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Introduction: Running is one of the most popular sports in the world, but it also
increases the risk of injury. The purpose of this study was to establish a modeling
approach for IMU-based subdivided action pattern evaluation and to investigate the
classification performance of different deep models for predicting running fatigue.

Methods:Nineteen healthymale runners were recruited for this study, and the raw
time series data were recorded during the pre-fatigue, mid-fatigue, and post-
fatigue states during running to construct a running fatigue dataset based on
multiple IMUs. In addition to the IMU time series data, each participant’s training
level was monitored as an indicator of their level of physical fatigue.

Results: The dataset was examined using single-layer LSTM (S_LSTM), CNN, dual-
layer LSTM (D_LSTM), single-layer LSTM plus attention model (LSTM + Attention),
CNN, and LSTM hybridmodel (LSTM+CNN) to classify running fatigue and fatigue
levels.

Discussion: Based on this dataset, this study proposes a deep learning model with
constant length interception of the raw IMU data as input. The use of deep learning
models can achieve good classification results for runner fatigue recognition. Both
CNN and LSTM can effectively complete the classification of fatigue IMU data, the
attention mechanism can effectively improve the processing efficiency of LSTM
on the raw IMU data, and the hybrid model of CNN and LSTM is superior to the
independent model, which can better extract the features of raw IMU data for
fatigue classification. This study will provide some reference for many future
action pattern studies based on deep learning.
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1 Introduction

Running is one of the most popular and widely practiced sports in the world, but it carries a
significant risk of pain and injury (Gholami et al., 2020). As the number of people involved in
running continues to increase, studies have shown that up to 70% of regular runners suffer from
a running-related sports injury (Mitchell et al., 2015a). Running fatigue causes changes in
normal gait parameters and increases the risk of injury. In order to reduce the number of injuries
and increase the benefits of running, the running load, represented by the accumulation of
fatigue, needs to be managed appropriately (Andarawis-Puri and Flatow, 2011). Accurate and
real-time detection of fatigue during running activity can be employed to provide feedback to
runners to avoid over training and excessive loading that can lead to neuromuscular injury.
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Fatigue is a multi-factorial and complex phenomenon that affects
how an individual performs an activity. It is a key symptom in
defining frailty and aging problems, and in many cases, it is also a
major factor in inefficiency and reduced quality of life. During the last
decade, many researchers have been interested in the use of different
methods to assess fatigue (Lambay et al., 2021). Under laboratory
conditions, fatigue assessment is typically performed using 3Dmotion
capture systems, which are expensive and obstructive owing to the
application of skin-mountedmarkers. In addition, data processing can
be time consuming and often requires specific expertise to interpret
the processed data and make recommendations regarding the
observed results. In real-world scenarios, most fatigue identification
and management is based on subjective scales of fatigue perception
(Winter, Gordon, and Watt, 2017), and one of the most commonly
applied protocols in physical monitoring is the Borg Rating Perceived
Exertion and Fatigue (RPE) Scale, where a lower number represents a
non-fatigued state and a higher number represents an exhausted state
(Scherr et al., 2013). This method can quantitatively characterize the
degree of fatigue. However, as with most questionnaire-based
methods, recall bias and validity deficiency can be unavoidable in
such subjective approach (Soriano-Maldonado et al., 2014).

The field of wearable technology has made tremendous progress
in recent years, with breakthroughs in cost, ease of wear, and wear
interference, and is now the primary device for measuring physical
activity (Hilty et al., 2021). Although researchers have conducted
numerous studies on human motion analysis and action
recognition, studies on fatigue prediction and estimation are still
limited (Jiang et al., 2021a). In contrast to the subjective and
discontinuous RPE method, inertial measurement units (IMUs)
can provide dynamic data related to motor fatigue, which
contains kinematic and kinetic information that can reveal
changes due to physical fatigue (Harper et al., 2022). Unlike
action recognition, fatigue gait is a different pattern of the same
type of action and requires a more nuanced understanding of the
action. Most of the existing research has been tested in laboratory
scenarios, and there is a lack of applied research in real outdoor
scenarios (Taylor-Covill and Eves, 2013; Fohrmann et al., 2022).
Additionally, most of the studies on fatigue monitoring and
classification adopt traditional classifiers for simple binary
classification, while from the perspective of practical applications,
not only the determination of fatigue or not, but also the generation
and development of fatigue should be considered to identify the
fatigue level (Delgado-Álvarez et al., 2022). Meanwhile, existing
studies have mostly used feature engineering of a single IMU to
construct datasets, and there is no multi-classification dataset based
on raw time series for the time being (Garcia-Gonzalez et al., 2020).
In addition, it is not clear to what extent running fatigue affects each
part of the lower extremity and its representation on IMU data, and
it is necessary to construct a multi-classification running fatigue
database based on multi-site IMU.

Machine learning models, especially some recently proposed deep
learning methods, provide prediction possibilities for a wider range of
domains. The development of deep neural networks makes it possible
for learningmodels to directly manipulate the raw data, thus reducing
the workload of feature extraction, i.e., features and the extraction
process based on empirical judgments are no longer necessary (Tunca
et al., 2020). Different from traditional machine learning methods,
with deep learning, we can greatly reduce the workload of feature

production, and the model can automatically learn deeper and more
advanced hidden features in the data by training an end-to-end neural
network. In addition to traditional classifiers, optimized deep learning
models can be built from IMU data features to evaluate driving fatigue
action patterns (Zhang et al., 2021).

It is worth emphasizing that in the development of deepmodels, the
deep models commonly used for action pattern recognition include
Convolutional Neural Network (CNN), Long Short-Term Memory
Network (LSTM), Attention Mechanism (Attention) and its hybrid
models (Ye et al., 2021;Wang, 2022). CNN can extract effective features
from signals and has achieved good results in speech recognition, image
classification, and text analysis. It has been shown that CNN can retain
the correlation between the before and after signals in human action
recognition relative to other models when classifying time-series data in
human action recognition (Wang et al., 2022). LSTM is a typical
representative of recurrent neural networks, which has been widely
used in fields such as handwriting recognition (Graves et al., 2009),
character generation (Ergen and Kozat, 2017), automatic language
translation (Tang et al., 2020), speech recognition (Coto-Jiménez,
2019), video processing (Song et al., 2019), and so on. Recently,
LSTM has gradually gained attention in gait and action recognition,
and researchers have mainly used machine vision and wearable sensors
to explore its applications (Ordóñez and Roggen, 2016).

Therefore, this study constructs fatigue prediction deep models of
independent single/dual layer LSTM, CNN, LSTM with attention
mechanism, and hybrid model of CNN and LSTM, respectively, in an
attempt to establish a modeling approach for IMU-based subdivided
action pattern evaluation and explore the classification performance
of different deep models for predicting running fatigue.

2 Materials and methods

2.1 Subjects and data collection

Nineteen healthy male runners (age: 28.2 ± 4.8 years, height:
174.6 ± 5.7 m, and body mass: 72.4 ± 5.3 kg) were selected for the
experiment; subjects were free of significant physiological disorders
and musculoskeletal injuries. Subjects were informed of the

FIGURE 1
Top view of the test area.
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experimental protocol, signed an informed consent form before
participating in the test, and consented to the release of their images
or videos in publications related to this experiment. All subjects had
a running habit for more than 12 months, with an average of more
than 2 times per week and an average weekly running volume of
more than 10 km. The best performance of 10 km within 6 months
before the test was counted and the average speed was calculated.
The study protocol was approved by the College Human Research
Ethics Committee (20211227H03) and written informed consent
was obtained from all subjects prior to participation.

The test protocol was implemented on a standard athletic track
(Figure 1) and fully explicated to the subjects before fatigue test. The
use of Borg RPE 6–20 scale (Borg, 1970; Scherr et al., 2013) was
explained to the subjects prior to the experiment. Prior to formal
protocol all subjects performed a warm-up of 2 laps of jogging,
followed by any necessary stretching was performed. The running
fatigue test consisted of three consecutive parts.

(Ⅰ) The first test was performed according to the fatigue protocol,
which involved running 10 laps at a constant speed for a total
distance of 4,000 m in the first lane. An electric bicycle was used
in the second lane to control the speed, using the average speed of
the individual’s best 10 km performance in the previous
6 months. Meanwhile, the rider was required to keep the
speed as constant as possible. The RPE scale was recorded
every 400 m through verbal questions and answers.

(Ⅱ) In the second test, a core process of fatigue was implemented.
The runners entered it from the first test without interval, the
initial speed of the second test was the same as the first test, and
then increased by 0.2 km/h every 100 m. The protocol was

applied by using electric bicycle guidance as first test. The
speed was increased at the four intersections of straight and
curved lanes. The RPE value was recorded every 100 m. The
speed increment was continued until the participant was unable
to follow or the RPE value was greater than 16 (very difficult)
(Marotta et al., 2021). Due to inter-individual differences in
physical ability, participants completed different distances in
this part.

(Ⅲ) The third test was transited from the second test consecutively,
in which the speed was reduced so that to keep as same as the
first test. The total running distance in the third part was
1,200 m. RPE value was recorded every 400 m.

During the test, a Garmin sports watch (Fenix Chronos, Garmin,
United States) was used to record and display the running pace,
speed and heart rate (HR) information. One physiotherapist
attached the IMUs to pre-determined specific anthropometric
locations (Figure 2) on the participant. Nylon elastic bands with
pocket buckles were used to fix the three IMUs to the subject’s right
lower limb (LL), upper part of lower limb (UL), and pelvis (PEL)
positions. The shank IMU was placed 2 cm above the lateral ankle
condyle (marginal distance), the thigh IMU was placed at the lateral
part of the mid-lower thigh, and the pelvis IMU was placed at the
fifth lumbar vertebra. The orientation and location of the IMUs was
consistent across all subjects.

2.2 Fatigue stage identification

In order to deeply understand the generation and development
of fatigue, according to the division method of Marotta et al.
(2021), the first part was divided into two stages: the first 2,000 m
was defined as the initial fatigue stage (Pre), the second 2,000 m
was defined as the middle fatigue stage (Mid), and the 1,200 m of
the third part after the acceleration running intervention was
defined as the late fatigue stage (Post). In the experimental
design, the running speed was the same in the three stages. In
the construction of the dataset, the interval was divided according
to RPE, with the early fatigue data intercepted in the first stage, the
mid-fatigue data intercepted in the second stage, and the post-
fatigue data intercepted in the 1,200 m after the acceleration. Based
on the principle that individual RPE values did not overlap
between the three stages, the detailed division of each stage is
shown in Figure 3. This deep learning model took the raw IMU
data as input, without dividing the gait cycle, and directly
segmented the labeled intercepted data according to a constant-
length window.

2.3 Data processing and statistics

Three WT901SDCL IMUs (Wit-motion Technologies,
Shenzhen, China) were used for data acquisition. All IMU ranges
were set as: triaxial accelerometer (±16 g), gyroscope (±500°/s), and
magnetometer (±12 Ga). Based on the Shannon sampling theorem
and the Nyquist criterion, a sampling frequency of 200 Hz was
chosen. To avoid time-base errors between different IMUs, the
IMUs were calibrated before each test and frame synchronization

FIGURE 2
Measurement setup of inertial sensors (LL for lower limb, UL for
upper part of lower limb and PEL for pelvis).
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was performed with the local acceleration generated by the vertical
straight knee drop landing (Mitchell et al., 2015). A Kalman filter
was used to estimate the 3D orientation by fusing the accelerometer,
gyroscope, and magnetometer data (George et al., 2020). The raw
accelerometer and gyroscope data were low-pass filtered using a
fourth-order Butterworth filter with a cut-off frequency of 15 Hz
(O’Reilly et al., 2017).

Data were expressed as mean ± standard deviation (M±SD), and
one-way analysis of variance (ANOVA) was performed using SPSS
26.0 statistical software (SPSS Science, Chicago, United States) for
data in the early, middle and late stages of fatigue, and the
significance level was set at α = 0.05.

2.4 Raw time series selection

The deep model uses the raw time series data as input for
validation, and the data directly sampled from the IMU include the
tri-axis acceleration (ACC) (ax, ay,az) and the tri-axis angular
velocity (GYR) (gx,gy,gz). To facilitate the model calculation, the
Kalman filtering method is used to calculate the tri-axis positional
angle (POS) (px,py,pz), i.e., the complete time series at any time (t)
can be expressed as follows:

x � ACC t( ),GYR t( ), POS t( )[ ] (1)
The dataset includes data from all subjects in the fatigue test. The

input of each time series tries to contain signals of more than one
complete gait cycle (Tran et al., 2021). That is, the intercept criterion
for constructing the input series is as follows:

Nc ≥ f sT (2)
Where Nc is the intercept length, f s is the IMU sampling

frequency, and T is the gait cycle, whereby the time length is set
to 200 consecutive sampling points (i.e., 1 s of data), which is
sufficient to cover a complete gait cycle.

To achieve ideal prediction results, deep neural networks
generally require a large amount of data as support (Poulose
et al., 2022). When dividing the original data, different overlap
degrees are set for data segmentation. Specifically, two methods are
used to construct the data set, both of which use sliding windows for

data interception with a window length of 200 and overlap settings
as follows:

First, the segmentation was performed using no overlap
(Overlap was set to 0%, the step length was 200) to obtain a 0%
Overlap dataset without overlap, with a total number of 17,174 data
subsets.

Then, half of the window length was used as the overlap
(Overlap was set to 50%, the step length was 100) for
segmentation, and the 50% Overlap dataset with 50% overlap
was obtained, and the number of subsets in the dataset was 34,334.

In this study, a random shuffle operation (shuffle) was
performed on the dataset. Using a 9:1 ratio, 90% of the full data
set was used as the training set and the remaining 10% was used as
the test set. The training set was then divided again using an 8:
2 ratio, 72% of the full data set was used as the training subset and
18% as the validation set.

To investigate the effects of accelerometer and gyroscope on
model prediction, three different data combinations were used to
compare the effects of different training inputs on fatigue prediction
results in the same dataset, based on acceleration and gradually
adding angular velocity and Eulerian angles, as described in Table 1.

The overall flow of data computation is shown in Figure 4, where
the deep learning model is completed using the raw time series of the
constant-length dataset.

2.5 Deep learning model

In the study of fatigue classification using raw time series as
input, the effects of different deep learning neural network models
were compared. Specifically, single-layer LSTM (S_LSTM), CNN,
dual-layer LSTM (D_LSTM), single-layer LSTM plus attention
model (LSTM + Attention), CNN and LSTM hybrid model
(LSTM + CNN) are used.

The LSTM adapts two different models for the raw data
sequence, which utilizes a sequential structure that linearly stacks
multiple network layers (Schmidhuber, 2015). Comparing the
differences of different neural network architectures of one or
two LSTM layers, in order to unify the scattered data, the data is
batch standardized after the LSTM layer, and then a dropout layer is

FIGURE 3
Test program process and fatigue stage division.
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added to prevent overtraining (overfitting), and finally a fully
connected dense layer is added to limit the weights and avoid
too large. The weights in this layer are regularized, and the
output of this layer is also regularized. The unit number of
LSTM parallel hidden layers is set to 128, and the input
dimension input_shape is set to (200, input_dim), where
200 represents the length of the input sample sequence, which is
actually one second of data according to the sampling frequency.
Input_dim is the dimension selected for the data. To avoid
overfitting during model training, the neural network units are
temporarily removed from the network during training according
to a certain probability ratio, that is, a Dropout layer is added after
the LSTM layer with a Dropout ratio of 0.5. The fully connected
dense layer is added after the Dropout layer, and softmax is used for
the activation function, L2 regularization is used, and the constraint
ratio is 0.01. The maximum number of training iteration epochs is
set to 200 and the batch size is set to 256. Meanwhile, the model loss
function loss is tracked by the EarlyStopping mechanism, and
training is stopped early after 14 iterations without loss reduction.

Specifically, the CNN model consists of four convolutional
layers and two pooling layers (Ma et al., 2022). The
convolutional layer extracts data features along the time series
direction, while the pooling layer is used to calculate local
sensitivity and perform secondary feature extraction and
calculation. The pooling layer maintains the feature invariance
while reducing the feature dimension (reducing the number of
parameters to be optimized), and using global max pooling
instead of average pooling. Finally, the output results of the
convolutional layer and the pooling layer are converted to

dimensions, and the multi-dimensional input is one-dimensional
(Flatten layer) and input into the fully connected layer (Dense layer).
The activation function used by the convolutional layer in CNN is
ReLU, while the activation function used by the fully connected layer
is softmax. Table 2 shows the specific structure parameters of
the CNN.

The dual-layer model structure is similar to the single-layer
LSTM structure, the first LSTM layer with the number of hidden
layers unit is still set to 128, the input dimension is the same as the
single-layer structure, the difference is that the first LSTM layer can
return a 3D tensor as input for the later layers, a second LSTM layer
is added after the first layer (the number of hidden layers unit is set

TABLE 1 Time series dataset information description.

Dataset name Data selection (dimension) Subset length Split overlap (%) Number of subsets

0%Overlap ax, ay, az 200 0 17,174

ax, ay, az, gx, gy, gz 200 0 17,174

ax, ay, az, gx, gy, gz, px, py, pz 200 0 17,174

50%Overlap ax, ay, az 200 50 34,334

ax, ay, az, gx, gy, gz 200 50 34,334

ax, ay, az, gx, gy, gz, px, py, pz 200 50 34,334

Note: ax, ay, az refer to the tri-axis acceleration, gx, gy, gz refer to the tri-axis angular velocity, and px, py, pz refer to the tri-axis attitude angle.

FIGURE 4
Flow of data processing.

TABLE 2 Structure of CNN model with ACC + GYR as input.

Layer (type) Size Output shape Param #

conv2d (Conv2D) 18*1 (None, 100, 6, 32) 608

max_pooling2d (MaxPooling2D) 2*1 (None, 50, 6, 32) 0

conv2d_1 (Conv2D) 9*1 (None, 50, 6, 64) 18,496

conv2d_2 (Conv2D) 3*1 (None, 50, 6, 128) 24,704

max_pooling2d_1 (MaxPooling2D) 2*1 (None, 25, 6, 128) 0

conv2d_3 (Conv2D) 1*6 (None, 25, 1, 128) 98,432

flatten (Flatten) -- (None, 3,200) 0

dense (Dense) -- (None, 3) 9,603

Total params: 151,843; Trainable params: 151,843; Non-trainable params: 0.
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to 64), and a dropout layer is added after each layer. The fully
connected Dense layer configuration is the same as the single-layer
model. The same regularization, learning rate scheduling, and early
termination mechanisms are used in training.

In the single-layer LSTM plus attention model, the calculation
based on the attention mechanism mainly includes the following
two parts: first, the attention distribution of all the input information
is calculated, and then the weighted average calculation of the input
information is completed according to the distribution (Lin et al.,
2021). Set the input as:

X � x1,/, xn[ ] (3)
Given a task related query vector q, computed under given q and

x, select a particular input vector of probability is expressed as:

αn� softmax s xn, q( )( ) � exp s xn, q( )( )
∑N

j�1 exp s xj, q( )( )
(4)

Where α_n is the attention distribution, a softmax-like
computational method is introduced to numerically transform the
scores so that the data can be normalized and the originally computed
scores can be transformed into a probability distribution with the sum
of all element weights equal to 1. s (x, q) is the attention scoring
function used to compute the similarity or correlation between the
two. For the specific calculation, additive, dot product, and bi-linear
calculation methods can be used. This model is computed using the
dot product with scaling correction as follows:

s x, q( ) � xTq��
D

√ (5)

Where D is the dimensionality of the input vector and plays the
role of scaling correction. When the dimensionality D of the input
vector is relatively high, the result of the dot product usually has a
larger variance, which leads to a smaller gradient of the softmax
function, and the scaling-corrected dot product model can solve this
defect.

Finally, by weighted averaging, the attention distribution α can
be interpreted as the degree of attention (weight) of the α_n input
vectors x_n for a given task-related query, and the input information

is aggregated using the information selection mechanism to obtain
the attention value:

Attention x, q( ) � ∑
N

n�1αnxn (6)

Layer LSTM combined with attention model is to add attention
mechanism based on single-layer LSTM, that is, add attention layer
after dropout layer of LSTM, and the detailed structure is shown in
Table 3.

Consider that the data of the three axes of the accelerometer are
expressed with certain internal connections (constraints) at the same
moment, and that the data of the accelerometer and gyroscope also
have a certain correlation. Therefore, when the data are presented,
the six axes of IMU data constitute the temporal data in the vertical
time axis and also the series in the horizontal direction. This allows
either CNN or LSTM to process the data structure, taking into
account the temporal and spatial information of the signal. When
constructing the model, the original signal array is passed through
LSTM and CNN respectively to learn the temporal and spatial
features, and the feature expression ability is enhanced by
information fusion.

In this study, the LTSM in the CNN and LSTM hybrid model
adopts the single-layer LSTM network introduced above, and the
CNN adopts the same structure as the independent CNN model to
learn features separately. The features learned by the two models
are concatenated in parallel, and then input to the following layer
(fully connected layer) for recognition. The structure is shown in
Figure 5.

The output feature vectors of LSTM and CNN are
concatenation, and the combined results are input into the fully
connected layer. Finally, the softmax function is used to complete
the model prediction, and the fully connected layer in all models is
described as follows:

f x( )� ∑wx + b (7)
ŷ � softmax f x( )( ) (8)

Where f(x) is the output of the previous layer,w is the weight, b
is the bias, and ŷ is the output of softmax. Based on this, the cross-
entropy loss function is constructed:

loss� − 1
n
∑p x( )lnq x( ) (9)

Where n is the number of classifications, p is the true value, and
q is the predicted value.

All models were trained using TensorFlow2.0 deep learning
framework, Python version 3.7.9, Pandas and Numpy packages were
used for basic data operation and processing, and the deep model
was built using Keras learning package. The computer configuration
uses Intel dual-core i7-6600U (2.60GHZ), 8 GB memory, graphics
card NVIDIA GeForce 930M.

3 Results

3.1 Comparison of fatigue stages

The fatigue RPE values and HR statistics for the three stages of
the experiment are shown in Table 4.

TABLE 3 Structure of LSTM plus Attention model.

Layer (type) Output shape Param #

lstm (LSTM) (None, 200, 128) 70,656

dropout (Dropout) (None, 200, 128) 0

last_hidden_state (Lambda) (None, 128) 0

attention_score_vec (Dense) (None, 200, 128) 16,384

attention_score (Dot) (None, 200) 0

attention_weight (Activation) (None, 200) 0

context_vector (Dot) (None, 128) 0

attention_output (Concatenat) (None, 256) 0

attention_vector (Dense) (None, 128) 32,768

dense (Dense) (None, 3) 387

Total params: 120,195; Trainable params: 120,195; Non-trainable params: 0.
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The subjects were not counted because of inconsistencies in
distance and duration of running during the acceleration to fatigue.
The RPE values for the three stages presented an upward trend, and
a one-way ANOVA indicated that the comparison of data between
any two categories was statistically significant (p < 0.05). For the HR
data, the comparison of data between the three stages had a
significant difference (p < 0.05).

3.2 Performance of the deep learning
models

A single IMU was used to construct the dataset based on the raw
data series with different constructions. The results of the fatigue
classification accuracy in different models are shown in Table 5.

Using a single LL IMU data, the training results of different
models on the two datasets showed that the 50% overlap dataset
outperformed the 0% overlap dataset overall for fatigue classification
using the same model approach, with a 4.51% difference in the
lowest accuracy value and a 1.95% difference in the highest accuracy
value between the two datasets.

Comparing the classification effects of different models, the
dual-layer LSTM model was better than the single-layer LSTM
model, while the LSTM + Attention model was better than the

dual-layer LSTM model; the multi-layer CNN model had a slightly
higher recognition effect than the dual-layer LSTM model; the
hybrid LSTM + CNN model and LSTM + Attention had similar
accuracy, and the highest classification accuracy appeared in these
two models. In terms of data interception, compared to using ACC
in three directions as input, increasing the input dimensions
improved the prediction accuracy of most models. In the CNN
model, the superposition of UL and LL IMU, ACC and GYR did not
bring any improvement. The magnitude of improvement brought by
adding POS was higher than that brought by adding GYR. The
minimum accuracy of all models was 84.92% and the maximum
accuracy was 99.62%.

Comparing the classification results using ACC alone with those
using GYR alone, the classification effect of ACC was higher than that
of GYR in the LSTM model, whether it was single-layer LSTM, dual-
layer LSTM, or LSTM + Attention. In the CNN model, the
classification effect of ACC was inferior to that of GYR, and in the
LSTM + CNN model, the classification effect of ACC was close to or
inferior to that of GYR. For example, the classification accuracy of
IMU in LL was 3%, 1%, and 3% higher than that of GYR in the single-
layer LSTM, dual-layer LSTM, and LSTM + Attention models,
respectively, while in the CNN and LSTM + CNN models, the
classification accuracy of GYR was slightly higher than that of ACC.

Comparing the classification accuracy of ACC + GYR and GYR,
the performance of different models varied greatly by adding GYR
based on ACC. And the single-layer LSTM showed the greatest
improvement in performance, with almost 5% improvement over
PEL. However, in the CNN model, the data of PEL and UL showed
that the former was even 1.52% lower than the latter, and the
recognition accuracy of mixed data on CNN + LSTM did not
improve.

FIGURE 5
Structure of the LSTM+CNNhybridmodel. Note: ax, ay, az refer to the tri-axis acceleration, gx, gy, gz refer to the tri-axis angular velocity, and px, py,
pz refer to the tri-axis attitude angle.

TABLE 4 Three stage RPE values and HR (times/min).

Stages Pre Mid Post

RPE 6.6 ± 0.8 11.9 ± 1.1 15.2 ± 1.5

HR 163.2 ± 4.9 171.8 ± 5.0 178.0 ± 4.8
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The recognition accuracy of different parts of IMU was
compared, and based on individual IMU, the recognition rate of
LL was the highest, which was significantly better than that of UL
and PEL. Using the raw data of ACC and GYR as input, the
recognition rate of UL was 96.21%, which was higher than
92.46% for PEL IMU (Table 5).

The confusion matrix of the CNN model with ACC + GYR as
input from the 50% overlap data set using a single sensor of the LL is
shown in Figure 6. From the results, it could be seen that the model
prediction error points out the confusion of pre-fatigue and mid-
fatigue data, that is, about 3% of the pre-fatigue period data was

TABLE 5 Classification accuracy of different models based on raw IMU data (Accuracy, %).

Name of data set Data source S_LSTM CNN D_LSTM LSTM + Attention LSTM + CNN

LL 0%Overlap ACC 85.39 86.50 88.94 88.53 88.16

GYR 84.92 92.78 87.19 85.10 93.19

ACC + GYR 89.35 89.41 90.57 90.57 89.64

ACC + GYR + POS 96.80 97.32 96.68 97.15 97.67

LL 50%Overlap ACC 92.46 95.69 93.94 95.22 96.59

GYR 89.43 95.86 92.87 92.37 95.69

ACC + GYR 93.45 96.21 94.82 95.31 95.66

ACC + GYR + POS 98.17 99.33 99.13 99.18 99.62

UL 50%Overlap ACC 89.55 89.08 91.50 92.46 89.90

GYR 86.86 92.69 88.09 90.65 92.72

ACC + GYR 90.19 90.91 93.16 93.30 90.77

ACC + GYR + POS 95.95 97.57 97.18 98.51 98.34

PEL 50%Overlap ACC 87.16 86.60 88.53 90.01 89.43

GYR 85.73 91.88 89.46 88.61 91.47

ACC + GYR 90.36 90.36 89.81 92.46 91.44

ACC + GYR + POS 96.85 96.97 96.74 97.29 97.09

Note: LL, low limb sensor; UL, upper part of lower limb sensor; PEL, pelvis sensor; ACC, tri-axis acceleration; GYR, tri-axis angular velocity; POS, tri-axis pose angle.

FIGURE 6
Confusion matrix of LL IMU with ACC + GYR input to CNN.

FIGURE 7
Confusionmatrix of LL IMUwith ACC+GYR + POS input to LSTM
+ Attention.
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falsely predicted as the mid-fatigue period data, while about 4% of
the mid-fatigue data was falsely predicted as the pre-fatigue data.
The incorrect intersection of mid-fatigue and late-fatigue data was
about 1% of the total data.

The confusion matrix of the LSTM + Attention model output
using the 50% overlap data set with a single sensor in the LL, with
ACC + GYR + POS as input, is shown in Figure 7. From the
confusion matrix, it could be seen that the model prediction error
occurred when the real post-fatigue was predicted as pre-fatigue and
mid-fatigue, that is, about 1% of the post-fatigue data was falsely
predicted as pre-fatigue, and about 1% of the post-fatigue data was
falsely predicted as mid-fatigue.

4 Discussion

The RPE statistics of the three stages showed that the RPE data
gradually increased with the increase of exercise duration and the
difference between the three stages was obvious. Although the
running speed of the subjects remained constant during the three
periods of data collection, the heart rate after accelerated running
was significantly higher in the third stage than in the second phase
(p < 0.05). Combined with the RPE values, the efficacy of the
accelerated running intervention in producing exercise fatigue
was further confirmed.

The use of wearable devices to identify and predict human
fatigue is a recent research focus. Previous studies have shown that
fatigue impairs cognition and affects motor performance, which
reduces movement efficiency and increases the risk of injury, thus
objective measures of fatigue are critical in areas such as
occupational health and safety (Adão Martins et al., 2021). The
ability of wearable devices to continuously monitor biomedical
signals for a long-term period in an unattended environment,
while being non-invasive and comfortable, provides us with a
very powerful solution for fatigue monitoring. In our study, by
comparing the fatigue classification effect of the two datasets with
different overlaps, it can be seen that the performance at 50%
Overlap is higher than that at 0%Overlap using the same model,
with a maximum difference in accuracy of 9.19% and a minimum
difference in accuracy of 1.95% for the two datasets. It indicates that
setting half of the moving window length as the step overlap (50%
Overlap) effectively improves the performance of the model while
expanding the capacity of the dataset, which is consistent with the
findings of some previous studies using IMU that data enhancement
of the IMU dataset allows the model to characterize the data
information more deeply, improving the generalization ability of
the model and avoiding overfitting (Tran et al., 2021; Mitchell et al.,
2015).

Zou et al. (2020) showed that the contribution of the
acceleration signal in the IMU contributed more to the
recognition than the angular velocity signal from the gyroscope,
and it concluded that the accelerometer was superior to the
gyroscope for characterizing gait characteristics. In this study, the
fatigue classification results of the PEL IMU data showed that using
the same model with only gyroscope data and only acceleration data
as input, the former had an overall significantly better classification
effect than the latter. It can be speculated that in gait individual
recognition, the weight of segment acceleration may be higher than

the segment swing, so the acceleration recognition effect is better
than gyroscope. While in studying the effect of fatigue on human
body, the change of the amount of information related to link swing
bearing may be greater than the change of information of impact
buffer, resulting in the gyroscope recognition effect is better than
accelerometer.

In terms of data inputs for fatigue prediction, the inclusion of the
GYR signal improved the model performance, indicating that the
effect of fatigue on running is not only reflected in impact, but also in
limb oscillation and twisting. The inclusion of the POS signal in the
input substantially improved the discrimination of the fatigue level,
indicating that the IMU posture corresponding to the limb changes
the action pattern in running. In the selection of data sets, the study
on the recognition of abnormal gait patterns of the lower limbs
showed that different signal composition of the IMU would have
different effects on the model. For example, Kiprijanovska et al.
(2020) used the IMU in a smartwatch with data from
accelerometers, gyroscopes and magnetometers as inputs in
independent or different combinations, and showed that the
combination of accelerometers and gyroscopes can improve the
accuracy of a single accelerometer from 85.8% to 87.8%, and the
model accuracy is also significantly higher with three sensors fused
as input than the results with only two sensors.

Differences in exercise protocols may contribute to differences
in performance between data sets. Different exercise regimens
produce fatigue by different mechanisms, which may also affect
the biomechanical performance of fatigue. O’Reilly et al. (2017)
performed fatigue tests using the Leger standard test method, in
which subjects performed progressive strides (with increasing
cadence) on a 20 m track according to a signal cadence. And
Karvekar et al. (2021) used a fixed frequency squatting protocol
to induce fatigue.

This study adopted a fatigue exercise protocol similar to that of
Marotta et al. (2021) was used, with a before-and-after comparison
of constant speed running followed by the addition of variable speed
running with incremental loading and then a return to the original
constant speed running. Obviously, there are some differences in
muscle recruitment as well as energy utilization between progressive
folding running and squatting protocols, with the former being
closer to a whole-body process of transition from aerobic to
anaerobic exercise, whereas the latter focuses on fatigue of
localized muscles in the thighs. Although, according to the
definition of exercise fatigue, it is determined when the
physiological processes of the body cannot continue to be
performed at a certain level and/or cannot maintain the booked
exercise intensity during the exercise, due to the difference in energy
metabolism between constant speed running and variable speed
running, the fatigue of the former is often related to the inhibition of
energy reserve utilization processes, while the latter is clearly
characterized by intra-muscle cell metabolic changes leading to a
decrease in the rate of ATP conversion (Ament and Verkerke, 2009).
Therefore, these differences may also lead to different patterns of
changes in lower limb movement, resulting in differences in the
classification effect of fatigue.

Currently, many deep learning studies use CNN models that
focus more on extracting spatial information, while the temporal
characteristics of the gait cycle are equally important from a gait
perspective (Tran et al., 2021). This study proposes a relevant
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LSTM-based model for fatigue recognition, which can bypass the
conventional idea based on gait cycle segmentation and, instead, use
a direct constant-length (time) interception method. Moreover, the
accurate segmentation of gait cycles is inherently a challenging task
that is influenced by the IMU wearing position, wearing firmness
and gait event detection algorithms. The accuracy of gait cycle
segmentation will undoubtedly have an impact on subsequent
detection, as it is often accompanied by large noise during
interception and constant-length transformation. The results of
this study showed that the LSTM and CNN based models can
extract the hidden features of gait sequences without synchronizing
the sequence signals, and achieve the classification of different
fatigue levels.

The number of layers of the LSTM determines the number of
training model parameters, and the more layers, the more
parameters (Xue et al., 2022). A single-layer model tends to
imply a simple model structure, but is not flexible enough and
easily underfitted, while the probability of overfitting increases as the
number of model layers increases, and too many layers can easily
weaken the generalization ability of the model. The comparison of
the fatigue prediction results from single-layer LSTM and dual-layer
LSTM showed that the increasing the number of layers improves the
prediction accuracy. This study demonstrated that the dual-layer
LSTM can perform the recognition task well by using raw IMU data
as input. In this study, in addition to the single-layer LSTM model
and the dual-layer LSTMmodel, a hybrid model based on LSTM and
Attention is proposed, which can further reduce the confusion in the
recognition of adjacent motion stages and thus improve the fatigue
prediction performance. The attention model has two advantages:
first, it can reduce the computational burden of processing high-
dimensional data sets by structurally selecting a subset of the input,
which can effectively reduce the dimensionality of the data. Second,
it allows the model to focus more on finding the correlation between
the input data and the current output, thus improving the
performance of the output. The ultimate goal of the attention
model is to help the network better learn the interrelationships
between multiple content modalities so that it can better represent
this information and overcome its inability to explain the drawbacks
of a more difficult design (Lim and Zohren, 2021). From the results
of this study on fatigue prediction based on IMU time series data, it
can be seen that the attention mechanism is suitable for the inter-
map relationships between different modal data, which may be
difficult to interpret, hidden and complex in IMU data, but it does
not affect the expression of the model. In short, the introduction of
the attention mechanism can make the LSTM model more effective
for the processing of IMU data.

Temporal information of human motion can provide important
information for action patterns recognition, and CNN focuses more on
data features at specific time points, which may reasonably ignore some
information (Ji et al., 2013). The LSTM used in this paper is a typical
recurrent neural network (RNN)model, and the twomechanisms work
independently and then merge in the hidden layer, which can better
extract the features of the temporal signal. The good performance of
CNN and LSTM hybrid models can be interpreted as CNNs extract
spatial features from local time regions, while LSTMs focus on the
overall (long-term) features, and CNN models alone have better
discrimination than LSTMs, and their classification performance is
even close to that of hybrid models. Davidson et al. showed that CNN

models perform best for classification of time-series data (Davidson
et al., 2020), which is also similar to the findings of Jiang et al. (2021b)
that the deep ConvLSTM model performs similarly to CNNs.
Compared with RNN models, which are commonly used for
classification of time-series data, the convolutional layer of the CNN
is better able to learn the deep features contained in recursive patterns.
Since the input of the deep model is raw IMU data, which is sequential
data that contains both temporal and spatial information, the
importance of CNN for fatigue prediction can be affirmed
accordingly. In addition, the introduction of Attention or CNN in
the model, while improving the performance of the model for fatigue
recognition, has the advantage of being executed in a more time-
efficient manner compared to the multi-layer LSTMmodel. Because an
important shortcoming of multi-layer LSTM is that the model training
process takes too long to compute (Balaji et al., 2021), while the
introduction of Attention and CNN can effectively reduce the
number of training parameters, thus making the network training
process of more efficient.

Using the raw IMU data as input, the IMU fatigue classification
results from different parts of the IMU showed that the LL IMU also
performed much better than the PEL IMU. This is consistent with
the results of Marotta et al. (2021), whose study found only 61%
recognition accuracy for the lumbar region, but 76% for the calf.
However, it is not consistent with the results of O’Reilly et al. (2017),
whose study found 75% identification accuracy for the lumbar
region, but only 67%–70% accuracy for the calf. The prediction
models used in both studies were random forest models, and both
used feature engineering as input for fatigue prediction and
classification. Furthermore, Karvekar et al. (2021) also used
feature engineering to classify gaits with different stages of
fatigue through support vector machine algorithm and reported
that the classification accuracy was only 78%. In contrast, in this
study, raw data was used for segmentation and directly as input for
training. In terms of classification results, the accuracy of all deep
learning models based on raw data can reach more than 85%, which
may obtain better classification results than feature engineering.

This study also found that the classification results for the LL
IMU were significantly better than the UL IMU, while the UL IMU
outperformed the PEL IMU. Consistent results were obtained
regardless of whether a dual-layer LSTM, CNN, or LSTM +
CNN model was used. The difference in classification results
with ACC as input reached 5%–9%, while the difference was
reduced to 2%–3% with the three signals as input. From the
perspective of biomechanics, due to the role of human skeletal
muscle system, the upward transmission process of ground impact is
an attenuation process, so the closer to the ground, the more
information it contains about the impact, reflecting the swinging
and braking information of the distal extremity of the lower limbs.
Certainly, because the IMU is attached to a unilateral limb, it
contains less information about the symmetry of the lower limb.
In contrast, the lumbar IMU reflects relatively more symmetry
information, but it contains relatively less motor control and
impact information of the terminal limb.

From the classification differences of IMU in different parts, it
can be seen that the unilateral limb has a higher degree of
discrimination than the lumbar site, that is, in the process of
running to fatigue, the biomechanical influence of fatigue on the
periodic movement of the lower limb terminal segment is higher
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than its influence on the center of gravity. Considered from the
perspective of motor control, it can be explained that the human
body regulates and controls the foot-ground interaction pattern to
maintain the relative stability of the upper limb (including the trunk)
by absorbing the impact of the distal limb after fatigue.

5 Limitation

There are also some limitations in this study. First, in this
experiment, the IMU is fixed by nylon elastic band, and the
relative movement with the human body is small. The direction
of the IMU relative to the fixed segment is consistent for all subjects
during the test, but it is difficult to require this in practical
applications, so the subsequent research needs to consider the
direction of IMU, and increase the noise interference caused by
the IMU rotation, and improve the generalization ability of the
neural network model. Second, although the samples were
intercepted with constant-length, since the samples did not cover
multiple continuous gait cycles, this study only considered the
variation within the gait cycle, and still did not consider the
absolute long-range relative relationships during the gait cycle,
such as gait stability, symmetry, and variability. Future research
can start from these perspectives and even consider the long-range
nonlinear characteristics of gait to construct better predictive
classification models. Additionally, although this study used a
single sensor with the advantages of easy wearability and low
cost, from a biomechanical point of view, this may lose a large
amount of information, while more useful information is bound to
be beneficial to improve the accuracy of fatigue classification. Future
research may consider multi-sensor fusion evaluation to enhance its
practical application value in exercise fatigue supervision.

6 Conclusion

The IMU-based wearable sensor enables the possibility of
continuous measurement of exercise fatigue in a realistic environment,
using a single IMU that can accurately distinguish between different levels
of running fatigue states. Based on this dataset, this study proposes a deep
learningmodel with constant-length interception of the raw IMUdata as
input. Both CNN and LSTM can effectively complete the classification of
fatigue IMU data, the attention mechanism can effectively improve the
processing efficiency of LSTM on the raw IMU data, and the hybrid
model of CNN and LSTM is superior to the independent model, which
can better extract the features of raw IMU data for fatigue classification.
This study will provide some reference for many future studies of
movement patterns based on deep learning.
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