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In nature, metabolic pathways are often organized into complex structures such
as multienzyme complexes, enzyme molecular scaffolds, or reaction
microcompartments. These structures help facilitate multi-step metabolic
reactions. However, engineered metabolic pathways in microbial cell factories
do not possess inherent metabolic regulatory mechanisms, which can result in
metabolic imbalance. Taking inspiration from nature, scientists have successfully
developed synthetic scaffolds to enhance the performance of engineered
metabolic pathways in microbial cell factories. By recruiting enzymes, synthetic
scaffolds facilitate the formation of multi-enzyme complexes, leading to the
modulation of enzyme spatial distribution, increased enzyme activity, and a
reduction in the loss of intermediate products and the toxicity associated with
harmful intermediates within cells. In recent years, scaffolds based on proteins,
nucleic acids, and various organelles have been developed and employed to
facilitate multiple metabolic pathways. Despite varying degrees of success,
synthetic scaffolds still encounter numerous challenges. The objective of this
review is to provide a comprehensive introduction to these synthetic scaffolds and
discuss their latest research advancements and challenges.
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1 Introduction

Recently, the successful synthesis of diverse natural products has been achieved through
the introduction of heterologous metabolic pathways into microbial cell factories (Srinivasan
and Smolke, 2020; Yuan et al., 2022; Zhang et al., 2022). These synthetic pathways are
collectively built with heterologous enzymes selected from various sources and are not
accompanied by their regulatory partners in the new host (Tran et al., 2023). Thus, these
unregulated enzymes may not be able to channel intermediates from the input reactions to
the formation of end products properly (Dueber et al., 2009; Liu et al., 2023). In contrast,
metabolic enzymes of a native pathway can be formed multi-enzyme complexes (Tittes et al.,
2022), enzyme molecular scaffolds (Artzi et al., 2017), reaction microchambers [e.g., arom
multienzyme complexes (Lumsden and Coggins, 1977), or caveolae, etc. (Polka et al., 2016)]
to mediate the catalytic cascades coordinately. The structural entities play a pivotal role in
facilitating efficient substrate transfer between adjacent enzyme active sites (Castellana et al.,
2014). Thus, adopting a synthetic scaffold is one of the strategies to co-ordinate the none-
native enzymes in microbial cell factories. To address the challenges several synthetic
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scaffolds have been devised for the precise modulation of enzyme
activity. For instance, enzymes can be assembled on scaffolds made
of DNA or protein, where protein-protein or DNA interactions are
employed to facilitate the formation of cascading complexes among
enzymes (Gad and Ayakar, 2021). These DNA or protein scaffolds
are thought to form channels conducive to continuous metabolism,
directing metabolic intermediates from one enzyme to another to
regulate the spatial distribution of enzymes and increase their local
concentrations (Tippmann et al., 2017). The utilization of synthetic
scaffolds serves to significantly decrease interenzyme distances,
thereby effectively restricting the diffusion of intermediate
metabolitesand concurrently attenuates cellular cytotoxicity
(Conrado et al., 2008). Though, the synthetic scaffolds had been
successfully applied to metabolic engineering, trial and error are still
the only way we may learn.

This review provides a detailed account of the applications of
artificially synthesized scaffolds through specific case studies and
comprehensively summarizes the latest advancements in various
scaffold assembly methods. Additionally, it explores the potential
challenges faced by artificially synthesized scaffolds. At the same
time, the possible role of the current hot artificial intelligence (AI)
technology in the application of artificial stent systems is
also discussed.

2 Protein scaffold

Paired protein scaffolders fall into three main categories,
including protein-peptide, peptide-peptide, and protein-protein
pairs. These scaffolds can be fused directly with target enzymes
to induce assembly, and they achieve enzyme assembly through
non-covalent or covalent interactions between ligands and receptors
in the scaffolds, with little effect on enzyme properties (Price et al.,
2016; Chen et al., 2023).

2.1 Protein–peptide pair

Protein-peptide interaction recognition domains are widely
present in various cells, where they participate in the assembly of
intracellular complexes and play diverse cellular functions.
Currently, several modular protein domains [e.g., PDZ domain,
SH3 domains, GTPase binding domain (GBD), GBD1SH31PDZ2,
GBD1SH32PDZ4, and GBD1SH34PDZ4] and their corresponding
partners have been identified (Pawson, 2007). The PDZ domain
(also known as GLGF repeats or DHR domains) is typically an
essential component of multi-domain scaffold proteins involved in
cell polarity and intercellular interactions (Fanning and Anderson,
1996). It can selectively recognize the C-terminal peptide sequences
on its partner protein and then assemble them into a complex and
target specific subcellular localization sites (Tonikian et al., 2008).
Based on this protein-peptide interaction, Gao et al. (2014) proposed
a scaffold-free self-assembly strategy. This strategy was successfully
demonstrated using the NAD (H) cycle system with L-tert-leucine as
a model, achieving scaffold-free self-assembly technology. They
fused the PDZ (PSD95/Dlg1/zo-1) domain and corresponding
ligands (PDZlig) from metazoan cells separately with the
octameric leucine dehydrogenase (LDH, derived from Bacillus

subtilis BEST7613) and the dimeric formate dehydrogenase
(FDH, derived from Lodderomyces elongisporus NRRL YB4239)
(Figure 1A). The fusion proteins self-assembled into extended
supramolecular interaction networks, significantly enhancing the
efficiency and structural stability of the coenzyme cycling system
involving NAD (H). Compared to their non-assembled
counterparts, they exhibited better performance (Gao et al., 2014).

The SRC Homology 3 Domain (or SH3 domain) is a small
protein domain containing 60 amino acid residues that are folded
into beta-barrels with five or six β-strands arranged as two tightly
packed anti-parallel β sheets (Schlessinger, 1994). It typically binds
to proline-rich peptides in its respective binding partner. A SH3-
ligand interaction strategy was used to successfully assemble
methanol dehydrogenase (Mdh), 3-hexulose-6-phosphate
synthase (Hps), and 6-phospho-3-hexuloseisomerase (Phi) into
highly efficient enzyme complexes, significantly improving the
conversion efficiency of methanol to fructose-6-phosphate (F6P)
(Price et al., 2016). Meanwhile, in Escherichia coli, lactate
dehydrogenase was utilized as an NADH scavenger to establish
an “NADH sink.” By combining these two strategies, a 97-fold
increase in extracellular F6P production and a 9-fold improvement
in intracellular methanol consumption were successfully achieved
(Price et al., 2016).

The GTPase binding domain (GBD) from the actin
polymerization switch N-WASP could be recognized by the
GTP-bound Cdc42. Dueber et al. (2009), used the GTPase
binding domain (GBD), the SH3 domain, and the PDZ
domain to build a synthetic scaffold to provide modular
control over metabolic pathway flux. By varying the numbers
of these three domains (GBDxSH3yPDZz; x, y, z = number of
domain repeats) to control the co-localization ratio of the
interacting catalytic enzymes (e.g., atoB, HMGS, and HMGR),
the optimal scaffold quantity is GBD1SH32PDZ2, and this
engineering strategy led to a 77-fold increase in malic acid
production (Dueber et al., 2009). By constructing a self-
assembly enzyme reactor in E. coli, the stoichiometric ratio of
two enzymes in the baicalein synthesis pathway was regulated to
form an enzyme complex. This strategy significantly increased
the titers of baicalein and scutellarein by 6.6 and 1.4 folds,
respectively (Ji et al., 2021). Wei et al. utilized tobacco mosaic
virus (TMV) virus-like particle (VLP) as a protein scaffold and
orthogonal reactive protein pairs (SpyCatcher/SpyTag and
SnoopCatcher/SnoopTag) as a linking module to assemble
terpene biosynthesis in E. coli, enabling the production of
amorpha-4,11-diene (Wei et al., 2020).

2.2 Peptide–peptide pair

In nature, there are numerous examples of optimizing metabolic
pathway performance by forming multienzyme complexes. A
prominent example is polyketide synthases (PKSs), which are
considered among the most intricate proteins in nature. PKSs are
classified into types I, II, and III and are involved in the synthesis of
numerous compounds (Nivina et al., 2019). Through the sequential
action of multiple catalytic modules, type I modular polyketide
synthases are capable of extending, modifying, and terminating
polyketide peptide chains. These interrelated modules interact
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with each other through docking domains (DDs) mediated by
folding regions at the C- and N-termini (Weissman, 2016). Sun
et al. (2022) utilized the DDs of type I cis-AT-PKS as mediators to
develop a multi-enzyme assembly strategy named mimic PKS
enzyme assembly line (mPKSeal), which mimics the assembly
line of PKS enzymes (Figure 1B). This strategy was applied in
engineered E. coli to enhance astaxanthin production and
possesses the ability to co-locate enzymes within the cell,
enabling the assembly of two or three enzyme units in different
cellular environments (Sun et al., 2022). Their research also found
that DDs from different PKSs but located on the same molecular
evolutionary tree also possess enzyme assembly activity. The
mPKSeal enzyme assembly strategy has tremendous potential for
enhancing the efficiency of biocatalytic reactions by regulating the
spatial positioning of enzymes without altering their abundance.
These short-chain DDs have little significant impact on the catalytic
activity of most enzyme assemblies, but they have a more
pronounced effect on certain specific membrane proteins. Thus,
this is an issue that needs to be noted when dealing with membrane
proteins (Sun et al., 2022).

Kang et al. (2019) developed a scaffold-free modular enzyme
assembly, which incorporated short peptide tags RIDD and RIAD
derived from cAMP-dependent protein kinase (PKA) (Wong and
Scott, 2004) and the A kinase-anchoring proteins (AKAPs) (Sarma
et al., 2010), respectively. In E. coli, researchers successfully

assembled enzyme complexes by combining the interaction
peptides of RIAD and RIDD with the isopentenyl diphosphate
isomerase (IDI) and Geranylgeranyl diphosphate synthase (CrtE),
involved in the carotenoid biosynthesis pathway. This led to a
significant increase in the production of carotenoids.
Furthermore, in S. cerevisiae, the assembly of these two short
peptides with the IDI and CrtE for the biosynthesis of lycopene
resulted in a 58% increase in lycopene production (Kang et al.,
2019). Xu et al. (2022) assembled two cytochrome P450 enzymes,
ent-kaurene oxidase (KO) and kaurenoic acid 13α-hydroxylase
(KAH), using RIAD and RIDD, successfully increasing the
production of rubusoside and rebaudiosides in yeast. Fink et al.
(2020), through orthogonally designed coiled-coil interaction
domains, cluster resveratrol biosynthetic pathway enzymes,
thereby increasing the yield of resveratrol in E. coli. The yield of
resveratrol produced by this method is higher than that of direct
enzyme fusion and internal protein-mediated fusion. At the same
time, the biosynthesis of mevalonate in yeast was improved by this
clustering method.

2.3 Protein-protein pair

Protein-protein pairs of special peptides in TatB/TatC can
spontaneously interact to form aggregates. Henriques de Jesus

FIGURE 1
Protein scaffold; (A) Enzyme complex assembly based on PDZ domain and ligand interaction, adapted from (Gao et al., 2014); (B) Enzyme complex
assembly based on mPKSeal strategy, adapted from (Sun et al., 2022).
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TABLE 1 Examples and overview of artificial scaffold systems.

Types of
scaffolds

Description Host Application References

Protein scaffold PDZ and PDZ ligand E.coli;
Pichia
pastoris

Enhance the biosynthesis yield of baicalein and
scutellarein; facilitate the biosynthesis of

ginsenoside precursors; Improve the production of
itaconic acid

Zhao et al. (2016), Yang et al. (2017), Ji
et al. (2021)

SH3-ligand interaction pair E.coli Drive the conversion of methanol into H6P;
promote the production of malic acid

Price et al. (2016), Somasundaram et al.
(2020)

PduA*-Multi-Enzyme Complex System E.coli Improve the synthesis efficiency of 5-
aminolevulinic acid (5-ALA)

Luo et al. (2022)

Cohesin-dockerin (Coh-Doc) pair S. cerevisiae Enhance the production rate of NADH; improve
the metabolic flux of pyruvate

Liu et al. (2013), Kim et al. (2016)

PDZ and SH3 domains E.coli Increase the effective concentration of myoinositol Moon et al. (2010)

RIAD and RIDD short peptide tags E.Coli; S.
cerevisiae

Increase carotenoid production by 5.7-fold and
lycopene production by 58%; increase the yield of

rubusosides and rebaudiosides

Kang et al. (2019), Xu et al. (2022)

Artificial Protein Scaffold System
(AProSS)

S. cerevisiae The yield of violacein and deoxyviolacein increased
by 29% and 63%, respectively, while the ratio of
violacein to deoxyviolacein increased by 18%

Li et al. (2018)

GBD, SH3, and PDZ domain E.coli Increase the production of indigoidine, gamma-
aminobutyric acid, butyrate, and R-(−)-linalool;
increase the production of methylhydroxybutyrate

by 77 yields

Dueber et al. (2009), Baek et al. (2013),
Pham et al. (2015), Pham et al. (2016),
Wang et al. (2020), Wu et al. (2021)

SpyCatcher/SpyTag and
SnoopCatcher/SnoopTag pairs

E.coli Increase the biosynthetic flux of carotenoids Qu et al. (2019)

Tobacco mosaic virus (TMV) virus-like
particle (VLP), SpyCatcher/SpyTag and

SnoopCatcher/SnoopTag

E.coli Realization of the production of amorpha-4,11-
diene

Wei et al. (2020)

mimic PKS enzyme assembly line
(mPKSeal)

E.coli Improve the production of astaxanthin Sun et al. (2022)

Nucleic acid
scaffold

ADB1, ADB2, and ADB3 Bacillus
subtilis

Increase the production of N-acetylglucosamine;
enhance the biosynthesis of L-threonine

Lee et al. (2013), Liu et al. (2014)

ADO and AAR E.coli Enhance the production potential of linear
n-alkanes

Rahmana et al. (2014)

TALEs E.coli Increase the biosynthesis of indole-3-acetic
acid (IAA)

Zhu et al. (2016), Xie et al. (2019)

ZF domains E.coli Enhance the metabolism of resveratrol, 1,2-
propanediol, and mevalonate

Conrado et al. (2012)

PCNA E.coli Increase the catalytic activity of P450 and electron
transfer-associated proteins

Hirakawa and Nagamune (2010)

dCas9, SpyCatcher, and SnoopCatcher
pairs

E.coli Increase the yield of reducing sugars by 2.8 folds Berckman and Chen (2020)

dCas9, MS2 and PP7 aptamers S. cerevisiae Regulate the expression of enzymes involved in the
violacein biosynthetic pathway to control

metabolic flux

Pothoulakis et al. (2022)

2DRNA scaffolds E.coli Increase the metabolic output of the pathway for
pentadecane production

Delebecque et al. (2011), Sachdeva et al.
(2014)

RNA Scaffold, MS2 and PP7 aptamers E.coli The fluorescence intensity in the GFP cleavage
assay increased by 2.25-fold, while the multi-

enzyme efficiency in the IAA synthesis pathway
increased by 1.43-fold

Team and Chen (2015)

CRISPR scRNA S. cerevisiae Redirecting metabolic flux in a complex branched
metabolic pathway

Zalatan et al. (2015)

MCMs E.coli Improving the production of α-farnesene Wei et al. (2022)

(Continued on following page)
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et al. (2017) realized the co-localization of enzymes by
exchanging the membrane anchors of the dhurrin biosynthesis
pathway enzymes into TatB and TatC components of the twin-
arginine translocation pathway with self-assembly properties.
This method achieved a 4-fold increase in dhurrin titer and
reduced the amount of intermediates and side products. CipA
and CipB are two small proteins that form protein crystalline
inclusions (PCIs) in the cytoplasm of Photorhabdus luminescens.
Wang Y. et al. (2017) used CipA as a protein scaffold to bring
together multiple enzymes (Vio enzymes) of the violacein
biosynthetic pathway to explore its application in vivo. They
found that the violacein production in the complex was
significantly increased with fewer side-products (Wang Y.
et al., 2017). More recently, Park et al. (2022) applied CipB
scaffold proteins to bring P450s and reductase in close
proximity, facilitating electron transfer between them. The
development of strains producing lutein, apigenin,
(+)-nootkatone, and L-3, 4-dihydroxyphenylalanine (l-DOPA)
in E. coli has demonstrated the universal applicability of this
electronic channel strategy. By using an implicit negative design,
Sahtoe et al. (2022) generated beta sheet-mediated heterodimers
capable of assembling into a variety of complexes. Their implicit
negative design principle makes it possible to design higher-order
asymmetric polyprotein complexes by rigid fusion of
components through structured helical linkers. Moreover, due
to the small size of the unfused protomers, the complex can be
functionalized by easily fusing with the protein of interest by
subunits (Sahtoe et al., 2022).

The scaffold assembly can realize the orderly arrangement of
multiple enzymes, shorten the spatial distance of enzymes, accelerate
sequential catalysis, and achieve a high yield. The composite formed
by the scaffold assembly strategy can significantly improve the
efficiency of enzyme catalysis in the biosynthesis of natural
products and has broad application prospects in the fields of
metabolic engineering and synthetic biology. However, until now,
only four enzymes could be assembled sequentially. The reason is
that the assembly of the enzyme requires the fusion expression of the
scaffold and the enzyme through the joint, and misfolding is easy to
occur during the fusion process, which will affect the assembly
performance. On the other hand, the assembly of multiple enzymes
is affected by steric hindrance, making it difficult to achieve
sequential arrangement (Chen et al., 2023).

3 Nucleic acid scaffold

3.1 DNA scaffold

In addition to using protein scaffold approaches, the DNA
double helix can serve as an alternative scaffold system.
Compared with protein scaffolds, nucleic acid scaffolds have
higher flexibility and maneuverability. With the advancement of
gene editing technology, several molecular tools are available for
efficient and specific DNA targeting, such as zinc finger proteins
(ZFPs), transcription activator-like effector (TALE) proteins, and
CRISPR-Cas (Kim and Kim, 2014). Moreover, the plasmid DNA as a
configurable, stable, and robust scaffold for arranging biosynthetic
enzymes in the cytoplasm is proposed.

3.1.1 DNA scaffold based on zinc finger protein
In E. coli, the plasmid DNAs equipped with corresponding zinc

finger protein binding sites were designed to assemble three different
biosynthetic pathways to produce resveratrol, 1,2-propanediol, or
mevalonate (Conrado et al., 2012). By varying the enzymatic ratios
and the base pairs between each enzyme, the catalytic efficiency is
improved, which leads to better production of final products. This
similar approach had been applied to using zinc finger proteins
(ZFPs) as adaptors to anchor the L-threonine biosynthetic genes. By
using DNA scaffold assembly, the accumulation of the intermediate
homoserine is reduced and significantly increases the efficiency of
L-threonine biosynthesis due to the shortening of the distance
between enzymes and the enhancement of the local
concentration of metabolic products (Lee et al., 2013). In
addition, Rahmana et al. (2014) utilized fusion proteins of
chimeric acyl-ACP reductase (AAR) and aldehyde decarbonylase
(ADO), or zinc finger proteins, as guides to assemble ADO/AAR
with DNA scaffolds. The strain containing the fusion protein ADO-
AAR showed a 4.8-fold increase in the production of branched
alkanes. On the DNA scaffold, when the stoichiometric ratio of
ADO to AAR was 3:1, the strain exhibited an 8.8-fold increase in
production, reaching the optimal level of branched alkane synthesis
(Rahmana et al., 2014). Liu et al. (2014) constructed a B. subtilis
strain capable of producing N-acetylglucosamine (GlcNAc) and, for
the first time, utilized DNA scaffolds to regulate the activities of
glucosamine-6-phosphate synthase and GlcNAc-6-phosphate
N-acetyltransferase, resulting in a GlcNAc titer of 4.55 g/L.

TABLE 1 (Continued) Examples and overview of artificial scaffold systems.

Types of
scaffolds

Description Host Application References

Organelle
scaffold

ER-Derived Vesicles S. cerevisiae Constructing a cis,cis-muconic acid (CCM)
biosynthetic pathway in vesicles to assess its

feasibility

Reifenrath et al. (2020)

lipid droplets (LDs) S. cerevisiae The production rate of ethyl acetate has been
increased by nearly two-fold

Lin et al. (2017)

outer membrane vesicles (OMVs) E.coli The glucose yield has increased by 23-fold
compared to the free enzyme

Park et al. (2014)

protein cages E.coli The production of lycopene has increased by 8.5-
fold

Kang et al. (2022)
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3.1.2 DNA scaffold based on TALEs
TALEs (transcription activator-like effectors) are effectors from

the family III in Xanthomonas bacteria (Boch and Bonas, 2010), and
different TALEs share similar structural domains. These domains
are capable of binding to the host cell genome and act as
transcription factors to recognize specific DNA repeat sequences
(Boch et al., 2009). Based on the binding characteristics of TALEs to
DNA, Zhu et al. (2016) developed a TALE-based DNA scaffold
system and applied it to the biosynthesis of indole-3-acetic acid
(IAA). Furthermore, in a modified TALE-DNA scaffold system,
three fusion enzymes were successfully assembled in E. coli and
significantly increased the production of a mevalonate-producing
tri-enzymatic pathway (Xie et al., 2019) (Figure 2).

3.1.3 DNA scaffold based on CRISPR-Cas
CRISPR-associated (Cas) nucleases are a class of DNA-binding

proteins distinct from zinc finger enzymes and transcriptional
activator-like effector proteins. Through the guidance of RNA
molecules complementary to DNA sequences, the CRISPR-Cas
DNA scaffold achieves Cas-specific customization (Lim et al.,
2020). The Cas9 protein is ideally suited for modular enzyme
assembly, with a high affinity for DNA and the ability to bind to
specific DNA sequences (Berckman and Chen, 2019). By combining
the dCas9 nuclease (from Streptococcus pyogenes) with the
Spycatcher-Spytag chemical binding system, successful modular
assembly of five enzymatic pathways involved in violacein
biosynthesis was achieved, resulting in a significant increase in
violacein production (Lim et al., 2020). In another study, two
orthogonal SpyCatcher and SnoopCatcher pairs were
bioconjugated onto two different dCas9 proteins, enabling them
to guide the enzyme assembly to the DNA scaffold, resulting in a 2.8-
fold increase in reducing sugar production compared to the
unassembled enzyme (Berckman and Chen, 2020).

3.1.4 DNA scaffold based on PCNA
Proliferating cell nuclear antigen (PCNA) is a trimeric ring-

shaped protein (Moldovan et al., 2007) that binds to DNA as a
scaffold for DNA-related enzymes. The fusion protein between the
PCNA and the functional protein can act as a nanoscale part and

self-assemble to form a functional nanohybrid complex. Fusion of
three PCNA proteins with bacterial cytochrome P450 or one of the
two electron transfer-related proteins can form a stable heterotrimer
complex, resulting in increased local ferridoxin concentrations of
P450 and ferredoxin reductase and high catalytic activity of electron
transfer within the complex (Hirakawa and Nagamune, 2010).

3.2 RNA scaffold

By binding to the adapter, the RNA scaffold achieves highly
specific binding to the target enzyme. Delebecque et al. (2011)
designed and assembled multidimensional RNA structures to
spatially organize proteins in cells and utilized this RNA scaffold
to optimize a biosynthetic pathway for hydrogen production. A
fluorescent protein library containing 8 aptamers and corresponding
RNA domains was successfully assembled by fusing the active viral
scaffold made of RNA with engineered proteins and specific RNA
domains. The scaffold enables the co-localization of fragmented
green fluorescent proteins to achieve precise measurement of
cellular activity (Sachdeva et al., 2014). The application of this
RNA scaffold to the synthesis pathway enzymes of pentadecane
and succinic acid demonstrated the assembly of 0D, 1D, and 2D
scaffolds. In the biosynthesis pathway of pentadecane, the 2D-
assembled scaffold resulted in a 2.4-fold increase in pentadecane
production (Sachdeva et al., 2014).

CRISPR-associated RNA scaffolds provide a powerful approach
to the construction of synthetic gene programs. By inducing the
expression of the dCas9 protein, we can achieve gene activation and
inhibition, thereby enabling the directed expression of complex
branching metabolic pathways (Zalatan et al., 2015). Pothoulakis
et al. (2022) developed an RNA design approach for RNA origami
scaffolds (termed sgRNAO) by recruiting activation domains from
fused single-guide RNAs and RNA origami scaffolds to control gene
expression in yeast. They successfully applied sgRNAOs to regulate
the expression of enzymes involved in the violacein biosynthetic
pathway (Pothoulakis et al., 2022).

Compared to DNA or protein-based scaffolds, RNA scaffolds, as
non-coding synthetic scaffolds, offer greater flexibility. They can

FIGURE 2
DNA scaffold system based on TALE, adapted from (Xie et al., 2019).
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control protein spatial organization, such as distances and
orientations between bound proteins, chemical dosage, and
complex sizes, among others (Delebecque et al., 2012). However,
although RNA scaffolds have certain advantages, they also have
obvious disadvantages, including high synthesis costs, easy
hydrolysis by nucleases, large environmental factors, and
structural instability, which limit their application. Therefore, it
requires further research and development to resolve these
drawbacks (Geraldi et al., 2021).

4 Cellular scaffolds

4.1 Natural cellular scaffolds

As subcellular structures within cells, the integrity and
autonomy of organelles have sparked scientists interest in using
them as scaffolds for enzyme assembly (Liu et al., 2023). Bacterial
microcompartments (BMCs) (Kerfeld et al., 2018) are self-
assembling organelles composed of enzymatic cores that
participate in the metabolism of various organic compounds such
as 1,2-propanediol (Petit et al., 2013), ethanolamine (Petit et al.,
2013), fucose, and rhamnose (Parsons et al., 2008), playing a crucial
role in carbon fixation processes (Lawrence et al., 2014). In E. coli,
reconstitution of recombinant microcompartments can be achieved
by translocating the entire propanediol utilization (Pdu) operon
from Citrobacter freundii (Parsons et al., 2008). The Zymomonas
mobilis enzymes pyruvate decarboxylase (Pdc) and alcohol
dehydrogenase (Adh) can be targeted to PduP of C. freundii to
form a simple ethanol bioreactor inside the Pdu microcompartment
shell (Lawrence et al., 2014). The enzymes Pdc and Adh, necessary
for ethanol production, are expressed heterologously using a foreign
host and targeted to the protein shell. In strains containing target
enzymes, the ethanol yield significantly increases when the protein
shell content is highest, including the strains producing shell
proteins P18-Pdc and D18-Adh (Lawrence et al., 2014). In
another study, the known Pdu (D18 and P18) targeting peptides
were fused with four different 1,2-propanediol synthetic enzymes to
create fusion proteins that target the empty Pdu BMC system. The
fusion strategy of targeting peptides with all proteins involved in 1,2-
propanediol synthesis significantly increased the product yield (Lee
et al., 2016). Studies have shown that BMCs have great potential for
constructing organelle scaffolds and are relatively easy to design,
especially when it comes to the metabolism of toxic intermediates
(Lawrence et al., 2014). Nielsen et al. (2013) transferred the
biosynthetic pathway of the aromatic defense compound dhurrin
[D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile, a cyanogenic
glucoside] to plant chloroplasts, utilizing photo-induced water
splitting as the electron source to drive product synthesis in a
light-dependent manner. The biosynthetic pathway of dhurrin
involves three ER-localized enzymes, including two
P450 enzymes, CYP79A1 and CYP71E1, as well as an NADPH
cytochrome P450 oxidoreductase, POR. The chloroplast stroma
provides a reducing environment for P450 enzymes, thereby
enhancing their stability (Nielsen et al., 2013). Gram-negative
bacteria release spherical nanoscale particles called outer
membrane vesicles (OMVs) during their growth process. These
vesicles have a composition similar to the bacterial outer membrane,

containing lipopolysaccharides (LPSs), outer membrane proteins
(OMPs), and phospholipids (Beveridge, 1999). In order to achieve
the goal of hijacking the bacterial cell export pathway to
simultaneously produce, package, and release an active enzyme,
phosphotriesterase (PTE), Alves et al. (2015) attempted to establish
synthetic linkages between enzymes and proteins known to exist in
the outer membrane. They used the SpyCatcher/SpyTag (SC/ST)
bioconjugated system to connect OmpA proteins present in OMVs
to phosphotriesterase from Brevundimonas diminuta. A PTE-
SpyCatcher (PTE-SC) fusion protein and a SpyTag
transmembrane porin protein (OmpA-ST) were constructed. The
coexpression of OmpA-ST with PTE-SC not only reduced the
toxicity of PTE and improved the overall PTE production level,
but also enhanced the stability of packaging enzymes against
repeated freeze-thaw cycles (Alves et al., 2015). By employing a
truncated ice nucleation protein anchoring motif (INP) on OMVs, a
trivalent protein scaffold containing three divergent cohesin
domains was utilized for site-specific expression of a three-
enzyme cascade, resulting in a 23-fold increase in glucose
production (Park et al., 2014) (Figure 3A). Yang et al. (2021)
developed a metabolically engineered strain of E. coli to produce
seven natural colorants, and they significantly increased the yield of
seven natural colorants through cell morphological engineering,
IMV and OMV formation, and fermentation optimization
strategies. S. cerevisiae possesses various subcellular
compartments, making it an ideal host for building heterologous
natural product biosynthesis. Shi et al. (2021) used the PLN1 protein
to target endoplasmic reticulum-localized cytochrome
P450 enzymes and protopanaxadiol (PPD) synthase (PPDs)
towards lipid droplets [DDs, the storage organelle for
dammarenediol-II (DD)], resulting in a 394% increase in the
conversion of DD to PPD and an elevated conversion rate of DD
to 86.0%. Peroxisomes are organelles involved in fatty acid
degradation. In yeast, significant improvements in the production
of fatty acid derivatives, such as fatty alcohols, alkanes, and olefins,
can be achieved by engineering peroxisomes. For example,
increasing the number of peroxisomes can triple the production
of fatty acid derivatives (Zhou et al., 2016).

4.2 Synthetic organelle scaffold

Cellular organelle scaffolds can be artificially designed to meet
various metabolic pathway requirements. Lipids are widely present
in cells and can form cell membranes, with many proteins anchored
to these membrane structures. Inspired by this, researchers have
attempted to use lipids as synthetic scaffolds to achieve co-assembly
of lipids and target proteins. They discovered that, unlike most
bacteriophages, bacteriophage ϕ6 contains a protein nucleocapsid
surrounded by a lipid envelope and several membrane proteins
(Sinclair et al., 1975). During infection of the natural host (Stitt and
Mindich, 1983) and in strains of E. coli expressing genes encoding
bacteriophages ϕ6 viral proteins (Johnson and Mindich, 1994),
assembly intermediates of bacteriophage ϕ6 with lipid-like
structures were found. When only genes encoding the three viral
proteins P8, P9, and P12 are expressed in E. coli, circular particles
composed of a mixture of lipids and proteins can be observed by
cryo-electron microscopy (Sarin et al., 2012). Myhrvold et al. (2016)
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engineered synthetic lipid-containing scaffolds (SLSs) in E. coli. The
scaffold consists of the membrane protein P9 and the non-structural
protein P12, which are required for the formation of the particle
structure. The target proteins are fused to the C-terminus of P9 to
position them on the scaffold. TnaA and FMO enzymes involved in
indigo biosynthesis were fused to the C-terminus of P9 to construct
lipid scaffolds for increased indigo production (Myhrvold et al.,
2016). By utilizing a protein scaffold based on the plant lipid droplet
protein oleosin and cohesin-dockerin interaction pairs recruited
upstream enzymes, the final three reaction steps of yeast ester
biosynthesis were assembled on lipid droplets (LDs) within yeast
cells. This resulted in a doubling of the synthesis rate of ethyl acetate
(Lin et al., 2017). There are derived vesicles containing metabolic
pathway enzymes in the endoplasmic reticulum (“metabolic
vesicles”). Reifenrath et al. (2020) integrate the three enzymes
involved in the production of cis,cis-muconic acid into yeast
vesicles, construct an ER-derived synthetic cell envelope
containing the metabolic pathway, and map the yeast metabolism
(Figure 3B). Wei et al. (2022) used β-Cav1 caveolar vesicles as an
enzyme assembly scaffold to immobilize enzymes involved in the
biosynthesis of α-farnesene from isopentenyl diphosphate and
dimethylallyl pyrophosphate through non-covalent interactions or
covalent protein reactions on the β-Cav1 caveolar vesicles. They

successfully constructed a multienzyme complex called multi-
enzyme caveolar membranes (MCMs), which increased the
catalytic efficiency of α-farnesene by 10-fold compared to the
non-assembled enzymes (Wei et al., 2022).

5 Discussion and summary

With the advancement of biotechnology, building synthetic
pathways into heterologous microbial hosts became possible
(Jiang et al., 2021). However, this none-native expression of
catalytic enzymes still faces numerous issues and challenges,
including low productivity and yield, rapid diffusion and
degradation of key intermediates, and the accumulation of toxic
metabolites (Jiang et al., 2021). To address these issues, scientists
have been organizing these enzymes into molecular complexes in
space to enhance the local concentration of enzymes and
metabolites, thereby improving reaction flux (Wang S. Z. et al.,
2017). Currently, various assembly strategies have been derived
based on the interactions of biomacromolecules such as nucleic
acids, peptides, and scaffold proteins (Table 1). In comparison, the
spatial organization of biosynthetic pathway enzymes through
synthetic scaffolds has proven to be an effective method for

FIGURE 3
Organelle scaffold; (A) Functional assembly of multienzyme systems on outer membrane vesicles, adapted from (Park et al., 2014); (B)
Compartmental assembly of endoplasmic reticulum derived metabolic vesicles, adapted from (Reifenrath et al., 2020).
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enhancing reaction rates and biosynthetic yields while also
improving host viability. Despite achieving a certain level of
success, the precise prediction of artificial scaffold assembly
remains challenging due to the complexity of enzyme structures.
Furthermore, the catalytic efficiency of multi-enzyme complexes is
influenced by numerous parameters, and the impact mechanism of
linker sequences on both the multi-enzyme complex and substrate
channeling effects remains undisclosed. Therefore, further research
is needed to address the factors in the design-built-test-learn
(DBTL) cycles of establishing artificial scaffold systems.

The computational inference of biological systems has emerged
as a transformative field, driven by the confluence of advanced
computational methods, machine learning techniques, and ever-
expanding biological data. The best-known case is protein structure
prediction, and it has been a grand challenge for decades. Since the
advancement of the computational implication of a protein’s spatial
arrangement of atoms and computing power, several artificial
intelligence (AI) systems have been successfully applied to predict
the structure of protein complexes (e.g., the AlphaFold-Multimer,
RoseTTAFolds, and trRosetta) (Baek et al., 2021; Du et al., 2021;
Brems et al., 2022; Ivanov et al., 2022). In addition, the use of
artificial intelligence computational methods can effectively find
scaffold proteins from protein interactors and fully reveal their
functions (Oh and Yi, 2016). Currently, we may de novo design
protein structures for specific purposes (Watson et al., 2023).

In contrast to protein-based scaffold systems, using nucleic acid
as a scaffold provides its unique advantages. The DNA scaffold
systems are more stable, easier to design, and have higher stability
(Chen et al., 2014; Siu et al., 2015). However, the DNA scaffolds also
serve several drawbacks, such as high cost and high error rates in
self-assembly, making the folding process in living cells susceptible
to environmental factors such as temperature and ions and difficult
to manipulate. In addition, the DNA topology is single in dimension
and has the problem of supercoiling (Polka et al., 2016). DNA
origami is a technology for designing complex three-dimensional
DNA structures. This has been broadly applied in nanotechnology,
creating nanoscale structures for various purposes, including drug
delivery and molecular computing (Zhou et al., 2023). Thus, DNA
origami could greatly assist in resolving the issues and unlocking the
great potential of using DNA scaffolds in metabolic engineering.
Alternatively, the RNA can also be used as a scaffold for the self-
assembly of multi-enzyme complexes. However, its discrete
structure prevents the formation of complex geometric shapes in
living organisms, limiting its application compared to other types of
scaffolds (Lv et al., 2020). AI models also open up new opportunities
for predicting the secondary and tertiary structures of RNA
molecules, providing insights into designing new functions and
interactions and improving stability (Sato and Hamada, 2023).

Cellular scaffolds constructed based on different organelles or
membranes have achieved varying degrees of success. However, due
to the levels of complexity of biological parts (e.g., membranes,

proteins, and protein interactions), the working mechanism of such
scaffold systems still needs to be further explored. Synthetic biology
aims to combine multidisciplinary disciplines that pursue the
development new biological parts or systems. The promise of
using AI technology to resolve complex biological questions is
now is gradually revealed. Combining these two technologies, we
can better understand the mechanisms of different types of artificial
scaffolds and design streamlined artificial scaffolds that provide a
broader range of engineering applications.
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