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Bladder cancer is the most common urological malignancy worldwide, and its
high recurrence rate leads to poor survival outcomes. The effect of anticancer
drug treatment varies significantly depending on individual patients and the
extent of drug resistance. In this study, we developed a validation system
based on an organ-on-a-chip integrated with artificial intelligence
technologies to predict resistance to anticancer drugs in bladder cancer. As a
proof-of-concept, we utilized the gemcitabine-resistant bladder cancer cell line
T24 with four distinct levels of drug resistance (parental, early, intermediate, and
late). These cells were co-cultured with endothelial cells in a 3D microfluidic
chip. A dataset comprising 2,674 cell images from the chips was analyzed using a
convolutional neural network (CNN) to distinguish the extent of drug resistance
among the four cell groups. The CNN achieved 95.2% accuracy upon employing
data augmentation and a step decay learning rate with an initial value of 0.001.
The average diagnostic sensitivity and specificity were 90.5% and 96.8%,
respectively, and all area under the curve (AUC) values were over 0.988. Our
proposed method demonstrated excellent performance in accurately identifying
the extent of drug resistance, which can assist in the prediction of drug responses
and in determining the appropriate treatment for bladder cancer patients.
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1 Introduction

Bladder cancer (BC) is among the ten most common cancers worldwide and is classified
into various stages, types, and grades according to tumor characteristics and the extent of
invasion (Chen et al., 2019; Tran et al., 2021). The most common subtype of BC is non-
muscle-invasive bladder cancer (NMIBC) found in the inner lining of the bladder (Shelley
et al., 2012; Sylvester et al., 2021). NMIBC exhibits relatively high survival rate but tends to
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recur at high rates, and 10%–15% of cases progresses to invasive BC
and metastasizes to other organs (Chen et al., 2019). Therefore, the
choice of treatment for BC, depending on the type or stage, is crucial
(Kamat et al., 2016; Tran et al., 2021). However, anticancer drug
treatments have some limitations. First, the efficacy and response of
drugs can significantly vary among individual patients, along with a
wide range of diverse side effects. Another important challenge is the
high frequency of resistance to anticancer drugs, leading to poor
survival outcomes (Massari et al., 2015; Roh et al., 2018).

To achieve complete cancer treatment and suppress metastasis,
it is crucial to identify individualized drug efficacy and progression
patterns for each patient. In addition, it is necessary to develop a
validation system for personalized anticancer drugs that can
maximize treatment efficacy and minimize side effects by
predicting the possibility of anticancer drug resistance.

Various next-generation technologies have recently been
developed for this purpose. For example, the active development
of validation systems based on organ/organoid-on-a-chip
technology using patient-derived cells is in progress for drug
efficacy assays (Kondo and Inoue, 2019; Ma et al., 2021; Lee
et al., 2022; Driver and Mishra, 2023; Paek et al., 2023). These
systems mimic the unique in vivo environment of individual
patients, contribute to the efficient selection and evaluation of
personalized anticancer drugs, and provide evidence for new
diagnostic techniques or therapeutic drugs. Additionally, studies
that rely on the patient’s genome have been conducted to identify
gene expression patterns or mutations, enabling prognostic
prediction for patient treatment (Li et al., 2015; Nagata et al.,
2016; Tran et al., 2021). Furthermore, there has been a recent
rapid evolution of artificial intelligence (AI) technologies that
enable the efficient analysis of vast amounts of data (Parlato
et al., 2017; Nguyen et al., 2018; Cascarano et al., 2021).

AI technologies have gained attention because they provide
accurate and rapid analytical tools for overcoming the limitations
of current cancer treatments. In BC, the diagnosis, evaluation of drug
efficacy, and limitation of treatments have been investigated based on
clinical tissues, liquid biopsy, and laboratory data combined with AI
techniques (Borhani et al., 2022). AI is being used to predict BC using
clinical laboratory data (Tsai et al., 2022) or support the diagnosis in
cystoscopic images or computed tomography images of BC patients
(Garapati et al., 2017; Ikeda et al., 2020). Machine learning studies can
be used to evaluate for various clinical data to predict long-term
outcomes, such as cancer recurrence and survival after radical
cystectomy (Hasnain et al., 2019). Cellular analysis has been
conducted using atomic force microscopy on cells collected from
urine, and computer-supported machine learning data analyses have
been employed (Sokolov et al., 2018).

In this study, we employed BC models on an organ-on-a-chip
platform and applied deep learning to propose a new platform for
determining the degree of anticancer drug resistance. In this study,
we utilized the bladder cancer cell lines (Mun et al., 2022), developed
to have four differential levels of resistance against gemcitabine
(GEM), an active anticancer drug against BC, and these cells were
cultured in a microfluidic chip-based 3D cell culture platform to
recreate BC models with different morphological characteristics
associated with their anticancer drug resistance. We employed
convolutional neural network (CNN) models (Krizhevsky et al.,
2012) and evaluated their performance. Using these models, we

investigated how they effectively discriminated between different
images obtained from our 3D cell culture platforms with different
levels of drug resistance and determined the extent of discrimination
achieved. When applied to clinical samples, this system can be
utilized as a valuable validation system to provide criteria and
facilitate better decision-making regarding optimal treatment
strategies for patients.

2 Materials and methods

2.1 Fabrication of the microfluidic chip and
3D cell culture

Details regarding the design and soft lithographic fabrication
process of the microfluidic chip for 3D BC cell culture can be found
in our previous reports (Jeong et al., 2020; Hong et al., 2021). Briefly,
the microfluidic chip consisted of top (polydimethylsiloxane
[PDMS], 5–6 mm in thickness) and bottom (square cover glass,
24 mm × 24 mm) layers. The microfluidic channels constructed on
the chips were filled with 1 mg mL−1 of poly-D-lysine hydrobromide
(Sigma-Aldrich, United States) for 4 h for surface coating. Finally,
the microfluidic channels were rinsed with distilled water and
completely dried before use.

2.2 Cell culture and BC model using
microfluidic chips

In our previous study, human BC cell lines with four levels of
anticancer resistance were established (Mun et al., 2022). Briefly,
after exposing parental T24 (American Type Culture Collection,
United States) cells (P0) to GEM at an initial concentration of
1,500 nM, only surviving cells were re-cultured. During repetitive
subcultures, GEM-resistant strains at each level were prepared until
a total of 15 phases were reached. In this experiment, the GEM-
resistant bladder cancer (GRC) cell lines, including the parental
phase P0, early phase P3, intermediate phase P7, and late phase P15,
were designated as levels 0, 1, 2, and 3, respectively. Using these cell
lines, 3D cell culture and tumor migration tests were performed in
the microfluidic chips; the details are described in our previous
report (Mun et al., 2022). Briefly, the central channel of the chip was
filled with type I collagen (2 mg mL−1, Corning, United States), and
two media channels placed on both sides were coated (type I
collagen solution, 35 μg mL−1 in PBS) to enhance the attachment
of cells on the channel surface. A suspension of GRC cells (2 × 106

cells mL−1) at each condition (P0, P3, P7, and P15) was introduced
into one of the media channels and incubated for attachment. After
2 h, a suspension of HUVECs (2 × 106 cells mL−1) was introduced
into the other media channel on the opposite side of the GRC
channel. The two cell types were co-cultured for 4 days in a chip with
a 1:1 mixture of media from each cell.

2.3 Immunostaining and image analysis

To assess the migration of GRC cells cultured in microfluidic
chips, the cells were fixed with 4% paraformaldehyde at room
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temperature for 20 min and permeabilized with 0.1% Triton X-100
for 20 min. Actin filaments and nuclei were stained with phalloidin-
594 (1:40; Invitrogen, United States) and Hoechst 33342 (1:1500;
Thermo Fisher Scientific, United States), respectively. Fluorescent
cell images were obtained using a high-content screening
microscope (Celena X; Logos Biosystems, Republic of Korea). A
set of images acquired from the chips, representing cell mobility and
the surrounding tissue, was taken at 16 repetitive regions of interest
(ROI) between the trapezium-shaped pillars in the chips. Among the
images, grayscale fluorescence images of F-actin staining (red
channel) were used for subsequent image analyses. In addition,
each ROI was image-captured along the z-axis using 27 slices within
full thickness. Six microfluidic chips were used for each GRC level,
and 2,592 raw images were captured from a single microfluidic chip.

2.4 Dataset and preprocessing

The prepared raw image dataset was preprocessed prior to deep
learning. First, all images captured from a single 3D microfluidic BC
chip with GRC cells were fully stitched and cropped on an ROI-basis
to enhance uniformity. Among the 27 slices of z-stack, we selected
slices with z = 1, 3, 5, 14, 23, 25, and 27 for the classification of deep
learning applications. Consequently, the total dataset comprised
2,674 GRC images (GRC Level 0: 658, Level 1: 672, Level 2: 672, and
Level 3: 672). The shortcomings of the current dataset include the
relatively small number of samples and a mild imbalance in the
distribution for training data. These issues were addressed using data
augmentation method (see results and discussion section for
more details).

2.5 Deep learning

The architecture of the BC classification depending on the
GEM-resistance level was developed based on the CNN
(Krizhevsky et al., 2012). The network contained three pairs of
convolutional layers, each of which was followed by a max-pooling
layer and two fully connected layers. The output of the last fully
connected layer is linked to a 4-way softmax layer that returns an
array of probability scores to classify the chip images into four
classes (i.e., Levels 0, 1, 2, and 3). The rectified linear unit (ReLU)
non-linearity f(x) � max(0, x) (Nair and Hinton, 2010) was
applied to the output of the convolutional layers and the fully
connected layer as activation functions. The first convolutional
layer filtered the 64 × 64 × 3 input images with 16 kernels of
size 3 × 3 × 3 with a stride of one pixel. The second and third
convolutional layers contained 32 and 64 kernels, respectively, with
a of size 3 × 3 × 3, respectively. The fully connected layers had
128 and 4 neurons, respectively.

The parameters of the CNN θ were then trained by minimizing
the cross-entropy loss function l(θ):

θ̂ � argmin l θ( )
l θ( ) � −∑N

n�1yn xn( )log fθ xn( )( ), (1)

where x represents the input data, y represents the corresponding
class label, and f represents the CNN. We used the Adam optimizer

(Kingma and Ba, 2014) with a batch size of 32. The gradient update
rules for the parameters in Eq. (1) are as follows:

θt+1 � θt − α�����
v̂t + ϵ

√ m̂t,

mt � β1mt−1 + 1 − β1( )gt,

vt � β2vt−1 + 1 − β2( )g2
t (2)

where θt denotes the t-th update of the parameter θ and gt �
∇θft(θ) is the vector of the partial derivatives of ft(θ) with
respect to θ. β1 and β2 are the hyperparameters that control the
exponential decay rates of the moving averages of the gradient (mt)
and the squared gradient (vt), and α denotes learning rate. The
default values for β1, β2, and ϵ were set to 0.9, 0.999, and 10−7,
respectively.

In this study, we further optimized the learning rate α in Eq. 2
using learning rate schedules of either exponential decay or step
decay and compared the classification performance with that based
on the default value of 0.001 for α. The model for the exponential
learning rate is given as follows:

αt � α0e
−kt, (3)

where α0 represents the initial learning rate (α0 = 0.0001 or 0.001), k
is a hyperparameter (k = 0.1), and t is an epoch number.

The model for the step decay learning rate is as follows:

αt � α0η
−�t/γ�, (4)

where α0 = 0.0001 or 0.001, �x� denotes the floor function of x, and
hyperparameters η and γ were set to 2.0 and 5.0, respectively. The
decay of learning rates was determined using Eq. 3 or Eq. 4, each
with different initial values.

2.6 Data augmentation

The current dataset lacks a large number of labeled training
datasets. To reduce overfitting and improve the classification results
in the GRC images, we employed the classic form of data
augmentation, which can artificially enlarge the dataset using
label-preserving transformations (Krizhevsky et al., 2012). The
data augmentation method consisted of randomly translating the
images vertically, flipping half of the images vertically, and zooming
in on the images.

In an ablation study, we performed a CNN-based classification
analysis without utilizing data augmentation methods and
predefined learning rate schedules. The network architecture and
parameters remained consistent when compared with the other
methods used in this study.

2.7 Evaluation performance

The performance of the GRC classification was evaluated using a
10-fold cross-validation and a confusion matrix. The dataset was
divided into 10 partitions of equal sizes. For each partition, the CNN
model was trained on nine partitions and validated on the remaining
partitions. The performance measures of the accuracy and confusion
matrix were computed on a test dataset. We used Keras and
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TensorFlow (version 2.5.0) to implement the CNN model for
classifying GRC images. CNN training was performed using an
NVIDIA 24 GB GeForce RTX 3090 GPU card.

From the confusion matrix, the following metrics were
calculated for each GRC level to quantitatively evaluate
classification performance:

Accuracy � TP + TN

TP + TN + FP + FN( ),

Precision � TP

TP + FP
, Recall � TP

TP + FN
,

F1 score � 2 · Precision · Recall
Precision + Recall

,

Sensitivity � TP

TP + FN
, Specificity � TN

TN + FP
(5)

where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively. The receiver
operating characteristic (ROC) curve was then plotted using
the true positive (i.e., sensitivity) and false positive (i.e., 1 –

specificity) rates, both of which are based on Eq. 5. Finally, the
area under the curve (AUC) was calculated to evaluate model
performance.

3 Results and discussion

In this study, we explored the potential of classifying previously
established GRC cells and predicting GEM resistance in BC using a
CNN model. As identified in the previous work (Mun et al., 2022),
the GRC cells showed increasingly aggressive phenotypes according
to the level of GEM resistance and stepwise changes in the gene
expression profile, including 23-gene signatures, revealing that four
different GRC cell lines differentially expressed genes associated
with specific biological functions. These results contributed to the
development of a chemoresistance score based on the 23-gene
signature; however, utilizing cellular phenotypes and CNN
algorithms could be useful as a more intuitive prediction method
for anticancer drug resistance. To achieve this, we utilized a 3D
microfluidic chip to create a BC microenvironment depending on
different GEM resistance levels by co-culturing with vessel cells,
obtained a large amount of image data, and used these data for CNN
classification. Figure 1 illustrates the overall scheme and strategy
used in this study.

Prior to CNN analysis, a dataset of raw images was further
preprocessed to enhance image uniformity. In fully stitched z-stack
images, 16 repetitive unit-ROI were cut and separated to position the

FIGURE 1
Schematic showing the research purpose and strategies. (A)Non-muscle-invasive bladder cancer (NMIBC) is a common type of bladder cancer that
exhibits a high rate of resistance to anticancer drugs. The T24 cell line has differential levels (Levels 0, 1, 2, and 3) of gemcitabine resistance established
through repetitive subculture (P0, P3, P7, and P15). (B) These four different cell lines were used for 3D cell culture in amicrofluidic chip to create a bladder
cancer microenvironment by co-culturing vessel cells (HUVECs). The resulting images were subsequently subjected to multi-class classification
using a convolutional neural network (CNN) to discriminate the cell types based on gemcitabine resistance levels. GRC: Gemcitabine-resistant bladder
cancer; HUVEC: Human umbilical vein endothelial cells.
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cell and tissue region in the center of the image; appropriate z-slices
were chosen to enhance the accuracy of classification because the
visual variations in nearby slices along the z-axis were negligible and
may provide duplicate features in deep learning (Figure 2). In our
CNN analysis, only grayscale fluorescence images (F-actin staining)
were used because they provide morphological features of cells and
are more suitable for analysis than bright-field images containing
micropillars that the CNNs could potentially perceive as noise.

The images (2,674 images) were randomly shuffled and split into
training, validation, and test sets. Specifically, the training, validation
and test data were selected as the GRC images originating from
different microfluidic chips to ensure that the test sets were
disjointed from the training and validation sets. Accordingly,
90% of the data was used as the training set, and the remaining
10% was used as the validation set. The numbers of data for each
GEM-resistance level of the GRC cells are summarized in Table 1.

Each dataset (Levels 0, 1, 2, and 3) lacked a sufficient number of
labeled training datasets. The distribution of samples across the classes
was slightly biased. The class distribution was summarized as
percentages of the training dataset: 24.6% in the first class, 25.2% in
the second class, 25.2% in the third class, and 25.2% in the fourth class.
To the best of our knowledge, there are no strict criteria for defining the

degree of data imbalance. However, data imbalance can be categorized as
mild to extreme, based on the proportion of the minority class (Google
for Developer, 2023: https://developers.google.com/machine-learning/
data-prep/construct/sampling-splitting/imbalanced-data). According to
this criterion, the current data was mildly imbalanced. Empirically,
neural networks can handle mildly imbalanced data (ao Huang et al.,
2022). However, to address class imbalance and the challenge of small
sample sizes in the training data, we employed a classic form of data
augmentation. This approach has been extensively used to reduce
overfitting and improve the classification results of these data
distributions through an oversampling process (Shorten and
Khoshgoftaar, 2019). Specific parameters for data augmentation are
shown in Table 2.

FIGURE 2
Schematic of image preprocessing and deep learning analysis. (A) In fully stitched images acquired from a microfluidic chip, 16 regions of interest
(ROI) between the trapezium-shaped pillars were uniformly extracted to represent the cell mobility and the surrounding tissue at the center of each
image. (B) From a z-stack of 27 slices for 3D GRC cell images (F-actin staining; red channel), specific slices (z = 1, 3, 5, 14, 23, 25, and 27) were selected for
deep learning analysis. This selection prevented redundant features from appearing in adjacent slices along the z-axis. Here, Levels 0, 1, 2, and
3 represent gemcitabine resistance levels. GRC: gemcitabine-resistant bladder cancer; CNN: convolutional neural network.

TABLE 1 Datasets of 3D microfluidic GRC images for training/validating/testing process.

Dataset Level 0 Level 1 Level 2 Level 3 Total

Training 492 504 504 504 2,004

Validation 54 56 56 56 222

Test 112 112 112 112 448

Total 658 672 672 672 2,674

Levels 0, 1, 2, and 3 represent gemcitabine resistance levels. GRC, gemcitabine-resistant bladder cancer.

TABLE 2 Methods and parameters for images augmentation process.

Method Parameter

Vertical Flip True

Zoom [0.1 0.2]

Vertical Translation [−0.05 0.05]

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Tak et al. 10.3389/fbioe.2023.1302983

https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1302983


Representative images obtained from each microfluidic GRC
model according to the GEM resistance levels are shown in Figure 3.
Cells invaded the gel in microfluidic chips depending on their GEM-
resistance levels (Mun et al., 2022). As shown in our previous results
(Supplementary Figure S1), quantitative image analysis using
ImageJ software also showed an increasing tendency with
statistically significant differences in the maximum infiltration
distance, infiltration area, and number of infiltrating cells, as the
cell culture phase increased. In this case, only 15 ROIs were used for
each GRC level due to the limitations of manual image analysis.
Although statistically significant, the degree of infiltration observed
in BC cells during this experiment was not as pronounced as that in
other aggressive cancer types, such as lung and brain cancers, as
observed in our previous studies (Jeong et al., 2020; Hong et al.,
2021). Additionally, the clustered cell morphology, as shown in
Figure 3, makes it difficult to quantitatively analyze cells using
conventional image analysis tools.

In some studies, the migration speed of cancers has been linked
to collagen matrix characteristics such as concentration,
composition, and stiffness. These findings indicate that GRC
exhibits slow migration in pure collagen with sensitivity to low
concentration of collagen (Laforgue et al., 2022) or another hybrid
matrix containing Matrigel (Anguiano et al., 2017). These gel
conditions should be considered in future studies. In addition,
GRC cells infiltrated in response to HUVECs co-cultured in the
opposite side channel of the same microfluidic chips, whereas
HUVECs that underwent infiltration or angiogenic sprouting
were not observed (data not shown). BC cells and HUVECs play
interactive roles in the tumor microenvironment (TME) (Huang
et al., 2019); however, HUVEC migration was not significant. One
report revealed that co-cultured T24 cells exhibit increased
proliferation and migration with the support of HUVECs, while

co-cultured HUVECs grow slower than mono-cultured cells owing
to the changes in cellular energy metabolism in TME (Li et al., 2020).
This insight could potentially explain the observed phenomena.
Non-obvious changes or quantification using a limited number of
samples may result in poor discrimination of cell types and
subsequent experimental decisions. Therefore, an advanced
classification technique, such as a CNN classification model, is
required to accurately analyze cell features with an increased
sample size.

The architecture of the CNN-based GRC classification involves
convolution, pooling, and fully connected layers (Supplementary
Table S1). An array of probability scores was returned to classify the
GRC images into four classes. The process diagram is shown in
Figure 4. To evaluate the performance of the CNN multi-class
classification model for our microfluidic GRC models, metric
scores were calculated. A confusion matrix for each fold of the
10-fold validation was obtained from the trained network. Six
metrics, including accuracy, precision, recall, F1 score, sensitivity,
and specificity, were then calculated using true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), as shown
in Eq. 5. Prior to the distribution of accuracy across the GRC levels,
we compared the CNN accuracy results for the classification of GRC
levels based on data augmentation and predefined learning rate
schedules (Figure 5). As shown in Table 3, the CNN without data
augmentation and learning rate schedules exhibited the poorest
performance in classifying GRC cells. When employing data
augmentation, all metric scores of the CNN with learning rate
schedules updated at every epoch were consistently higher than
those of the CNN with constant learning rates. In particular, using a
step decay learning rate with an initial value of 0.001 led to the best
performance in the classification of GRC images. The corresponding
metric scores, averaged over ten folds and four GRC levels, were as

FIGURE 3
Representative bright-field and fluorescence (F-actin staining; red channel) images of microfluidic GRC models according to the gemcitabine
resistance levels (Levels 0, 1, 2, and 3). The inset images are enlarged images of the dotted box region. Scale bars represents 100 µm. GRC: gemcitabine-
resistant bladder cancer.
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follows: accuracy, 95.2%; precision, 91.2%; recall, 90.5%; F1 score,
90.5%; sensitivity (true positive rate, TPR), 90.5%; and specificity
(true negative rate, TNR), 96.8%. Further details regarding the total
accuracy calculated from each fold of the training data are provided
in Supplementary Table S2.

In the remaining analysis, we further assessed the multi-class
classification performance of the CNN depending on the GRC
levels, using the step decay learning rate (α0 � 0.001). Figure 6
shows the confusion matrix. The rows and columns represent the
actual and predicted GEM resistance levels, respectively, from the
experimental data. Each element of the matrix indicates the number
of data that fell into the specified category, averaged over 10 folds. The
CNN trained in this study accurately predicted the GRC level of the
image when unseen test data were input into the network. For instance,
out of 112 testing data for GRC Level 0, the trained CNN predicted an
average of 111.6 samples with the correct GRC Level 0 and 0.4 samples
with the incorrect GRC Level 1. Therefore, the ratio of TP to FN was
111.6:0.4. The corresponding sensitivity was TP/(TP + FN) = 111.6/
112 = 99.6. The sensitivity values showed a slight decrease across GRC
levels 1, 2, and 3: 82.8, 90.9, and 88.6, respectively, when compared with
GRC level 0. However, the values of specificity and accuracy
consistently remained above 90.0 across all GRC levels. The
accuracy, sensitivity, and specificity of the network for each GRC
level are summarized in Table 4.

FIGURE 4
Architecture of the BC classification based on the gemcitabine resistance level. The proposed CNN mainly comprised three sets of convolutional
layers and fully connected layers. The network parameters were trained by minimizing the cross-entropy loss function using the Adam optimizer. In this
process, we fine-tuned the learning rate using predefined schedules, including exponential or step decay. The trained network was ultimately tested with
unseen data to validate its effectiveness in predicting the four levels of gemcitabine resistance from the BC cell images. CNN: convolutional neural
network; BC: bladder cancer.

FIGURE 5
Learning rate changes across epoch numbers according to
predefined schedules. The red dots represent the learning rates
calculated using the model for step decay. The black asterisks
represent the learning rates calculated using the model for
exponential decay. In both cases, we tested two models having initial
learning rates of 0.0001 or 0.001.
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The ratio of the true positive rate (TPR) to the false positive rate
(FPR) based on the proposed CNN network was finally assessed
using an ROC curve. As shown in Figure 7, the TPR was markedly
higher than the FPR across the entire range of possible decision
thresholds. These results were consistently obtained from the four

TABLE 3 Performance of the CNN classification for the 3D microfluidic GRC model.

Methods Accuracy Precision Recall F1 score Sensitivity Specificity

Without Aug. α � 0.0001 78.0 ± 2.2 50.3 ± 3.5 55.9 ± 4.3 50.2 ± 4.0 56.0 ± 4.5 85.3 ± 1.5

α � 0.0001 75.1 ± 1.8 46.1 ± 4.4 50.2 ± 3.6 44.3 ± 3.6 50.2 ± 3.8 83.4 ± 1.3

Constant α � 0.0001 91.7 ± 2.9 85.5 ± 5.4 83.4 ± 5.8 83.1 ± 5.9 83.4 ± 6.1 94.5 ± 2.0

α � 0.001 90.3 ± 3.4 85.0 ± 4.4 80.7 ± 6.8 79.5 ± 8.2 80.7 ± 7.1 93.6 ± 2.4

Exp. Decay α0 � 0.0001 93.5 ± 3.0 88.7 ± 5.4 87.1 ± 6.0 86.6 ± 6.6 87.1 ± 6.3 95.7 ± 2.1

α0 � 0.001 93.4 ± 1.8 88.0 ± 3.4 86.9 ± 3.6 86.8 ± 3.6 86.9 ± 3.8 95.6 ± 1.3

Step Decay α0 � 0.0001 93.3 ± 2.6 88.4 ± 4.7 86.6 ± 5.2 86.3 ± 5.5 86.6 ± 5.5 95.5 ± 1.8

α0 � 0.001 95.2 ± 1.7 91.2 ± 3.1 90.5 ± 3.3 90.5 ± 3.3 90.5 ± 3.5 96.8 ± 1.2

Metric scores were calculated using Eq. 5 and the output of the proposed CNN network with augmentation but different learning schedules. In an ablation study, the performance of a CNN-

based classification analysis without utilizing data augmentation methods and predefined learning rate schedules was also evaluated. CNN, convolutional neural network; Aug., augmentation;

Exp., exponential; GRC, gemcitabine-resistant bladder cancer.

FIGURE 6
Confusion matrix of the classification of GRC levels. Rows and
columns represent the actual and predicted GRC levels of
experimental data, respectively. Each element of the matrix indicates
the number of data that fell into the specified category, averaged
over 10 folds. The test data included 112 images in each GRC level. In
this classification, we used the convolutional neural network with the
step decay learning rate (α0 = 0.001). GRC: gemcitabine-resistant
bladder cancer.

TABLE 4 Evaluation of the CNN classification across GRC levels.

Accuracy Sensitivity Specificity

Level 0 98.9 ± 1.0 99.6 ± 1.7 98.7 ± 1.4

Level 1 93.3 ± 2.9 82.8 ± 8.8 96.8 ± 1.6

Level 2 91.9 ± 2.9 90.9 ± 5.0 92.2 ± 2.9

Level 3 96.9 ± 1.7 88.6 ± 6.2 99.6 ± 0.7

Metric scores were calculated using Eq. 5 and a trained network with step decay learning rates. Each value represents the mean and standard deviation of metric scores over 10 folds. Levels 0, 1, 2,

and 3 represent gemcitabine resistance levels. CNN, convolutional neural network; GRC, gemcitabine-resistant bladder cancer.

FIGURE 7
Receiver operating characteristic curve (ROC) plot of each GRC
level. Each GRC level was discriminated from other levels. AUC: area
under the curve; GRC: gemcitabine-resistant bladder cancer.
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datasets of the GRC levels, although the ratios of TPR to FPR
estimated from the datasets of Levels 1 and 2 were slightly lower than
those of Levels 0 and 3. We quantified the overall accuracy of the test
(i.e., the ratio of TPR to FPR) using AUC. The AUC values of the
tests for predicting each level were 1.00, 0.99, 0.98, and 0.99,
respectively. These results suggest that the proposed CNN
framework can be considered to have an acceptable
discriminating ability (Mandrekar, 2010) for the various GRC
levels of BC cells. Taken together, it is confirmed that our
developed CNN can not only classify the different GRC levels
with high accuracy, but also predict the GRC level from
randomly provided data with high sensitivity and selectivity.

GEM resistance is a major issue in BC chemoresistance, and its
modulating genes and pathways may vary among the sequential
GRC cells. For example, our previous study (Mun et al., 2022)
indicated that a high level of GRC cells was associated with poor
prognosis and a low response rate to other chemotherapeutic drugs
such as cisplatin, carboplatin, and doxorubicin. Alternative therapies
should be considered in such cases. Additionally, it provided
informative results showing that a high level of GRC consistently
increased epithelial–mesenchymal transition (EMT)-related gene
expression; however, it downregulated the cytosolic DNA and
endoplasmic reticulum (ER) stress genes. These different gene
patterns based on specific drug resistance levels may provide
valuable insights into the selection of adjunctive drug agents (Jia
and Xie, 2015; Wu et al., 2021; Liu et al., 2022).

At the current stage of our research, AI classification of GRC
levels does not provide a precise criterion for which the level of drug
resistance affects drug effectiveness, or which alternative drugs
should be considered at each drug resistance level. To date, most
studies have addressed either genetics or image-based analysis, and
only a few studies have integrated both approaches (Couture et al.,
2018; Wulczyn et al., 2020; Ash et al., 2021; Chen et al., 2022;
Schneider et al., 2022; Fremond et al., 2023). These combined
therapeutic strategies with the integration of genetics hold
prognostic potential, providing reference basis for drug choices.

In this study, we applied a CNN-based deep learning method to
images obtained from a 3D cell culture platform to classify 3D GRC
cell images into four classes based on GEM resistance levels.
Conventionally, mono-culture or microfluidic 2D cells have been
used for CNN analysis (Zhang et al., 2018; Hashemzadeh et al., 2021;
Pérez-Aliacar et al., 2021). However, the 3D microfluidic BC model
under cultivation with other types of cells can contribute to better
classification efficiency because this platform could provide more
appropriate phenotypes of invasive cancer when compared to
mono-culture or 2D culture. Previously, CNN was applied to
relatively obvious problems in microfluidic chip applications,
such as classifying cancer into benign and malignant (Wang
et al., 2019) or discriminating between different types of cell lines
of different origins (Hashemzadeh et al., 2021). However, multi-class
classification (Heenaye-Mamode Khan et al., 2021), such as
distinguishing between four different cell lines derived from the
same parental cell by morphological features, is much more
challenging.

The proposed CNN architecture consisted of three
convolutional layers with data augmentation and a step decay
learning rate optimized for our dataset. Compared with the
conventional method (Mun et al., 2022), deep learning-based

analysis automatically extracts discriminative features from data
during the training process. The trained network then allowed for
predicting the class level of the GRC images with an overall accuracy
of 95.2%. The AUC values across the classes confirm the reliable
discriminating ability of the proposed network.

Deep learning is a method that enables automatic estimation of
representations required for classification or detection from raw
data (LeCun et al., 2015). Specifically, deep learning involves
multiple successive layers of representation using nonlinear
modules. Layered representations can then be learned from the
training data using a backpropagation procedure. These deep
learning methods have been successfully applied to multiple areas
of biomedical imaging, such as image classification, segmentation,
recognition, and diagnosis (Shen et al., 2017). However, in the field
of organ-on-a-chip technology, only a few recent studies have used
deep learning in their research domain (Li et al., 2022; Choi
et al., 2023).

CNN (LeCun et al., 1989; Gu et al., 2018), a subtype of deep
learning, offers the advantage of reducing the number of
parameters through the use of a shared-weight convolutional
architecture, while also leveraging image spatial structures via
filters. In this study, CNN methodology was applied to 3D cell
images acquired from an organ-on-a-chip system. In particular,
we utilized a series of image slices acquired at multiple locations
within the sample along the optical z-axis for the CNN analysis.
This approach enabled the utilization of spatial variances within
GRC images, both within individual slices and across multiple
slices, to classify distinct GRC levels of BC cells.

There are limitations to this study that need to be addressed.
One limitation of our study lies in the fact that we did not address
the out-of-focus issue, which resulted in blurry images from the
acquisition below and above the optimal focal plane. This out-of-
focus artifact can be corrected using deblurring algorithms based
on a cycle generative adversarial network (GAN) (Zhang et al.,
2022). CycleGAN can be used to learn the deblurring filter using a
pair of in-focus and the corresponding out-of-focus images. In
addition, we used only fluorescence images in our CNN analysis.
However, cell staining is time-consuming and may introduce
artifacts to cell morphologies during the process. One study
reported the potential application of a line detector-based
Hough transform (Parlato et al., 2017) for eliminating
unnecessary background, barriers, or channels from the
images of the microfluidic chip. Applying this method could
enable the use of unstained bright-field images for
straightforward morphological analysis. These techniques will
be explored in future studies.

Finally, the current dataset used in this study consisted of a
relatively small number of samples for each class. It is known that
overfitting can occur when using a small number of data in training
deep neural networks, and this prevents the generalization of trained
networks to new testing data (Chollet, 2021). Therefore, in order to
overcome this challenge, we further optimized the CNN
hyperparameters using standard data augmentation and the
predefined learning rate schedules. This resulted in an acceptable
classification accuracy of 95.2%, despite the limited number of
labeled training datasets. In addition, we attempted to address
the limitations of a small dataset by using transfer learning from
pretrained networks, MobileNetV2 (Howard et al., 2017) and
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Xception (Chollet, 2017). Specifically, we tested a pretrained
network on ImageNet as a feature extractor and fine-tuned it to
fit our dataset (GRC cell images). Supplementary Table S3 shows the
accuracy, sensitivity, and specificity of the pretrained networks in
the classification of GRC cell images based on GEM resistance levels.
Each value represents the mean and standard deviation of metric
scores over 10 folds. In the case of our dataset, the performance of
transfer learning from a pretrained network was worse than that of
training the proposed CNN network from scratch. This could be
attributed to the dissimilarity between our dataset, which comprises
BC cell images cultured in a 3D microfluidic chip, and the source
dataset of the pretrained network, ImageNet. To address this
concern, we performed fine-tuning on the pretrained network by
unfreezing the high-level layers. This allowed us to retain generic
features while enabling the learning of data-specific features from
our dataset. However, the highest classification accuracies for
MobileNetV2 and Xception were 85.7 ± 1.9 and 79.1 ± 1.0,
respectively, both lower than that of the CNN used in this study.
Although additional optimization is necessary for the pretrained
networks, given the limited size of our unique dataset (i.e., organ-on-
a-chip), utilizing a CNN with a small number of layers,
augmentation, a step decay learning rate, and training the
network from scratch prove to be a suitable approach. Data
augmentation still has limitations in generating synthetic images
with realistic and natural shapes based on the training dataset
because little additional information can be obtained from the
conventional modification to the images. Therefore, in future
studies, we will incorporate the GAN-based generation of
synthetic images for data augmentation (Frid-Adar et al., 2018)
into the current CNN framework. This may lead to a better
classification accuracy and utilization of 3D CNN for
accommodating the 3D structures of BC images along the
optical axis.

4 Conclusion

In this study, we propose a promising prognostic system that
enables the prediction of the extent of anticancer drug resistance in
BC by synergistically integrating organ-on-a-chip and deep
learning techniques. A large amount of data was acquired from
microfluidic chips mimicking the BC microenvironment,
according to the different anticancer drug resistance levels, and
was processed and analyzed using the CNN algorithm. Given the
complex and multiple classifications of GRC cell lines representing
the four different characteristics of drug resistance, this integrated
system exhibited high performance and accuracy in multi-class
classification to predict the level of anticancer drug resistance. The
lowest sensitivity and specificity were 82.8%, and 92.2%,
respectively. In the future, the application of patient-derived
cells to this system is expected to become a feasible method for
screening or predicting anticancer drug resistance levels in patients
from real culture images. Moreover, the chip systems coupled with
an automatic imaging system could accelerate the imaging and
overall processing time and can eventually be extended to diagnose
the other subtypes of cancers and diseases to make prognostic
predictions.
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