real-time qPCR was performed using the corresponding
primers for each gene on a 384-well plate using the PCR
program provided by the supplier on a QuantStudio 7 device
(Thermo Fisher Scientific). Samples were run in triplicate in
10 μL reaction volumes, and the mRNA expression of the target
genes was normalized to β-actin mRNA and expressed as the
fold change to time 0 (T0) kidney tissue using the
ΔΔCT method.

Statistical analysis

Data are presented as mean (standard deviation, SD). For real-
time qPCR, the mRNA expression of the target genes was
normalized to β-actin mRNA and expressed as the fold change
to time 0 (T0) kidney tissue using the ΔΔCT method. Graphical
representation was conducted using GraphPad v.9 (GraphPad
Software, La Jolla, CA, US).

Results

The donor was a 55-year-old man with no past medical history who
experienced a cardiac arrest due to a pulmonary embolism.
Cardiopulmonary resuscitation (CPR) was initiated immediately, and
the patient was transferred to the hospital. CPR was unsuccessful after
25 min, and the patientwas declared a potential organ donor. In linewith
our center’s uDCD policy, an in situ regional normothermic perfusion
for abdominal organs was performed until kidney retrieval in the
operating room. The functional warm ischemia time was 30min, and
normothermic regional perfusion was performed for 1.5 h until kidney
retrieval. Abdominal cannulation and normothermic regional perfusion
were performed as previously published (Hessheimer et al., 2022). The
serum creatinine level immediately before donation was 1.67 mg/dL,
likely due to acute kidney injury (AKI). No preimplantation biopsy was
performed, and no other clinical, histological, or laboratory features that
contraindicate donation were evidenced. After kidney retrieval, a
malignant neoplasm was identified in the right kidney, and thus both
kidneys were discarded for transplantation. The left kidney was used for
research purposes. The left kidney was first flushed and then
subsequently immersed in IGL-1 cold preservation solution and
stored on ice at 4°C until NMP. The total cold ischemia time was 12 h.

Hemodynamics were pressure-controlled, establishing a pressure
increase ramp until reaching a set mean arterial pressure of
70 mmHg during perfusion. To avoid excessive pressure and
parenchyma damage, the pressure was set at 30 mmHg during the
first hour and increased by 10mmHg/h until a pressure of
60 mmHg. When the organ reached 6 h of perfusion, the pressure
was increased to 70mmHg (mean 71.24 ± 9.62 mmHg). The mean
flow values were 99.65 ± 18.54 mL/min. The temperature was set at 37°C
during perfusion (range 36.7°C–37.2°C). Figures 1A, B show the
progression of pressure and flow values during perfusion. The renal
resistance index (RRI) fell dramatically after the first hour of perfusion
from 1.09 to 0.65 mmHg/mL/min, with a mean value of 0.75 ±
0.15 mmHg/mL/min (Figure 1C). After 65 h of perfusion, an
important increase in the RRI was observed from 0.83 to
1.30 mmHg/mL/min, which was accompanied by a decrease in
arterial flow (Figure 1C).

Perfusate hemoglobin was maintained at >5.5 g/dL during
perfusion, infusing 1 unit of a packed isogroup red blood cells
(RBCs) when the hemoglobin dropped below this value. In total,
3 units of RBCs were administered during 73 h of perfusion, and
2 of them were administered simultaneously at 32 h of perfusion
(Figure 1D). The mean pH was 7.29 ± 0.15 (Figure 1E), and a total
of 50 mL of 8.4% bicarbonate was added during all the perfusion
procedures to maintain the pH value. Perfusate sodium experienced
a progressive decay, which became more pronounced after 50 h of
perfusion (Figure 1F). In contrast, normal (or even lower) levels of
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potassium were evidenced until 40 h of perfusion, in which a marked
hyperkalemia level was observed (Figure 1G). The lactate concentration
increased during the first 6 h (peak of 213 mg/dL). Following this, the
lactate concentration started to fall, reaching normal values after 34 h of
perfusion (nadir 2.7, normal <20 mg/dL) (Figure 1H). This
improvement in lactate concentration was accompanied by an

increase in the urine output (Figure 1I); the total urine output at the
end of perfusion was 1.185 mL. A significant improvement in the
macroscopic aspect of the kidney (from pale to uniform light pink
color) was observed from 24 h of perfusion and was maintained until
70 h of perfusion. Following this time, the kidney deteriorated
macroscopically, and perfusion was terminated at 73 h (Figures 2A–D).

FIGURE 1
Hemodynamic andbiochemical analysesduring kidneyperfusion. (A)Meanperfusionpressure. (B) Flow rate duringperfusion. (C)Renal resistance index (RRI)
during perfusion. (D) Perfusate hemoglobin during perfusion. The black arrows represent red blood cell transfusions. (E) Perfusate pH during kidney perfusion. (F)
Perfusate sodium during perfusion. (G) Perfusate potassium during perfusion. (H) Lactate levels during perfusion. (I) Kidney urine output.
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Histological analysis revealed only a few areas, suggesting an ATN
grade 2 in the collected samples. Notably, no significant increase in
ATN severity was observed as perfusion progressed, with preservation
of the tubular and interstitial compartments when compared to the
kidney before perfusion. Nevertheless, significant glomerular
congestion was identified at 48 and 72 h. Only one glomerulus was

sclerosed in the samples analyzed (Figures 2E–H). We further analyzed
the expression of AKI (KIM-1), inflammation (VEGF and TGFβ), and
proliferation and repair (Ki67, TIMP1, and β-catenin) markers to assess
tissue response to long-term normothermic perfusion. Globally, we
observed a reduction in KIM-1, VEGF, and TGFβ expression after
6–18 h of perfusion until 60 h, in which the expression of these genes

FIGURE 2
Macro- and microscopical assessment of the kidney graft during perfusion. (A) Macroscopical assessment before perfusion onset (time 0). (B)
Macroscopical assessment at 24 h of perfusion. (C)Macroscopical assessment at 48 h of perfusion. (D)Macroscopical assessment at 73 h of perfusion. (E)
H&E staining of a kidney biopsy at time 0 (optical microscope, ×20). (F)H&E staining of a kidney biopsy at 24 h (optical microscope, ×20). (G)H&E staining
of a kidney biopsy at 48 h (optical microscope, ×20). (H)H&E staining of a kidney biopsy at 72 h (optical microscope, ×20). H&E, hematoxylin–eosin.
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increased again together with the expression of β-catenin, Ki67, and
TIMP1 (Figure 3).

Discussion

With this report, we describe the first case of feasible 73-h
preservation of an uDCD kidney using normothermic perfusion.
This was associated with an increasing urine output over time, an
improvement in organ ischemia, and alongside histological and
transcriptomic signs of organ viability.

Beyond the advantages regarding the physiological preservation of
the kidney graft and the possibility of assessing kidney viability, NMP
creates a time window for therapeutic interventions, especially when the
administration and analysis in vivo are complex and need a physiological
environment (Hosgood et al., 2015; Gregorini et al., 2017; Kaths et al.,

2018; Hamelink et al., 2022; Mellati et al., 2022). Nevertheless, most of
the current regeneration strategies need a relatively long organ
preservation time to observe their effects (Gregorini et al., 2017). In
2018, Weissenbacher et al. (2019) perfused 13 discarded human kidneys
for 24 h, showing a slight improvement in histological parameters,
although KIM-1, as an AKI biomarker, did not show a significant
decrease over time, and lactate levels at 24 h were higher than those
found in our study. The same group later reported an extended
successful perfusion of a DBD discarded kidney graft for 48 h, with
lower lactate levels and preserved tubular integrity over time
(Weissenbacher et al., 2022). In contrast, we achieve, for the first
time, a preservation time of 73 h of an ECD and uDCD kidney graft,
thus suggesting that long-term normothermic preservation of ECD
kidneys for transplantation is feasible, and its potential utilization is
beyond kidney preservation for transplantation, since it can be used as a
bioreactor to assess innovative treatment strategies in a specific and safe

FIGURE 3
(A) Real-time qPCR analysis for KIM-1 expression. (B) Real-time qPCR analysis for TGFβ expression. (C) Real-time qPCR analysis for VEGF expression.
(D) Real-time qPCR analysis for TIMP1 expression. (E) Real-time qPCR analysis for β-catenin expression. (F) Real-time qPCR analysis for Ki67 expression.
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manner, which usually requires a relatively long time to produce any
effect in the organ (Sampaziotis et al., 2021; Thompson et al., 2021;
Mellati et al., 2022; Thompson et al., 2022).

Among the different parameters we assessed, we observed a fall in
lactate concentration to normal values, which suggests a restoration of
kidney metabolism during NMP. This finding contrasts with those
reported by Weissenbacher et al., in which lactate levels did not fall
under 60 mg/dL, which can be related to the longer perfusion period
performed in our study and the longer time the kidney needs for
restabilizing its metabolic activity (Weissenbacher et al., 2019;
Weissenbacher et al., 2022). This was accompanied by macroscopic
improvement and an increasing urine output as a sign of functional
recovery, similar to that previously reported for shorter perfusions
(Weissenbacher et al., 2019; Weissenbacher et al., 2022). Finally, we
assessed the transcriptomic print through qPCR analysis, which
suggested a reduction in the initial AKI and inflammation response
over time until 60 h of perfusion. These findings are also in line with
those reported by Weissenbacher et al., although, in that case, KIM-1
was measured in the perfusate and no significant decrease was observed
(Weissenbacher et al., 2019). At 60 h, kidney damage and inflammation
increased again until 73 h, at which point perfusion was terminated due
to a significant worsening of the macroscopic appearance of the kidney.
The increased expression of TIMP1, TGFβ, VEGF, and β-catenin after
this time point reinforced an enhancement of the inflammation–fibrosis
pathway after anAKI, especially after a hypoxia-related injury (Cai et al.,
2008; Gu et al., 2020; Miao et al., 2022). This worsening was
accompanied by a rapid increase in RRI and flow, thus
suggesting a case of progressive kidney graft failure. We
hypothesize that these findings were related to the lower levels
of hemoglobin because hemolysis, after 60 h, can cause an intrinsic
complication of long ex vivo perfusions that can compromise tissue
integrity, thus preventing the long-term maintenance of the organ
(Hosgood et al., 2022). The extent of this hemolysis is further
represented by the increase in perfusate potassium, which occurs
after the third red blood cell transfusion and the subsequent
accelerated decay in hemoglobin. To overcome this obstacle, the
maintenance of higher hemoglobin levels (together with periodical
perfusate replacement) or the use of non-hemoglobin oxygen
carriers can be useful to mitigate hemolysis of long-term
normothermic perfusions (Laing et al., 2017; Aburawi et al.,
2019; Bhattacharjee et al., 2020). Noticeably, a decrease in
sodium perfusate was evidenced, especially after 60 h. This
decay in sodium levels can be related to the absence of urine
recirculation, which has been suggested to improve hydroelectrolytic
balance during kidney perfusion (Weissenbacher et al., 2021). The
absence of these approaches, together with progressive fluid
administration through crystalloids and blood, can justify the
occurrence of hyponatremia.

Our study has some limitations. First, it is a single-center study and a
single-case report, and its conclusions have to be confirmed in further
studies. Second, urine composition and electrolyte gradients between
perfusate and urine could not be addressed since the system used for
biochemical assessment is not able to analyze urine. Third, the perfused
kidney was not transplanted in a human, although one of the main aims
of the present study was to propose normothermic perfusion as a
promising platform for long-term organ preservation in order to test
innovative therapies and translate them to clinics. Nevertheless, and
despite our preliminary results, our report shows the first case of an ECD

and uDCD human kidney graft perfused more than 48 h, and it
reinforces the idea of NMP as a promising platform for long-term
solid organ preservation and drug testing in human organs in a specific
and safe manner.

In conclusion, we have shown that NMP could recover biological
parameters and urine output in a kidney from uDCD with ischemic
AKI and that the organ can be maintained viable ex vivo for 3 days.
These results suggest thatNMP, together with improving strategies for
long-term perfusion of solid organs, may permit a rapid translation of
pre-clinical approaches to clinical practice.
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