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Vertebral compression fractures are becoming increasingly common with aging
of the population; minimally invasive materials play an essential role in treating
these fractures. However, the unacceptable processing-performance
relationships of materials and their poor osteoinductive performance have
limited their clinical application. In this review, we describe the advances in
materials used for minimally invasive treatment of vertebral compression
fractures and enumerate the types of bone cement commonly used in current
practice. We also discuss the limitations of the materials themselves, and
summarize the approaches for improving the characteristics of bone cement.
Finally, we review the types and clinical efficacy of new vertebral implants. This
reviewmay provide valuable insights into newer strategies and methods for future
research; it may also improve understanding on the application of minimally
invasive materials for the treatment of vertebral compression fractures.
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1 Introduction

A vertebral compression fracture (VCF) is defined as a reduction in the height of a single
vertebral body by 20% or 4 mm (Black et al., 1999). It is caused by either trauma or a
pathological process that causes bone destruction (such as osteoporosis and vertebral
tumors). Although osteoporosis is the most common cause of VCFs, tumors, trauma,
and infections are also commonly implicated (Liang et al., 2022). Their incidence is usually
related to age, occurring in 30% of individuals aged more than 80 years and only 5%–10% of
those aged younger (Beall et al., 2018). This condition is becoming increasingly common
with aging of the population; approximately 1.5 million individuals are affected each year in
the United States. VCF can lead to severe physical limitations including back pain, functional
disability, and progressive kyphosis, and ultimately leads to a loss of appetite, malnutrition,
and impaired lung function. Recent reports indicate that the thoracolumbar junction (T12 to
L2) is the most commonly affected area, accounting for 60%–75% of cases; this is followed by
the L2 to L5 region, which accounts for 30% of fractures (Hoyt et al., 2020). Low back pain is
therefore the most common clinical manifestation; this severely affects function and quality
of life (Ashammakhi et al., 2019). Conservative treatments including medications and
physical support cannot offer effective pain control and functional recovery in the long term
(Ong et al., 2018). In addition, patients are predisposed to the development of
cardiorespiratory complications, which increase patient mortality. Surgery offers an
alternative treatment modality for VCF; however, the inability to offer adequate
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mechanical support often leads to residual postoperative pain. In
patients with osteoporotic VCF, surgery is associated with a risk of
pedicle screw loosening due to a reduction in bone quality and
quantity (Girardo et al., 2019).

Percutaneous vertebroplasty (PVP) and kyphoplasty (PKP) are
currently the most common modalities employed for the treatment
of VCFs (Hoyt et al., 2020). The procedure involves puncture of the
vertebral body with a needle and the injection of cement or other
injectable biomaterials via a cannula. This surgical procedure re-
stabilizes the height and kyphotic angle of the vertebral body,
thereby offering rapid pain relief and an improvement in the
quality of life (Roux et al., 2021). Polymethyl methacrylate
(PMMA) is widely used in orthopedics and dentistry owing to its
high mechanical strength, short setting time, rheological properties,
and biocompatibility, making it the most commonly used injectable
bone cement for PVP/PKP. However, non-degradability, lack of
bioactivity, the presence of unreacted toxic monomers, and the need
for high curing temperatures are some of the factors that lead to
clinical complications (Martikos et al., 2019). This issue can be
partially addressed by using injectable calcium phosphate bone
cement (CPC), which has been used as an injectable material in
orthopedic surgery due to its chemical similarity to bone and its
ability to harden in situ (Deng et al., 2020). However, it is brittle and
has uncontrollable porosity that does not allow ingrowth of bone; in
addition, the paste decomposes when in contact with body fluids and
has poor injectability. This led investigators to incorporate certain
biomaterials that may enhance its properties (Le Ferrec et al., 2018).
In this context, newer materials including magnesium phosphate
bone cement (MPC) and calcium silicate (CSC) have been used for
minimally invasive treatment due to their unique properties (Huang
et al., 2019; Liu et al., 2022). In recent years, vertebral implants
composed of implantable materials are being used in third-
generation spinal augmentation systems for treating VCFs (Khan
and Kushchayev, 2019). The process involves the placement of
expandable implants via percutaneous puncture; these are placed
either bilaterally or unilaterally through the pedicles. The transition
from cement injection alone to the combined use of cement injection
and vertebral body implants allows for effective restoration of the
height of the collapsed vertebral body; it also improves restoration of
vertebral kyphosis and reduces the risk of cement leakage (Moura
and Gabriel, 2021). Four vertebral body implant systems are
currently in common use; these include the Vertebral Body
Stenting, SpineJack, Kiva, and Osseofix systems (Jacobson, 2020;
Chang et al., 2021; Gandham et al., 2021; Vendeuvre et al., 2021).
Notably, an individualized approach needs to be adopted for
implantation; different implants need to be selected for different
cases and anatomical locations.

Materials used for minimally invasive treatment of VCFs have
been widely studied in recent years. However, their clinical
application is limited by limitations of the materials used. In this
review, we describe the various types of bone cement used for
minimally invasive treatment of VCFs, starting from the most
commonly used material, namely, PMMA; we also discuss their
limitations. In addition, we enumerate the materials that are
commonly used to improve the properties of bone cement
(including bioactive ceramics (Gao et al., 2019), bioactive glass
(Golubevas et al., 2017), nanomaterials (Miola et al., 2021), and
natural or synthetic polymers (Guo et al., 2021a)) and elaborate on

their beneficial impact on the properties of bone cement (Table 1).
We additionally describe the types of novel vertebral implants and
their clinical efficacy (Scheme 1). Finally, we discuss the prospects
for the development of materials used for minimally invasive
treatment of VCFs and the directions for further investigation.

2 Bone cement

Bone cement is widely used in orthopedics and other fields due
to the properties of injectability and curing. The treatment of VCF
primarily involves the injection of PMMA bone cement into the
diseased vertebral body via a minimally invasive surgical approach
(Zhu et al., 2020). Notably, other bone cement materials including
CPC, MPC, and CSC are being increasingly investigated due to their
unique properties.

2.1 Classification of bone cement

2.1.1 PMMA-based cement
PMMA, as a representative bone cement, is widely used in the

treatment of VCFs due to its outstanding mechanical strength and
biocompatibility (Sun et al., 2022b). In 2004, the United States Food
and Drug Administration formally approved PMMA bone cement
for the treatment of vertebral fractures caused by osteoporosis and
tumors. It consists of solid and liquid phases; the PMMA bone
cement is formed via an exothermic curing reaction after mixing of
both phases. PMMA has become the most widely used material for
minimally invasive treatment of VCFs due to its excellent
mechanical properties, biocompatibility, and ability to act as a
drug-carrying platform (Zheng et al., 2021). Despite its
considerable success in clinical applications, it has certain
limitations; these include excessive mechanical strength, the
occurrence of an exothermic reaction, low viscosity, the lack of
osteogenic activity, and the propensity to cause various clinical
complications (Sue et al., 2019).

2.1.1.1 Excessive mechanical strength
Owing to the inherent excessive compressive strength and elastic

modulus of PMMA, differences in mechanical strength between
PMMA and the adjacent vertebral bone may easily lead to fractures
in the latter following injection. Finite element analysis suggests that
filling the vertebrae with bone cement may significantly alter their
stiffness and lead to shifting of load on to the intervertebral disc; this
may be responsible for fractures in the adjacent vertebrae (Baroud
et al., 2003). Clinical findings have shown that injecting excessive
amounts of cement during vertebral kyphoplasty may increase the
risks of postoperative vertebral re-fracture (Zhai et al., 2021); in this
context, Hu et al. (2019) concluded that injection of more than
40.5% of cement resulted in fractures of the adjacent vertebrae.
However, some investigators believe that adjacent vertebral fracture
represents a natural evolutionary process in patients with
osteoporosis or neoplastic disease, and is not related to the
injected PMMA. Notably, several studies have shown that the
mechanical properties of PMMA are reduced by mineralized
collagen and other materials; clinical results from studies using
these cement composites have indicated a significant reduction in
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the incidence of postoperative adjacent vertebral fractures (from
13.3% to 2%) (Wang et al., 2018a). We therefore believe that it is
essential to modify PMMA. In this context, a common approach
used for reducing the excessive mechanical strength involves the
addition of polymers. The degradation and absorption of these
materials lead to the formation of pores within the PMMA and
effectively reduce the mechanical strength (Tavakoli et al., 2020).

2.1.1.2 Excessive exothermic reaction
The exothermic reaction associated with polymerization of bone

cement can reach temperatures of between 70°C and 120°C, resulting
in thermal burns of the surrounding tissue (De Mori et al., 2019).
Severe damage to neuromuscular structures have been reported;
these can lead to serious complications including paralysis, bleeding,
and even death. Bone necrosis and the resultant fiber healing caused
by thermal injuries may weaken the interface between the implant
and host bone; this may lead to aseptic loosening of the implant
(Stoops et al., 2022). Appropriate temperature reduction can be
achieved by decreasing the amount of PMMA powder; however, this
tends to prolong setting times and reduce the viscosity of bone
cement, thereby increasing intraoperative manipulation times and
the risk of postoperative cement leakage. The incorporation of
biocompatible materials such as polymers, linseed oil, and
metamorphic materials may allow absorption of the excess heat

generated by polymerization and achieve significant improvement
(Lv et al., 2015; Tai et al., 2016; De Mori et al., 2019).

2.1.1.3 Low viscosity
Leakage of bone cement due to low viscosity is a common

postoperative complication. Entry into blood vessels can lead to
serious consequences including compression of the spinal cord and
nerve damage, pulmonary embolism, and cardiac perforation (Hsieh
et al., 2019; Naud et al., 2020; Zhang et al., 2022). Guo et al.
retrospectively analyzed data from 1,373 patients who underwent
PKP and demonstrated significant leakage from the paravertebral
venous plexus to be an important risk factor for pulmonary
embolism (Guo et al., 2021b). Although symptoms are not
observed in most cases, the consequences are often fatal (Hassani
et al., 2019). In their retrospective study, Wang et al. found the use of
high-viscosity bone cement in PVP/PKP to be a potential option for
reducing the risk of leakage (Wang et al., 2022). Similarly, Zhang
et al. observed a lower risk of intervertebral disc space or venous
leakage with high-viscosity cement (Zhang et al., 2018b).
Investigators added polyvinyl alcohol (PVA) to increase the
viscosity of PMMA bone cement and prevent cement leakage; the
introduction of ethylene via the surface of the PVA membrane
allowed the glycidyl methacrylate-PVA membrane to firmly adhere
to PMMA-based bone cement. This enabled the cement to

SCHEME 1
Classification of materials used for minimally invasive treatment of vertebral compression fractures and modification of bone cements.
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covalently react with the PVA membrane (Zhang et al., 2018b).
Gelatin particles can also be incorporated to achieve this purpose;
notably, particle size and polymer density also regulate cement
viscosity (Meng et al., 2013).

2.1.1.4 Lack of bioactivity
As PMMA lacks bioactivity, the major inorganic phases of

natural bone are less likely to form on the surface of this polymer;
in addition, its surface is not conducive to osteoblast adhesion,
proliferation, and differentiation. The formation of a fibrous
layer at the PMMA-bone interface prevents direct bone
contact, leading to loss of the interface between cement and
bone; this further contributes to cement loosening in the
postoperative period (Freeman et al., 1982). In their
retrospective study, Nakamae et al. found that 25% of patients
developed cement loosening after 6 months of PVP; patients with
cement loosening had significantly higher mean visual analog
scale scores than those without loosening (Nakamae et al., 2018).
The incorporation of bioactive materials such as hydroxyapatite
(HA) into PMMA represents a good strategy for improving the
bioactivity of the latter and enhancing bonding between cement
and bone. These materials can allow direct chemical bonding
between bone and PMMA cement to enhance interface stability
and enhance osteoconductivity (Choi et al., 2010).

2.1.2 Calcium phosphate-based cement
Bone is an organic-inorganic tissue and is composed primarily

of collagen and calcium phosphate apatite crystals (Wang et al.,
2020a). CPC has a natural affinity for bone tissue, as it resembles
the inorganic components of bone. It has become the focus of new
developments in injectable bone cement owing to its bioactivity,
biocompatibility, osteoconductivity, injectability, and rapid
setting time. However, its material properties are relatively
immature and there are obvious limitations to its use;
investigators are therefore attempting to address these major
issues (Klein et al., 2017).

2.1.2.1 Insufficient mechanical properties
Inadequacies in the mechanical property of CPC remain one of

the main reasons limiting its application. As per the specifications of
International Organization for Standardization 5,833, bone cement
needs to have a compressive strength of ≥70 MPa; however, CPC
often fails to meet this standard (Schroeter et al., 2020). In addition,
the load applied to human bones includes a complex combination of
compression, tension, torsion, and bending; parameters such as
compressive strength alone often do not accurately reflect the ability
of CPC to resist fracture under cyclic loading in clinical settings
(Paknahad et al., 2020). As CPC is an inorganic salt material, it is
highly brittle; this may make it susceptible to fatigue from cyclic
loading and destruction during long-term implantation in the
human skeleton. This represents a major limitation that restricts
its use in load-bearing sites (Ding et al., 2021). In addition, its low
fracture toughness makes CPC considerably sensitive to the
presence of defects and imperfections (e.g., porosity); this
exacerbates crack propagation. Therefore, the brittleness of CPC
and its mechanical properties can be effectively improved by either
modifying its microstructure (e.g., porosity and pore size) or
activating toughening mechanisms (increasing the resistance to

crack extension by using processes such as fiber reinforcement)
(Gong et al., 2023).

A denser and more homogeneous matrix composed of smaller
crystals is needed to produce smaller pores; this may improve
mechanical properties while preserving inward bone growth and
other key biological properties. Factors such as porosity, pore size,
and particle size of the initial material are key to the mechanical
properties of CPC (Lu et al., 2019). In addition to the mentioned
effects of densification and homogenization of the cement matrix,
the incorporation of fibers or polymers into CPC can enhance
mechanical properties. Similar to fiber reinforcement in civil
engineering, this is mainly based on three mechanisms: fiber
bridging, crack deflection, and friction sliding (Li et al., 2020b).
The fibers bridge the cracks to resist their further opening and
propagation as the matrix begins to fracture. Crack deflection of the
fibers extends the distance over which the cracks propagate; this
leads to expenditure of more energy on the newly formed surface.
Frictional sliding of the fibers against the matrix during drawing
further consumes the applied energy and increases fracture
resistance of the composite (Kucko et al., 2019).

2.1.2.2 Poor degradability
CPC is a highly interconnected and porous material; it is almost

exclusively composed of micropores and lacks a macroporous
structure. The pores in CPCs can be categorized according to
their size; micropores have an inner pore width of 100 μm and
have a positive impact on the biological response, as they allow
protein adsorption, cell attachment, and permeability of the
implanted material to body fluids, all of which play a crucial role
in promoting osteogenesis. However, the lack of interconnected
macropores (exceeding 10 μm) in CPCs hinders angiogenesis and
inward tissue growth; it can only be degraded layer-by-layer. This
limits degradation at the bone-implant interface and thereby hinders
the degradation process (Vezenkova and Locs, 2022). In order to
improve CPC degradation, its porosity is controlled by optimizing
its material structure. The porosity can be effectively increased by
changing the particle size and liquid-powder ratio of the CPC
powder phase. The use of powders with smaller particle-size and
smaller liquid-to-powder ratios results in ample formation of
smaller pores during the crystallization reaction (Lodoso-
Torrecilla et al., 2021; Lofrese et al., 2021). Large pores may be
introduced into CPC by adding water-soluble and polymeric pore-
forming agents (Lu et al., 2021). Polymeric pore-formers are added
to the CPC paste as a second solid phase. After curing of the CPC,
these polymeric pore-formers begin to degrade and produce
macroporous CPC composites; notably, these polymers confer
unique properties, such as improved osteogenesis. In this context,
CPC should ideally degrade at an appropriate rate to allow for
concomitant new bone formation.

2.1.2.3 Poor injectability
The poor injectability of CPC is one of the main factors that limit

its use in PVP and PKP procedures. The higher liquid content in
uncured CPC leads to lower viscosity, lower cohesion, increased
setting times, and lower mechanical strength. This subsequently
leads to extravasation of bone cement from the surgical site, leading
to complications such as pulmonary embolism. This possible
deviation of the actual composition of the extruded paste may be

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Sui et al. 10.3389/fbioe.2023.1303678

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1303678


attributed to the filtration pressure, which affects the injectability of
CPC pastes (Habib et al., 2008). During the construction of an
injectable model, Bohner and Baroud found that the reduction of
extrusion pressure (by increasing fluidity) and permeability of the
paste improved cement injectability. Certain changes were made to
the cement to address these two issues; the average particle size was
reduced, the liquid-solid ratio was increased, round and de-
agglomerated particles were used, a wide particle size distribution
was adopted, ions or polymers were added to minimize particle
interactions, and the viscosity of the mixture was increased (Bohner
and Baroud, 2005). Ishikawa et al. observed that CPC pastes made
from round particles could be injected more easily than those made
from irregular particles (Ishikawa and Asaoka, 1995). However, in
view of the favorable effect of high viscosity on resistance to
disintegration, the latter two strategies appear to be the most
appropriate for improving cement injectability. The addition of
binders may also effectively reduce phase separation; however,
this can result in several undesirable consequences, such as an
increase in the force required for injection and a decrease in
mechanical properties (Schickert et al., 2020b).

2.1.2.4 Poor cohesion
Cohesion represents the ability of CPC to harden and maintain

the integrity of the cement paste in a static aqueous environment
without disintegrating into small particles; it prevents attrition of the
paste by the surrounding liquid (Vezenkova and Locs, 2022). The
cohesion of CPC paste often depends on the forces between the
constituent particles and the interaction between the paste and the
surrounding fluid. Spatial stabilization is usually associated with the
presence of dissolved polymers on the surface or space between
particles. Thus, the addition of polymers can spatially stabilize the
cement paste and increase cohesion. Increasing the viscosity of the
mix is another effective approach for increasing cohesion.
Numerous biopolymers, including hydroxypropyl methylcellulose
and starch, have been blended into powders or liquids of CPC (Liu
et al., 2014; Tian et al., 2021). Small amounts of these biopolymers
can significantly improve cohesion and erosion resistance of CPC.
However, although these viscous solutions may significantly
improve paste cohesion, they may affect the setting time and
mechanical properties in certain cases.

2.1.3 Novel inorganic bone cement
The study of magnesium phosphate for bone cement is a

relatively recent development. The excellent osteogenic and
vasculogenic properties of MPC are the key factors that
contribute to its use in research; these factors are mainly
attributed to magnesium ions, which exert an osteogenic effect
via the activation of osteoblast activity. They promote the
proliferation of osteoblasts via the mitogen-activated protein
kinase/extracellular signal-regulated kinase signaling pathway by
increasing phosphorylation of the latter (thereby enhancing the level
of c-FOS) and inducing the phosphorylation of glycogen synthase
kinase-β (thereby enhancing the level of β-conjugated proteins)
(Wang et al., 2018b). Magnesium ions also promote osteogenesis by
promoting angiogenesis (Zhang et al., 2021). Recent studies have
found that depletion of magnesium content is associated with low
bone mineral density, reduced bone progression, the development of
osteoporosis, and skeletal improvement; they have also found that

higher magnesium intake effectively inhibits a reduction in bone
mineral solids in patients with osteoporosis. In this context, a
magnesium alloy was found to release magnesium ions after
implantation in osteoporotic rats; this increased bone
morphogenetic protein 2-related osteogenesis and reduced the
deleterious effects of osteoporosis (Guo et al., 2013). The
localized release of magnesium ions from magnesium implants in
an animal model of osteoporosis was also found to contribute to the
formation of a condensate around the implant; significantly higher
volumes of new bone were observed in magnesium-containing
specimens (Galli et al., 2018). Although MPC does not currently
meet the criteria for clinical application in terms of handling
properties, it can be improved considerably by employing a wide
variety of modifications. Its mechanical properties allow it to
withstand loads of up to 112 MPa; this is equivalent to the
mechanical strength of human cortical bone (Liu et al., 2022).
Liu et al. demonstrated the acceptable injectibility and filling
properties of MPC; they injected MPC into 3 dimensional-
printed artificial vertebral bodies and porcine spine models and
were able to achieve a good distribution. This could allow it to be
successfully used in PVP/PKP or for filling other bone defects (Liu
et al., 2023). Chitosan has been added to MPC to improve its
handling properties; chitosan-MPC has a longer setting time,
lower reaction temperature, higher strength, and more neutral
pH than MPC (Yu et al., 2020).

CSC has also been used in orthopedic applications due to its
superior biocompatibility and bone regeneration properties, which
are similar to those of MPC. CSC generates less heat during the
exothermic curing reaction and demonstrates superior bioactivity,
excellent osteoconductive activity, and degradability. Huang et al.
proposed a method to synthesize biodegradable calcium silicate
cement by incorporating strontium into cement through solid-state
sintering. The degradation rate of the cements increased with
increasing content of strontium, consequentially raised the levels
of released strontium and silicon ions. The elevated dissolving
products may contribute to the enhancement of the
cytocompatibility, alkaline phosphatase activity and osteocalcin
secretion (Huang et al., 2019). Furthermore, the MPC/CS
composite bone cement demonstrated apatite mineralization
ability and osteogenic potential. This composite was
experimentally shown to stimulate the proliferation of MC3T3-
E1 cells (Liu et al., 2022). However, it demonstrates poor scour
resistance, deficiencies in mechanical properties, and long curing
times. These deficiencies limit its application as a clinical material
and warrant modification (Zanfir et al., 2019).

3 Materials used to improve bone
cement

3.1 Bioceramics

Bioactive materials are defined as those that stimulate a
beneficial response in the body, especially in terms of binding to
host tissues (Jones, 2013). Bioactive ceramics and glass have been
added to bone cement due to their superior biocompatibility and
osteogenic capacity. Traditional bioactive ceramics such as HA, β-
tricalcium phosphate (TCP), and calcium silicate ceramics have
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been widely used in the modification of bone cement (Liu et al.,
2023b) (Figure 1).

HA has been used as an inorganic filler in bone cement to
improve its biocompatibility, as it has a chemical composition and
crystal structure similar to that of apatite found in human bone
tissue. HA is highly osteoinductive; this promotes chemical
interactions with osteoblasts and the local microenvironment and
thereby promotes the formation of new bone (Thorfve et al., 2014).
In terms of processing properties, researchers have extensively
investigated the feasibility of combining HA/brushite with
PMMA. Aghyarian et al. prepared two composite bone cements,
namely, HA-PMMA and brushite-PMMA, and found that the
addition of both materials increased cement viscosity. These
cements also exhibited high shear thinning, which aided injection
(Aghyarian et al., 2014) and an appropriate increase in compressive
strength. They subsequently prepared bone cement with various
concentrations of brushite; PMMA was replaced by a 40% mass
concentration of brushite to prepare dual solution cement, which
could provide an optimal combination of the studied properties. The
cement was viscous, highly injectable, and had high compressive
strength (Rodriguez et al., 2014). Further characterization was
performed in porcine vertebral bone and in two functional
cadaveric spinal units, where the biomechanical properties of
calcium phosphate-PMMA were found to be comparable to those
of commercial bone cement; this indicated excellent prospects for
clinical application (Aghyarian et al., 2015; Aghyarian et al., 2017).
Although β-TCP demonstrates a good dissolution rate and bone
regeneration capacity, the mechanical strength of TCP/PMMA
composite bone cement was found to be lower than that of its
conventional counterpart; it therefore failed to meet the
enhancement requirements of clinical implants (Yang et al.,
2015). Biphasic calcium phosphate, a mixture of β-TCP and HA,
can effectively harmonize the properties of both materials. Its
implantation improves biodegradability of TCP, leading to

supersaturation of the local microenvironment with calcium and
hydrogen phosphate; this accelerates the formation of calcium-
deficient HA microcrystals, ultimately promoting mineralization
of the extracellular matrix and subsequent generation of new
bone during healing (Zhang et al., 2018a).

Calcium silicate bioceramics are being increasingly investigated as
potential novel bioceramic materials for bone grafting, as their
osteogenic properties are superior to those of HA (Vallet-Regi and
Arcos, 2005). Several studies have shown that in a physiological
environment, silicon ions released from calcium silicate ceramics
play an important role in promoting bone regeneration by
stimulating the proliferation of mesenchymal stem cells, osteogenic
differentiation, and osteoblastic gene expression (Lin et al., 2015). In
their study using a goat vertebral defect model, Sun et al. used new
PMMA/calcium silicate hybrid cements for PVP and PKP; these
cements optimally filled and stabilized vertebral defects and
significantly promoted new bone formation in defective vertebrae at
6 months after injection (Sue et al., 2019). However, silicate bioceramics
offer insufficient mechanical strength due to degradation. A series of
silicate-based bioceramics have therefore been developed, including
those that incorporate iron, magnesite, akermanite (Ca2MgSi2O7,
AKT), and tremolite (CaO-MgO-2SiO2) (Chen et al., 2015b;
Choudhary et al., 2020). The compressive strength of akermanite/
PMMA composite bone cement is approximately 100MPa, which is
comparable to that of commercial PMMA bone cement (at
73–120MPa) (Chen et al., 2015b). Notably, the compressive strength
and Young’s modulus of PMMA-diopside composites match the lower
limit of those of cancellous bone (Choudhary et al., 2020).

3.2 Bioglass

Bioactive glass (BG) includes glass that can produce a specific
biological response at the material-bone interface and promote

TABLE 1 Summary of bone cements and modified materials.

Category Disadvantages Modifications

Polymethyl methacrylate cement Excessive mechanical strength Chitosan, Collagen

Excessive exothermic reaction Chitosan, Collagen, Hyaluronic acid

Low viscosity Linseed oil, Silk fibroin, Polyvinyl alcohol

Lack of bioactivity Chitosan, Collagen, Hyaluronic acid, Bioglass, Bioceramics, Layered double hydroxide

Calcium phosphate cement Insufficient mechanical properties Carbon nanotubes, Polyvinyl alcohol, Graphene oxide

Poor degradability Chitosan, Hyaluronic acid

Poor injectability Collagen, Hyaluronic acid, HPMC

Poor cohesion Hyaluronic acid, Starch, HPMC, Chitosan

Calcium sulphate bone cement Poor washout resistance Gelatin, Polyvinyl alcohol

Low compressive strength Carbon nanotubes, Graphene oxide

Longer setting time Silk fibroin, Chitosan

Magnesium phosphate cement Poor washout resistance Hyaluronic acid, Gelatin, Chitosan

Low compressive strength Bioceramics, Graphene oxide, Bioglass

Longer setting time Hyaluronic acid, Chitosan
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efficient bonding between them (Shearer et al., 2023). Silicate and
borate BGs are themost commonly used. Notably, BGs bond to bone
faster than other bioceramics (Zhang et al., 2022a) (Figure 2). The
process of osseointegration begins with the release of silica ions from
the surface of the BG; the released ions form a layer of silica on the
surface and then form an amorphous calcium phosphate precipitate,
which initiate the formation of a HA layer that bonds to the bone
cortex, further activating cell migration and triggering new bone
formation (Cole et al., 2020a). Its osteogenic properties are an area of
considerable interest as its dissolution products stimulate bone
progenitor cells at the genetic level (Rahaman et al., 2011). BG
stimulates bone formation by polarizing macrophages from the
M1 to M2 phenotype and thereby increasing the activity of
relevant genes. M1 macrophages produce pro-inflammatory
cytokines and exhibit strong microbicidal properties in the early
stages of inflammation. However, in the later stages of bone
regeneration, persistent and excessive inflammation hinders
complete local bone tissue remodeling. M2 macrophages produce
anti-inflammatory cytokines to promote the tissue healing process.

Therefore, regulation of the transition from M1 to M2 phenotypes
represents a crucial step in the process of bone regeneration
(Gomez-Cerezo et al., 2018). In this context, an alkaline
environment may enhance bone formation in osteoporosis by
inhibiting osteoclast activity and increasing osteoblast viability. A
moderately alkaline pH of 7.8–8.5 has been reported to provide a
favorable environment for new bone formation (Ding et al., 2023).
Numerous researchers have prepared novel BGs that release boron
and strontium ions, which create an alkaline environment; this is of
particular significance in the treatment of osteoporotic VCFs. In
their study on osteoporotic rabbits, Chen et al. constructed a porous
injectable composite by combining silicate BG with PMMA; they
found that injection of the composite into the vertebrae of the
rabbits increased the bone volume fraction (trabecular bone to total
bone volume) from 28.27% ± 1.69% to 38.43% ± 1.34% (Chen et al.,
2015a). Hu et al. also reported similar findings in an osteoporotic
rabbit model. The application of BG-modified CPC to the bone
defects resulted in significant upregulation of osteogenic marker
expression (including Runx2, alkaline phosphatase, osteopontin,

FIGURE 1
Bioactive ceramics as bone cement additives for enhancing osseointegration and bone regeneration. (A) Bone cement preparation and study design
of in vitro and in vivo models. (B) (A) Temperature measurement of cement from mixing to setting. (B) Compressive strength measurement of cement
during reaction. (C) (a) New bone formation around implanted scaffolds. (b) New bone generation ratio and (c) new bone covered area of cement scaffold
at 4 weeks after implantation into bone defect. (D) Actin, vimentin and DAPI immunostaining of BMSCs after seeding on cement scaffold. (E)
Representative histological findings from implant sites at 4 weeks (sagittal plane) and 8 weeks (coronal plane) post-implantation (the scale bar = 4 mm
and 100 μm); hematoxylin and eosin stain. © 2023 The Authors. Published by Elsevier Ltd.
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and osteocalcin) and a significant decrease in osteoblastic marker
expression (including tartrate-resistant acid phosphatase, matrix
metalloprotease 9, and histone K) in the osteoblasts (Hu and Xu,
2019).

Although numerous experiments have demonstrated that the
addition of BG sufficiently enhances the bioactivity of bone cement,
it impacts the mechanical properties (including injectability) of the
cement. In this context, borate-based BG demonstrates a controlled
degradation rate; the bioactivity and degradation rate of
borosilicate-based BG can be regulated by the introduction of
variable quantities of boric oxide to match the growth rate of
new bone tissue (Cui et al., 2016). In their study, Cole et al.
added borate-based BG to PMMA; long-term dissolution of BG
could be achieved without affecting short-term degradation. Ion
release was also maintained without affecting mechanical strength.
The compressive properties remained higher than those required by
the American Society for Testing and Materials and International

Organization for Standardization (Cole et al., 2020b). BG also
enhances the compressive strength of CPC, as it becomes smaller
and denser after pore sintering; this increases the compressive
strength of HA/BG composites. This increase improves its load-
bearing capacity and implant stability in the tissue (Ebrahimi and
Sipaut, 2021). BG also improves the initial and long-term
compressive strength of calcium sulfate bone cement and
demonstrates good injectability and controlled setting times; all
of these make it suitable for vertebral augmentation (Mansoori-
Kermani et al., 2023). However, the introduction of BG adversely
affects the handling properties of bone cement to varying degrees. A
decrease in BG particle size has been found to reduce injectability of
the cement. The fine BG particles agglomerate and absorb more
water; this increases the friction between them. The setting time of
formulated cement also increases significantly with a decrease in BG
particle size, as the cohesion in the cement paste weakens (Hasan
et al., 2019; Mabroum et al., 2022).

FIGURE 2
Borosilicate glass (BSG)-reinforced PMMA bone cement used for vertebroplasty. (A) Schematic diagram illustrating the preparation of BSG/PMMA
cement and the its use for promoting bone repair. (B) Expression of pro-inflammatory genes and anti-inflammatory genes after culture with 10-BSG/
PMMA or OSTEOPAL

®
plus cement for 3 days. (C) Van Gieson staining of rat tibia defects after 2 and 12 weeks of cement implantation. The images on the

left and right are from the same group; they represent the overall picture and the partial images. (D) Results of subchronic systemic toxicity in the
experimental and control groups, including rat serum electrolyte indices at different time points. (E)Overall and partial images of sequential fluorescence
staining, and (F) semi-quantitative evaluation of new bone formation based on calculation of the area with fluorescent staining (as determined from panel
E). Results are shown as means ± standard deviation (*: p < 0.05). Copyright © 2022, American Chemical Society.
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3.3 Nanomaterials

3.3.1 Carbon nanotubes
Carbon nanotubes (CNTs) can significantly improve the

mechanical properties of bone cement. This may be mainly
attributed to certain unique properties including nanoscale
diameters, longer length, higher strength and stiffness, and
considerably high aspect ratios. Multi-walled CNTs prevent
cracks in the cement from expanding; they provide a bridging
effect at the tails of the crack in a direction perpendicular to that
of crack expansion. In their study, Sadati et al. found that the
incorporation of 0.5% of multi-walled CNTs into PMMA
significantly increased tensile strength, elastic modulus, and
bending strengths by 37%. The finite element method was
used to simulate the bridging mechanism of PMMA/multi-
walled CNT nanocomposites (Sadati et al., 2022). Combining

the functionalized CNTs with PMMA significantly reduces the
high polymerization temperature of PMMA. The reduction in
generated heat translates to a reduction in the thermal necrosis
index value of the corresponding nanocomposite cement; this
may reduce the high temperatures in vivo and decrease the
possibility of heat-induced bone tissue necrosis induced by
polymerization of PMMA cement. In their study, Ormsby
et al. found that the addition of functionalized multi-walled
CNTs led to a significant reduction in the quantity of heat
generated by the exothermic polymerization reaction of
PMMA bone cement; it also significantly reduced thermal
necrosis index values from 3% to 99% (Ormsby et al., 2011).
Mabroum et al. had combined CNT with commercial bone
cement; they also observed a significant reduction in the heat
generated by the exothermic polymerization reaction of Simplex
PTM bone cement. They suggested that the carboxylated multi-

FIGURE 3
Incorporation of multi-walled CNTs into PMMA bone cement improves cytocompatibility and osseointegration. (A) (a) Transmission electron
microscopy image of NC3151 grade multi-walled CNT. (b) Scanning electron microscope images of PMMA bone cement loaded with multi-walled CNT
powder affecting the proliferation of rabbit BMSCs. (B) (a) deoxyribonucleic acid (DNA) content, (b) Protein/DNA content and (c) ALP/DNA (mean ± SD) of
the rabbit BMSCswhen exposed to blank control and PMMAbone cements loadedwith different concentrations ofmulti-walled CNT powder. (C) 3-
dimensional reconstruction of computed tomography images of PMMA-multi-walled CNT bone cement specimens from Group D after 4, 8, and
12 weeks. (D) Van Gieson-stained images of PMMA-MWCNT bone cement specimens from group D (1.0 percent by weight) after 4, 8, and 12 weeks: (a)
4 weeks, (b) 8 weeks, (c) 12 weeks. Collagen fibers (C) are stained red. The nucleus (N) is stained brown-black. Crown Copyright © 2019 Published by
Elsevier B.V. All rights reserved.
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walled CNTs acted as a heat trap in the bone cement matrix to
reduce the generated heat (Ormsby et al., 2014).

The possibility of nanotoxicity needs to be considered in the case
of CNT-based biomaterials (Wang et al., 2019) (Figure 3).
Pahlevanzadeh et al. incorporated CNT into PMMA-monticellite
bone cement; they found that the cement retained good bioactivity
after incorporation of CNT, as evidenced by the absence of cytotoxic
effects in MG63 cells (Pahlevanzadeh et al., 2019). Similarly, the
addition of CNT to MPC exerted no cytotoxic effects; the cells
exhibited appropriate adhesion to the bone cement and acceptable
proliferation (Esnaashary et al., 2020). However, Medvecky et al.
reported conflicting results; their experiments, that involved
material testing and live/dead staining of CNT-CPC, suggested
that multi-walled CNT composite cement surfaces were cytotoxic
(Medvecky et al., 2019). Notably, some believe that an optimal CNT
content is required for cellular activity. An increase in the
concentration of CNT in PMMA nanocomposites allows for
adequate survival and proliferation of mesenchymal stem cells
(MSCs) on their surface; the cell density decreases significantly
when the number of CNTs exceeds 0.25 percent by weight
(Sadati et al., 2022).

3.3.2 Graphene oxide
As graphene has a lower metal impurity content than CNTs,

the purification processes for removal of trapped nanoparticles
require less time. Based on the method of fabrication, graphene
can be categorized into numerous subtypes; these include
graphene, graphene oxide (GO), and reduced GO, which is of
particular interest. GO has a larger number of hydrophilic groups
than simple CNT and graphene; these allow it to form chemical
bonds (between functional groups) with molecules in the bone
cement. This facilitates good dispersion, thereby enhancing
mechanical strength and improving biological properties. In
their study, Paz et al. loaded different proportions of graphene
and GO onto PMMA; they found that the PMMA cement with a
lower load of graphene or GO powder (≤0.25 percent by weight)
showed significantly superior fracture toughness and fatigue
properties (Paz et al., 2017). In addition, GO powder
demonstrated greater dispersion and improvement in
mechanical properties than those obtained with graphene
powder. In their study, Arici et al. compared the mechanical
properties and cellular activity of CNT with those of GO. They
found that GO further improved the percentage of cell viability,
conferred superior mechanical properties, and offered a more
stable pH and cell viability than CNT; this may be attributed to
the larger surface area of GO (Arici et al., 2023). The introduction
of GO has also been found to improve cell viability and
osteogenic differentiation. All anabolic genes including
COL1A1, BMP4, BMP2, RUNX2, and ALP demonstrate
stimulatory effects, while catabolic genes (MMP2 and MMP9)
exert inhibitory effects (Mirza et al., 2019). Another mixing
approach involves the incorporation of hybridized GO/CNT
into bone cement. This approach offers better dispersion
properties than CNTs and GO alone; it also shortens the final
setting time and reduces the mobility of MPC. In this context, a
study showed that the addition of 13.77% GO/CNTs (by weight of
cement) increased the compressive and flexural strength of MPC
by 17.50% and 0.05%, respectively (Du et al., 2020).

3.3.3 Magnetite (Fe3O4)
The combination of nanomaterials with PMMA represents an

important area of interest in the treatment of tumor-induced VCFs.
While the PMMA implanted in the fracture site plays a role in
supporting the fractured vertebrae and relieving pain, the magnetic
nanomaterials act as heat-seeded materials in magnetic
thermotherapy; they generate heat due to loss of magnetism in
the presence of an external magnetic field (Yu et al., 2019) (Figure 4).
Heating of the cancerous area to temperatures of over 42°C kills the
cancer cells, while allowing normal cells to survive. Magnetite is well
suited for use as a heat seed material due to its excellent heat-
generating properties and biocompatibility. In their study, Ling et al.
placed PMMA-Fe3O4 in an ex vivo magnetic field; the increase in
temperature of resected bovine liver was found to positively
correlate with the iron content and time. This suggested that the
intratumoral temperature is controllable (Ling et al., 2017).
However, as the heat generated by magnetothermic materials
may damage surrounding healthy tissues (especially the spinal
cord), Harabech et al. evaluated the heating effect of Fe3O4

nanomaterials in bovine vertebrae in an ex vivo alternating
magnetic field. The temperature in the PMMA-magnetic
nanoparticle composite rose by approximately 7°C; however, that
in the spinal column only rose by only 1°C, thereby creating a
smaller thermal impact on the spinal cord (Harabech et al., 2017).
Although Fe3O4 demonstrates excellent heat generation properties
as a magneto-thermal material, its rate of warming and bioactivity
need to be improved. Certain investigators have attempted to
increase the weight percentage of magnetic nanoparticles in
PMMA in order to improve the magneto-thermal efficiency of
nanomaterials. However, an inappropriately high weight ratio of
magnetic nanoparticles affects the physicochemical properties and
increases cytotoxicity (Miola et al., 2021). Ren et al. attempted to
improve performance by adding 1 percent by weight of
Zn0.3Fe2.7O4 nanoparticles to PMMA; in addition to providing
reliable mechanical support, the resulting bone cement
demonstrated high thermal efficiency (Ren et al., 2022). The
wrapping of Fe3O4 with GO (which has superior thermal
conductivity) addresses the important issue of non-uniform
heating of magnetic thermal materials; this allows for more rapid
heating of the composite materials and achievement of thermal
equilibrium. This shortens the time of thermal therapy and reduces
heat-resistance caused by an excessively long heating time (Yan
et al., 2019).

3.3.4 Other nanomaterials
Layered double hydroxide has recently provoked considerable

interest owing to its excellent properties. Liquid MMA monomer
was added to the pre-polymerized PMMA and powders of COL-I
and/or LDH, and the polymerization reaction of MMA was initiated
at room temperature (25°C) for 20 min after the powders were
thoroughly mixed. It demonstrates outstanding thermal insulating
properties, which may inhibit thermal diffusion during the
polymerization reaction of methylmethacrylate and help protect
the surrounding osteoblast-associated cells. In addition, the
magnesium ions released by LDH promote osteogenesis. The
larger micro sheets of layered double hydroxide are able to
produce a certain number of holes on the surface of PMMA; this
is beneficial for osseointegration between cement and bone (Wang
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et al., 2021). Titanium dioxide and magnesium oxide nanoparticles
have also been added to PMMA due to their excellent osteogenic
activity (Li et al., 2020a; Vedhanayagam et al., 2020).

3.4 Polymer materials

3.4.1 Natural polymers
Natural polymers are used as biomaterials in medicine due to

their excellent biomimetic properties and biocompatibility (Guo
et al., 2021c). Chitosan, a linear polysaccharide obtained by
deacetylation of chitin, is one of the most common natural
polymers used (Sultankulov et al., 2019). Given its excellent
biocompatibility, biodegradability, and bioactivity, it has been

used for the modification of bone cement. As chitosan is
degraded in vivo, its incorporation into PMMA bone cement
creates appreciable porosity. The increase in porosity facilitates
osseointegration between bone and cement and promotes more
stable fixation; it also reduces the mechanical strength of PMMA-
based bone cement, thereby reducing the difference with bone (Sun
et al., 2022a). The improvement in bioactivity and polymerization
temperature were found to be dose-dependent; an increase in the
loading concentration of chitosan (to >10%) significantly reduced
the heat generated by PMMA during polymerization (DeMori et al.,
2019). In their study, Zapata et al. obtained similar outcomes
compared to CS when using <15% loading; the composite
PMMA/CS bone cement having >15% loading achieved more
rapid deposition of calcium and phosphorus ions, and showed

FIGURE 4
PMMA-Fe3O4 composite used for internal mechanical support and magnetic thermal ablation of bone tumors. (A) Prepared magnetic PMMA bone
cement for magnetic thermal ablation of tumors. (B) Magnetic hystersis loop of polymerized PMMA-6% Fe3O4. (C) Thermal images of rabbit leg in the
PMMA-6% Fe3O4-H group and Tumor-H group. (D)Hematoxylin and eosin staining on day 1 (scale bar: 50 μm) and day 4 (scale bar: 100 μm) (red dotted
line: edge of ablation, blue dotted line: edge of the tumor, black dotted line: edge of removed PMMA-6% Fe3O4 composite). (E) (a) and (b) indicate
the apoptosis index (AI) and proliferation index (PI) of each group. (c) Heat shock protein-70 levels of rabbit serum in different groups before and after
magnetic thermal ablation. (d) Interleukin-2 levels of rabbit serum in different groups before and after magnetic thermal ablation. Copyright © 2019,
Ivyspring International Publisher.
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more rapid bioactivity (Valencia Zapata et al., 2020). Incorporating
different forms of chitosan may also produce different effects. In
their study, Zamora Lagos et al. incorporated different forms of
chitosan into PMMA; CS sheets provided greater porosity to the
cement than CS spheres (Zamora Lagos et al., 2020). However, CS
microspheres demonstrated greater degradation in bone cement,
thereby effectively improving the osteoconductivity and degradation
of CPC (Meng et al., 2019).

Collagen is a natural antigenic biomaterial found in the skin,
ligaments, bone, and cartilage (Li et al., 2021). Type I collagen
accounts for 90% of the total collagen and is present in large
quantities in the bone extracellular matrix secreted by osteoblasts.
Collagen can be easily combined with other biomaterials;
mineralized collagen (MC) can be formed by mineralization of
HA and collagen molecules. Owing to similarities in structure
and chemical composition between MC and natural bone

components, the former demonstrates good osteogenic activity; it
also increases the differentiation of MSCs to osteoblasts (Zhu et al.,
2023). MC-modified bone cement significantly improves the
adhesion of preosteoblasts and their proliferation; this promotes
good osseointegration between the cement and host bone tissue. It
also promotes higher alkaline phosphatase activity (secreted by
human bone marrow MSCs) and higher expression of osteoblast-
specific genes (Jiang et al., 2015). Notably, osteogenic differentiation
has been found to be more than twice as high in MC-PMMA than in
PMMA after 21 days of culture (Wu et al., 2016). In addition, the
introduction of this material can effectively improve the
maneuverability properties of bone cement. In their study, Li
et al. used 15.0% by weight-impregnated MC-PMMA; this
material significantly reduced the modulus of elasticity of PMMA
bone cement from 1.91 to 1.21 GPa (Li et al., 2015). The results also
revealed that the addition of MC significantly reduced the

FIGURE 5
Mineralized collagen-reinforced PMMA bone cement for the treatment of osteoporotic vertebral compression fractures. (A) Preparation of
mineralized collagen and PMMA bone cement. (B)Handling properties of bone cements. (C)Morphology of BMSCs on days 1, 3, and 7 with MC-PMMA or
PMMA bone cement. Cells stained with rhodamin-phalloidin for F-actin (red) and SYTOX Green for nuclei (green). (D) Histological staining in the PMMA
and MC-PMMA groups after 4 and 12 weeks using methylene blue (light blue) and basic fuchsin (red). The bone cement is in gray. (E) Lateral
projection re-examination by computed tomography at 3 days and 1 year after surgery. (F) The visual analog scale score was evaluated by three doctors.
Results are presented as the mean ± standard deviation; *p < 0.05. Copyright © 2020, Ivyspring International Publisher.
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compressive elastic modulus of PMMA, thereby reducing the
pressure on adjacent vertebrae. However, addition of MC had no
significant effect on the injectibility and processing time of the
cement. Similarly, Zhu et al. found that the addition of MC
improved the handling properties of this composite bone cement
in the clinical setting (Zhu et al., 2020) (Figure 5). Clinical evidence
suggests that patients treated with MC-PMMA show significant
improvement in postoperative low back pain, dyskinesia, and
vertebral height (Bai et al., 2017). Notably, patients in a study
who were treated with MC-PMMA demonstrated greater
improvements in bone density at 6-month and 1-year follow-up
than those treated conventionally; the incidence of adjacent
vertebral fractures decreased to 2% after modified cementing.

This represented a significant improvement over the rate of 13%
observed after conventional cementing (Wang et al., 2018a).

3.4.2 Synthetic polymers
Synthetic polymers offer more possibilities for chemical

modifications and molecular alterations than their natural
counterparts. This may help tailor system performance to specific
application requirements (Wong et al., 2023). These polymers have
customized matrix structures and chemical properties. In this
context, poly (lactide-co-glycolide) (PLGA) is a linear copolymer
of lactic and glycolic acid monomers (Jin et al., 2021). The time
needed to degrade PLGA can be adjusted (to align with that of bone
regeneration) by adjusting the ratio of lactic and glycolic acid. The

FIGURE 6
Injectable PLGA nanofiber-reinforced bone cement with controlled biodegradability for bone regeneration after minimally-invasive surgery. (A)
Schematic representation of fabrication of C/PL/C injectable bone cement for bone regeneration. (B) Anti-washout performance of CPC, C/C, and C/PL/
C-10, respectively. (C) Injectability, compressive strength, and setting time of cements. Data are presented as the mean ± standard deviation; n = 3;
*significant difference compared with control group, *p < 0.05 and **p < 0.01. (D) Hematoxylin and eosin staining of non-decalcified femoral
condyle sections 6 and 12 weeks after implantation. NB: newly formed bone; BV: blood vessels; M:materials. (E) Scanning electronmicroscope images of
human umbilical vein endothelial cells on the cement surface after 24 h of incubation (human umbilical vein endothelial cells are in color for ease of
observation). (F) 3-dimensional reconstruction of the implants in different groups; gray: cement; yellow: newly formed bone. © 2022 The Authors.
Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
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degradation of PLGA gradually enhances stress stimulation of new
bone; it may therefore promote bone regeneration and structural
remodeling. PLGA is currently incorporated into bone cement to
improve its properties. CPC scaffolds are doped with novel PLGA
microspheres; these microspheres provide pores that allow CPC to
grow into the new bone tissue. In a study using a rat femoral defect
model, the PLGA microspheres were found to be nearly filled with
mature new bone upon degradation at 24 weeks (Liang et al., 2020).
Composites of dense PLGA particles have also been found to be
suitable for use as pore generators in CPC; in a study, they
accelerated degradation and were more effective in promoting
murine BMSC proliferation (Qian et al., 2020; Lu et al., 2021). In
their study, Yu et al. found that the addition of fibrous PLGA to bone
defects effectively improved the brittleness of CPC. A two-fold
increase in toughness was observed in addition to a moderate
improvement in compressive strength (Yu et al., 2018; Cai et al.,
2023) (Figure 6).

PLGA is effective in improving the handling properties of bone
cement; it has also been widely used as a drug delivery system for
molecules such as proteins, peptides, and genes due to its excellent
carrier properties. PLGAwas first used in a study on the treatment of
infectious osteomyelitis; it was used in the form of microspheres
after immobilizing ciprofloxacin and triclosan-containing PLGA
microspheres on PMMA (Wang et al., 2020b). In their study,
Qiao et al. loaded rifampicin/moxifloxacin onto PLGA
microspheres for local drug delivery; microspheres prepared
using PLGA and embedded with moxifloxacin and rifampicin/
moxifloxacin using the water-in-oil-in-water double emulsion
solvent evaporation technique were used for local delivery (Qiao
et al., 2019). The results from these studies provide valuable insights
into the treatment of osteoporotic and neoplastic VCFs. PLGA can
also be used as a drug carrier for the treatment of oncologic bone
disease. In their study, Jayaram et al. added zoledronic acid to PLGA,
which released it at a concentration of 8% over 97 weeks. In contrast,
PMMA released 13%–17% of zoledronic acid; PLGA therefore
offered better release kinetics (Jayaram et al., 2021). PLGA
loaded with doxorubicin was combined with bone cement in a
study; it prolonged the release of doxorubicin and has a positive
impact on the treatment of sarcoma (Dewhurst et al., 2020). In the
treatment of osteoporotic VCFs, nano-sized PLGA particles were
able to encapsulate and release the functional recombinant protein
(ICOS-F) into cement formulations to provide an anti-osteoclastic
effect and stimulate an appropriate bone remodeling response,
which was conducive to effective healing (Banche-Niclot et al.,
2023). On injecting CPC/PLGA composites loaded with
alendronate in an osteoporotic rat model, the composites
exhibited a suitable setting time, appropriate compressive
strength, and controlled release of alendronate; bone formation
was also demonstrated under osteoporotic conditions (van Houdt
et al., 2018).

PVA fibers have been added to other gel matrices (as high-
tenacity materials) due to their excellent high modulus of elasticity
and tensile strength (Shi, 2021). The area of fiber reinforcement of
cement matrices (used in civil engineering) has been researched
extensively. However, the findings have been less frequently applied
to medical bone cementing. It is believed that PVA fibers are usually
covered by a hydrophobic oil-based coating, which reduces their
hydrophilicity and optimizes energy dissipation via a friction-sliding

mechanism; this hydrophobic PVA improves toughness and
ductility (Kucko et al., 2019). In view of its high toughness, it
may be a good candidate for incorporation into brittle bone
cements such as CPC. In the dental field, reinforcement of the
cement matrix with PVA fibers has led to the successful
development of tough fiber-reinforced CPCs. The incorporation
of PVA fibers reinforces CPCs to improve cement toughness and
structural stability upon degradation; however, it does not affect
biocompatibility and the osseointegration process (Schickert et al.,
2020a). Reinforcement with PVA fibers increases the flexural
strength and toughness of CPCs by more than 3 and 435-fold,
respectively; this makes reinforcement an extremely effective
strategy for strengthening and toughening (Kucko et al., 2019).
In their study, Luo et al. found that cement containing 5 percent by
weight of fibers offer a good compromise, with compressive
strengths of 46.5 ± 4.6 MPa (compared to 62.3 ± 12.8 MPa
without fibers), which are considerably greater than that of
human trabecular bone (0.1–14 MPa) (Luo et al., 2019).

4 Vertebral implants

Unlike minimally invasive injectable cement materials, vertebral
implants are primarily composed of implantable metals (Cornelis
et al., 2019) (Figure 7). These include the Vertebral Body Stenting
(VBS), SpineJack, Kiva, and Osseofix systems, which are based on a
similar principle of percutaneous implantation of an expandable
vertebral body stent (to restore vertebral height) and the correction
of kyphosis; this procedure is referred to as third-generation
vertebral body augmentation (Dong et al., 2022).

The goal of restoring mechanical stability to the diseased
vertebral body is achieved by use of a vertebral body implant.
An in vitro biomechanical study on the Osseofix system used
human cadaveric vertebrae; it showed that the yield and ultimate
loads of the vertebrae repaired by the system were similar to those
of intact vertebrae. In addition, the Osseofix system was effective
in restoring the original biomechanical strength of fractured
vertebrae, unlike kyphoplasty (Ghofrani et al., 2010). An
in vitro study that compared the mechanical properties of the
SpineJack system and balloon kyphoplasty in human cadaveric
bone found that both procedures restored height; strength and
stiffness were partially restored without any significant
differences. Although the mechanical properties of most
vertebral implants have been well documented, further
investigation is needed to assess the clinical effectiveness and
scope of application of these metallic implants in posterior convex
VCFs (Sietsma et al., 2009). Certain recent clinical studies have
found this new type of implant to be effective in the treatment of
traumatic VCFs or pathological fractures caused by osteoporosis
or metastatic tumors of the spine. A study evaluated the extent of
height recovery offered by the VBS in cases of acute traumatic
VCFs among young non-osteoporotic patients. The values for
mean postoperative vertebral height gain, vertebral kyphosis angle
correction, and Beck index improvement were 3.8 mm, 4.3°, and
0.07, respectively. The results from the study confirmed that VBS
can significantly restore vertebral height in young patients with
traumatic VCFs (Garnon et al., 2019). A study had retrospectively
evaluated the safety and efficacy of the VBS in patients with post-
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traumatic A3.2 and A2 type fractures (single traumatic
thoracolumbar fractures) who were treated between 2010 and
2019. The results confirmed an improvement in posterior
convexity and restoration of vertebral height in all patients
(Salle et al., 2022). In a prospective study on type A1.3 and
A3.1 fractures, the VBS offered satisfactory improvements in
pain, function, posterior convexity correction, and even
endplate repositioning in osteoporotic and traumatic fractures
(Klezl et al., 2011). The system was also found to be effective in
correcting kyphotic deformities and restoring loss of vertebral
height in patients with chronic osteoporosis who had VCFs; these
findings confirm the feasibility of its clinical application (Premat
et al., 2018). A recent study evaluated the utility of the OsseoFix
system for the treatment of VCFs caused by multiple myeloma; it
found that the implant provided significant improvements in
terms of both pain and prognostic scores, thereby significantly
reducing complications. The total number of implants used in this
study was the highest to be reported in the literature to date; the
use of expandable titanium mesh cages allowed safe and effective
treatment (Gandham et al., 2021).

Although, new implant materials have been able to address
certain limitations of PVP and PKP, various clinical adverse events
continue to occur. For instance, stent tumbling prevents the
contralateral stent from providing adequate support (Kanematsu
et al., 2023). In this context, a randomized controlled trial evaluated
the impact of two different augmentation procedures, namely, the
KIVA system and PKP, on the readmission rate due to serious
adverse events. The patients with a previous history of VCF or
significant osteoporosis who were treated using the KIVA system
demonstrated a greater risk of readmission due to serious adverse
events (at 1-year after treatment) than those who underwent PKP
(Beall et al., 2017). Therefore, future studies need to evaluate the
issue of appropriate selection of metallic implants for different
vertebral body fractures.

5 Conclusion and prospects

The appropriate selection of implantable materials is crucial to
the clinical outcomes of minimally invasive treatment for VCFs.

FIGURE 7
Innovative spine implants for improved augmentation and stability in neoplastic vertebral compression fractures. (A) SpineJack

®
implantation

procedure. (B) Vertebral Body Stent
®
(VBS

®
) deployment procedure. (C) KIVA

®
implant design and delivery ancillaries. (D) Views of V-STRUT© implants in a

vertebra, perspective and top view. © 2019 The Authors. Published by MDPI.
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However, the materials in current use have various limitations,
which hinder clinical application. As the first and second
generation of minimally invasive implantable materials for
vertebral body augmentation, traditional bone cement
(represented by PMMA) is widely used in the clinic. However,
it lacks bioactivity and leads to a series of clinical complications.
Therefore, newer bone cements includingMPC and CSC have been
developed; these have been favored by researchers owing to their
superior osteoclastogenic and angiogenic effects. Biomaterials with
various beneficial properties have been mixed with bone cement to
improve its handling properties and bioactivity in a targeted
manner. A review of the types and clinical efficacy of new
vertebral implants used in third-generation vertebroplasty show
that a wide variety of options are available for the treatment of
different types of VCFs.

Although the implant materials developed for minimally
invasive treatment have various outstanding properties, their
clinical effectiveness and safety remain unclear. In addition,
clinical validation of processing properties such as injectability
and setting time are lacking for new composite bone cement
materials. Large-scale controlled clinical studies evaluating the
efficacy of new vertebral implants are also lacking; the scope of
their application warrants further investigation. Clinicians also
need to address the issue of selection of appropriate materials for
minimally invasive surgery. In conclusion, the ongoing
improvements in technology and biomaterials are expected to
make minimally invasive surgery for VCFs safer and more
effective.
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