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Accurate 3D localization of the mandibular canal is crucial for the success of
digitally-assisted dental surgeries. Damage to the mandibular canal may result in
severe consequences for the patient, including acute pain, numbness, or even
facial paralysis. As such, the development of a fast, stable, and highly precise
method for mandibular canal segmentation is paramount for enhancing the
success rate of dental surgical procedures. Nonetheless, the task of mandibular
canal segmentation is fraught with challenges, including a severe imbalance
between positive and negative samples and indistinct boundaries, which often
compromise the completeness of existing segmentation methods. To surmount
these challenges, we propose an innovative, fully automated segmentation
approach for the mandibular canal. Our methodology employs a Transformer
architecture in conjunction with cl-Dice loss to ensure that the model
concentrates on the connectivity of the mandibular canal. Additionally, we
introduce a pixel-level feature fusion technique to bolster the model’s
sensitivity to fine-grained details of the canal structure. To tackle the issue of
sample imbalance and vague boundaries, we implement a strategy founded on
mandibular foramen localization to isolate the maximally connected domain of
the mandibular canal. Furthermore, a contrast enhancement technique is
employed for pre-processing the raw data. We also adopt a Deep Label Fusion
strategy for pre-training on synthetic datasets, which substantially elevates the
model’s performance. Empirical evaluations on a publicly accessible mandibular
canal dataset reveal superior performance metrics: a Dice score of 0.844, click
score of 0.961, IoU of 0.731, and HD95 of 2.947 mm. These results not only
validate the efficacy of our approach but also establish its state-of-the-art
performance on the public mandibular canal dataset.
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1 Introduction

The mandibular canal (MC) is a tubular anatomical structure situated within the
mandible and chiefly houses the inferior alveolar nerve (IAN) and associated vasculature
(Agbaje et al., 2017). This nerve shares a critical relationship with the third molar (Rai et al.,
2014). Any insult to the MC can lead to adverse outcomes such as patient discomfort, acute
pain, or even facial paralysis (Al-Juboori et al., 2014). Therefore, precise segmentation of the
MC from imaging modalities is instrumental for clinicians to appreciate the spatial
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relationship between the MC and adjacent anatomical landmarks,
thereby minimizing the risk of iatrogenic nerve injury during
surgical interventions (Li et al., 2022). Owing to the cumbersome
and error-prone nature of manual delineation, automated
segmentation of the MC from radiological images has emerged as
a focal point in dental research (Usman et al., 2022).

With the advent of advanced deep learning techniques, neural
network-based segmentation of oral structures has shown significant
progress (Cui et al., 2022; Fontenele et al., 2023). However, the
segmentation of the mandibular canal still falls short when
compared to other anatomical structures. The primary challenges
are multifaceted. First, the mandibular canal occupies a minute
fraction of the overall CBCT image, which can lead the neural
network to prioritize the background over the target foreground.
Second, the low contrast of CBCT images makes it difficult to
distinguish the mandibular canal from surrounding tissues, often
resulting in blurred or indistinct boundaries. Traditional
segmentation approaches such as region growing, level set,
thresholding, and model matching have proven insufficient for
overcoming these obstacles (Kainmueller et al., 2009; Abdolali
et al., 2017). U-Net-based architectures have exhibited excellent
performance across various domains since their introduction.
Nonetheless, they often lack the capability to provide holistic
information, causing them to neglect the topological structure of
the mandibular canal during segmentation tasks (Jaskari et al., 2020;
Lahoud et al., 2022). In recent years, Transformer-based encoder-
decoder frameworks [e.g., TransUNet (Chen et al., 2021), UNETR
(Hatamizadeh et al., 2022a), UNETR++ (Shaker et al., 2022)] have
emerged, demonstrating promising results (Li et al., 2023). These
Transformer-based methodologies utilize a global mechanism to
capture features over long distances, addressing the limitations of
CNN-based networks. However, the existing Transformer-based
segmentation methods predominantly focus on larger organs, and
they still do not provide effective solutions for segmenting the
mandibular canal, which has smaller voxel sizes.

To address the aforementioned challenges, we have enhanced
the Swin-UNetR model specifically for mandibular canal
segmentation. We also incorporate a pixel-level feature fusion
module to augment the model’s capability to discern finer details
of the mandibular canal. To mitigate the severe class imbalance
between the foreground and background, as well as the low contrast
prevalent in mandibular canal data, we introduce a cropping
technique grounded in mandibular foramen localization and a
contrast enhancement strategy based on Contrast-Limited
Adaptive Histogram Equalization (CLAHE). Given the
topological continuity of the mandibular canal, we employ clDice
as the model’s loss function. Moreover, to improve model
robustness, we propose a straightforward yet effective deep label
fusion technique that capitalizes on the sparse data in the dataset.
Our main contributions can be summarized as follows:

(1) We introduce an enhanced Transformer-based segmentation
network tailored for mandibular canal segmentation, offering a
novel avenue for accurate segmentation of this complex
structure.

(2) We proposed a pixel-level feature fusion module to improve the
model’s detail perception ability, and improve the model’s
segmentation accuracy and convergence speed.

(3) We introduce a cropping method that autonomously localizes
the mandibular and mental foramina, coupled with an image
contrast enhancement strategy, as preprocessing steps to
address the challenges of category imbalance and unclear
mandibular canal boundaries. Furthermore, our depth
expansion technique is used to generate fused label datasets,
enhancing the model’s robustness.

The remainder of the paper is structured as follows: Section 2
reviews related work in mandibular canal segmentation. Section 3
provides a comprehensive description of our proposed method.
Section 4 discusses the materials and implementation details. In
Section 5, we present the results along with comparative analyses.
Section 6 contains the analysis and discussion of our work. Finally,
Section 7 concludes the paper.

2 Related work

In the fisrt chapter, we delineated the broader research context,
current state of the field, and specifically emphasized the importance
and challenges associated with mandibular canal segmentation. In
the subsequent chapters, we will delve deeper into the historical
development of various mandibular canal segmentation techniques.
These methods can be broadly categorized based on the underlying
technology into traditional image processing techniques, CNN
(Convolutional Neural Network)-based approaches, and
Transformer-based segmentation methods.

2.1 Traditional image processing-based
segmentation method

To address the clinical issue of solely relying on manual
segmentation of the mandibular canal by dental professionals,
Kainmueller et al. (2009) proposed an automated segmentation
technique that combines the Dijkstra tracking algorithm with the
Statistical ShapeModel (SSM). This method successfully reduced the
average error to 1.0mm, achieving a level of automation.
Subsequently, Kim et al. (2010) presented a segmentation
strategy that employs 3D panoramic volume rendering (VR) and
texture analysis. Their approach captured variations in the curvature
of the mandibular canal using a line tracing algorithm. Furthermore,
threshold-based segmentation technologies have seen some
advancements. Moris et al. (2012) employed a thresholding
technique to identify the mandibular and mental foramina and
then used template matching technology to recursively calculate the
optimal path between them, leveraging strong prior knowledge to
achieve effective segmentation results. Building on Mori et al.’s
work, Onchis-Moaca et al. (2016) enhanced template matching
technology by using the anisotropic generalized Hough transform
of the Gabor filter, significantly improving computational efficiency.
However, these methods suffer from excessive reliance on prior
knowledge and limited generalizability. On the other hand, to tackle
the low contrast of CBCT images, Abdolali et al. (2017) innovatively
employed low-rankmatrix decomposition to enhance image quality,
thereby increasing the visibility of the mandibular canal in the shape
model. Similarly, Wei and Wang (2021) utilized windowing and
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K-means clustering algorithms for data enhancement to improve the
mandibular canal’s visibility and subsequently deployed two-
dimensional linear tracking coupled with tetranomial fitting for
segmentation. In summary, traditional segmentation methods either
depend excessively on prior knowledge or require significant manual
intervention, leading to pronounced human-induced biases.

2.2 CNN-based segmentation method

In recent years, CNN-based segmentation methods have
achieved significant advancements in mandibular canal
segmentation. Jaskari et al. (2020) first employed a Fully
Convolutional Network (FCN) for this task, achieving a Dice
coefficient of 0.57 and thus substantiating the efficacy of CNN
approaches in this domain. Following this, Kwak et al. (2020)
utilized thresholding technology for rapid mandibular canal
localization, converting the full-volume image into a 2D slice
sequence. They then employed SegNet and 3D UNet models for
2D slice-level and 3D volume-level segmentation, respectively.
However, their approach did not adequately consider the
structural information of the mandibular canal. To address this
gap, Widiasri et al. (2022) segmented 3D images into 2D slices and
utilized the Dental-Yolo algorithm for feature detection. This
method computed the dimensions between the alveolar bone and
the mandibular canal, allowing the model to acquire rich positional
information. Additionally, to enhance segmentation accuracy and
mitigate computational limitations, researchers have proposed
generalized hierarchical frameworks (Lahoud et al., 2022;
Verhelst et al., 2021). For instance, Verhelst et al. (2021) initially
downsampled images to reduce resolution, retained only patches
with foreground classes, and employed a 3D UNet in conjunction
with the Marching Cubes algorithm for smoothing and
segmentation. However, this method necessitates some manual
input and struggles with samples that have indistinct mandibular
canal boundaries. To counteract the issue of blurred boundaries,
Faradhilla et al. (2021) introduced a Double Auxiliary Loss (DAL) in
the loss function to make the network more attentive to the target
area and its boundaries, achieving a high Dice accuracy of 0.914 on
their private dataset. To combat class imbalance, Du et al. (2022)
innovatively introduced a pre-processing step involving centerline
extraction and region growing to identify the mandibular canal’s
location. They used a fixed point as a reference to crop a localized
region around the mandibular canal, thereby minimizing the impact
of background samples. Despite the successes of these methods, they
generally sacrifice rich global information during training, leading to
a loss of structural integrity in the segmented mandibular canal.

2.3 Transformer-based segmentation
method

In the realm of medical imaging, Transformer-based techniques
have garnered considerable attention, finding applications across a
range of tasks including segmentation, recognition, detection,
registration, reconstruction, and enhancement (Li et al., 2023;
Dosovitskiy et al., 2020). One key advantage of the Transformer
architecture over Convolutional Neural Networks (CNNs) is its

robust capability for global perception, allowing for a more effective
understanding of global contextual information and capturing long-
range dependencies. Many Transformer-based approaches have
been adapted for segmentation tasks involving major human
organs, and have yielded impressive results (Liu and Shen, 2022;
Pan et al., 2022). For instance, Wang et al. (2021) introduced the
UCTransNet model, which for the first time incorporated the
Transformer into the channel dimension. By leveraging feature
fusion and multi-scale channel attention, the model optimized
the information integration between low- and high-dimensional
spaces (Chen et al., 2021). Hatamizadeh et al. (2022a) then proposed
the UNETR model, which employed the Vision Transformer (ViT)
as the encoding layer. This model leveraged the Transformer’s
strong global modeling capabilities to achieve excellent
performance on multi-organ segmentation datasets. To address
the UNETR model’s relatively weaker performance in capturing
local details, Hatamizadeh et al. (2022b) introduced the Swin
UNETR segmentation model. This variant ensured a global
receptive field while also giving ample consideration to local
details, and it has shown promising results in tasks such as brain
tumor segmentation. Specifically in the context of mandibular canal
segmentation, Jeoun et al. (2022) introduced the Canal-Net, a
continuity-aware context network designed to help the model
understand the spatial structure of the mandibular canal. This
approach achieved a Dice coefficient of up to 0.87. These
outcomes provide compelling evidence to suggest that the
Transformer’s strong context-aware capabilities could be
particularly effective for mandibular canal segmentation tasks.
However, it is worth noting that research in Transformer-based
mandibular canal segmentation is still in its nascent stages.
Recognizing the unique challenges and characteristics of
mandibular canal segmentation, we sought to improve upon the
Swin UNETR model. Our modified approach has yielded promising
segmentation results, underscoring the potential utility of
Transformer-based architectures in this domain.

3 Methods

3.1 Data preprocessing

Considering the impact of preprocessing onmodel performance,
we employ a comprehensive set of preprocessing steps to address
existing challenges in CBCT imagery and thereby enhance the
segmentation accuracy of the mandibular canal. The specific
process is shown in Figure 1. The rectangular box in Figure 1
highlights the changes in the mandibular canal.

3.1.1 Volume cropping
The proportion of voxels representing the mandibular canal in

the entire CBCT image is exceedingly small, exacerbating the class
imbalance between foreground and background. This imbalance
adversely affects the model’s segmentation performance, as
illustrated in Figure 1A. To address this challenge, we introduce
a cropping technique based on the localization of the mandibular
foramen. This approach aims to identify the largest connected
domain of the mandibular canal by locating the jaw foramen, as
depicted in Figure 1B. This method locates the positional
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relationship between the mandibular foramen and chin foramen in
the labeled information, and then maps this positional relationship
to the original image for cropping. Following this preprocessing step,
the total number of voxels is reduced by approximately 60%. This
reduction not only enhances the model’s convergence speed and
segmentation accuracy but also minimizes hardware resource
consumption.

3.1.2 Contrast enhancement
In CBCT imaging, the gray values of the mandibular canal and

surrounding tissues are often similar, which obscures the boundary
of the mandibular canal. Further complicating the matter, some CT
devices may produce images with low resolution and blurriness,
making it difficult to differentiate the mandibular canal from
adjacent structures. To overcome these challenges, we employ
Contrast-Limited Adaptive Histogram Equalization (CLAHE) to
enhance image contrast, thereby improving the model’s
segmentation performance. This enhancement is demonstrated in
Figure 1C.

3.2 Mandibular canal segmentation network
structure

We employ the aforementioned preprocessing techniques on the
CBCT images and use them as input for the segmentation network.
In the encoder portion of the network, a 4-layer Swin Transformer
serves as the feature extractor. This architecture leverages the
Transformer’s robust capability for global modeling, allowing it
to focus more effectively on the overall structural features of the
mandibular canal, compared to traditional CNN-based feature
extractors. The decoder part of the network adheres to the
conventional U-Net decoding structure. In this design features
extracted by the encoder are connected to the decoder via skip
connections at each scale. At each stage of the encoder i the output
features are reshaped to size H

2i ×
W
2i ×

D
2i , which are then fed into a

residual module consisting of two 3 × 3 × 3 convolutional layers.
Subsequently, the feature map is upsampled by 2 times using a
deconvolution layer, and is concatenated with the output of the
previous layer and fed into the residual module. Finally, the output

of the residual module is sent to the DRC module to achieve pixel-
level feature fusion with the previous layer features. The final
segmentation result is calculated by using a 1 × 1 ×
1 convolutional layer and a sigmoid activation function. It
restores the spatial dimensions of the feature map through a
series of five upsampling operations, as shown in Figure 2.

To further improve the network’s ability to perceive the details
of the mandibular canal, we introduce a feature fusion strategy of
element-by-element addition and use the DRC (Deep Residual
Convolution) module for each decoding layer to further extract
features, as shown in Figure 3B. Comparing with traditional CNN
structure, as shown in Figure 3A, this module is mainly composed of
two branches: the first branch consists of a 1 × 1 convolution, the
second branch consists of two 1 × 1 and a 3 × 3 convolution, and to
improve the expressiveness of the convolution, we perform
normalization and ReLU activation operations after each
convolution operation. The output of the DRC module can be
expressed as:

DRC � F X,Y( )L + F X, Y( )R (1)
among them, X represents the input data, F(X,Y)L represents the
output of the left branch, and F(X,Y)R represents the output of the
right branch. The extracted features are fused layer by layer at the
pixel level to obtain the fused feature map F(x, y):

F x, y( ) � Fn x, y( ) +DRC Fn−1 x, y( )( ) (2)
where F(x, y) represents the pixel position in the feature map, and n
represents the nth decoder layer. Through this fusion strategy, the
model can learn more information from different feature map.

3.3 Deep Label fusion

To optimally leverage our set of 256 sparsely labeled data, we
introduce an innovative approach for pseudo-label generation.
Initially, the model is trained using densely annotated data, after
which it generates pseudo-labels for the 256 sparsely annotated
samples. Compared to the original sparse labels, these pseudo-labels
offer a richer semantic context but may lack adequate connectivity.
To address this limitation, we implement an intelligent label fusion

FIGURE 1
Our proposed preprocessing process, (A) represents the original image, (B) represents the cropped image, and (C) represents the contrast-
enhanced image.
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algorithm. This method first integrates instance level features of
circular extended labels and newly generated pseudo labels through
interpolation. More specifically, the pseudo-labels contribute
valuable semantic insights, while the circular extension labels
provide precise boundary delineation. We have coined this
method “Deep Label Fusion,” and employ it to create an
augmented dataset for this study. Utilizing this extended dataset
for pre-training the prediction model led to a notable improvement
in the Dice metric, particularly when compared to the performance
achieved with the original set of 256 circularly extended labels.

3.4 Loss function analysis

The primary objective of the loss function in medical image
segmentation tasks is to quantify the discrepancy between the
predicted segmentation outcomes and the ground-truth labels. Given
that the mandibular canal is a tubular structure, its connectivity is a
crucial consideration. In 2021, Shit et al. introduced a loss function
designed to take into account both vessel topology and connectivity,
known as centerline Dice (clDice). This function is computed based on
the intersection between the segmentation output and the extracted
cartilage scaffold. Importantly, clDice is adept at evaluating the
connectivity of tubular anatomical features. In our research, we
employ clDice as the loss function for training the network. The
expression for the clDice function is as follows:

FIGURE 2
The network diagram used in this article consists of a Transformer encoding module, a decoding module, and a feature fusion module. In addition,
the model accepts three types of labels: sparse label, dense label, and deep fusion label.

FIGURE 3
DRC module structure diagram, where (A) represents the
traditional convolution module (B) represents our proposed DRC
module.
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Tp SP, VL( ) � SP ∩ VL| |
SP| | , (3)

Ts SL, VP( ) � SL ∩ VP| |
SL| | , (4)

LclDice � −2 ×
Tp SP, VL( ) × Ts SL, VP( )
Tp SP, VL( ) × Ts SL, VP( ), (5)

among them, VL and VP refer to the predicted results and real labels
of network segmentation, respectively, SP and SL refer to the soft
skeleton extracted from VL and VP, respectively, Tp(SP, VL) refers to
the topological accuracy, Ts(SL, VP) is the topological sensitivity.
LclDice is the harmonic mean of the above two metrics to focus on

object connectivity. The total loss function Ltotal combines Dice Loss
and clDice Loss, the formula is as follows:

Ltotal � 1 − λ( )LDice + λLclDice, (6)
where λ is a scaling factor.

4 Data and implementation details

4.1 Data

The CBCT dataset utilized in this study was supplied by
Cipriano et al. (2022b) and exists in two versions: old and new.
The old dataset comprises 91 3D densely annotated primary datasets
and 256 2D sparsely annotated auxiliary datasets. This primary
dataset is further divided into 68 training sets, 8 validation sets, and
15 test sets. The spatial resolutions of these CBCT scans range from
148 × 272 × 334 to 171 × 423 × 462, featuring a voxel size of 0.3 ×
0.3 × 0.3 mm³. Conversely, the new dataset consists of 153 densely
annotated primary datasets and 290 sparsely annotated auxiliary
datasets. The spatial resolution in this new version ranges from
148 × 265 × 312 to 178 × 423 × 463. Additionally, the training set in
this new version has been expanded to include 130 datasets. To

TABLE 1 Comparison of results of different segmentation methods.

Test Methods Training set HD IoU clDice# Dice

1 Jaskari et al. (2020) Cir. Exp. — 0.39 — 0.56

2 Ours Cir. Exp. 7.844 0.405 0.845 0.573

3 Cipriano et al., (2022a) 3D Ann. — 0.61 — 0.75

4 Usman et al., (2022) 3D Ann. — 0.79 — 0.77

5 3D UNet 3D Ann. 16.048 0.558 0.809 0.709

6 nn-UNet 3D Ann. 6.363 0.665 0.935 0.796

7 UNetR 3D Ann. 8.027 0.569 0.823 0.722

8 Swin-Unet (Cao et al.) 3D Ann. 7.072 0.482 0.733 0.640

9 Ours 3D Ann. 5.002 0.692 0.933 0.815

Bold represents the optimal result. # is the measurement standard for tubular structure proposed by Shit et al. (2021).

FIGURE 4
Comparison of visualization results of different segmentation methods.

TABLE 2 Quantitative analysis results of different preprocessing methods on
model performance.

Input images HD95 (mm) IoU clDice Dice

Original 6.355 0.656 0.912 0.788

Volume Cutting 5.008 0.684 0.927 0.810

Contrast Enhancement 5.000 0.692 0.933 0.815

Bold values are reports the optimal result.
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maintain a fair and rigorous comparison with other studies, all
comparative analyses were conducted using the old dataset.
Moreover, to demonstrate the cutting-edge nature of our
research, we also conducted verifications using the new dataset
version.

4.2 Experimental details

Our experiments are implemented using NVIDIA Tesla
V100S in the PyTorch and MONAI deep learning libraries.
During the preprocessing, we processed the raw data offline by
the proposed jaw-foramen localization-based volume cropping
method and image contrast enhancement method. During the
training process, Diceloss and clDiceloss are used as the loss
function of the model, the Adam optimizer with momentum
(μ = 0.99) is used, the initial learning rate is set to 0.0001, and
the learning rate is automatically adjusted using cosine annealing,
and the batch size is set to 1, and the number of iterations of the
model is uniformly set to 500. In our experiments, to reduce
memory usage, we use a 96 × 96 × 96 sliding window with a stride
of 48 to crop the original CBCT image, and then feed the cropped
image into the network for training. After outputting the predicted
patch, we restore the output predicted patch to the original image
size by stitching.

4.3 Evaluation indicators

In the test phase, we use four commonly used evaluation
indicators for segmentation tasks to evaluate the performance of
the model: Dice coefficient (Dice), Intersection Over Union (IOU),
Hausdorff distance (HD):

4.3.1 Dice coefficient (Dice)
The Dice coefficient is a set similarity measurement function,

which is usually used to calculate the similarity between two
samples, and the value range is [0, 1].

Dice � 2TP
FP+2TP + FN

(7)

4.3.2 Intersection over union (IOU)
The IOU indicator calculates the overlap rate of predicted

results and real results, that is, the ratio of their intersection and
union.

IOU � A ∩ B

A ∪ B
(8)

4.3.3 Hausdorff distance (HD)
The HD indicator is a metric used to measure the similarity or

difference between two sets.

H A, B( ) � max h A, B( ), h B, A( ){ } (9)
where TP represents true positives, TN represents true negatives, FP
represents false positives, FN represents false negatives, A represents
the set of true labels, and B represents the set of predicted
segmentations.

5 Results

5.1 Evaluation of result

To prove the effectiveness of our proposed mandibular canal
segmentation method, we conducted a performance evaluation. The
specific results are as follows: only trained on 91 dense data, average
Dice = 0.815, average IoU = 0.69, average clDice = 0.93, the average
HD95 = 5 mm, all evaluation indicators have proved the excellence of
our proposed mandibular canal segmentation method. In addition, to
prove the advanced nature of our proposed method, we also compared
and analyzed it with existing methods, and the specific comparison
results are shown in Table 1. From the comparison results, it can be seen
that the improvement of the segmentation method we proposed is very
significant. Compared with the most advanced method that also uses

FIGURE 5
Visual segmentation results obtained by training the network with different loss functions.
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91 densely labeled data, our Dice index has increased by 4.5%. In
addition, using 256 sparse data for pre-training and our proposed deep
label fusion strategy for training, the Dice index reached 0.824 and
0.840, respectively. The specific visual comparison results are shown in
Figure 4.

5.2 Ablation experiment

5.2.1 Preprocessing
In Section 3.2, we proposed two data preprocessing methods,

namely, the cropping method based on jaw hole positioning and the
contrast enhancement method based on Contrast-Limited Adaptive
Histogram Equalization. Figure 4 shows our proposed preprocessing
method in detail. We have analyzed the effectiveness of the two
proposed methods, and the specific results are shown in Table 2. It
can be seen from the table that the Dice index has increased by 2.7%
after data preprocessing.

5.2.2 Feature fusion
To deeply study the impact of our proposed feature fusion

strategy on the performance of mandibular canal segmentation,
we conduct a series of ablation experiments and summarize the
experimental results in Table 3. The results show that the feature
fusion strategy plays an important role in the mandibular canal
segmentation task. The Dice coefficient using this feature fusion
strategy is 0.788, which is significantly improved compared to the
case where this module is not used. In addition, we conduct a
comparative analysis of the proposed DRC module and
traditional convolution. This design can effectively enhance
the representation ability of the model and help to further
optimize our proposed feature fusion strategy to improve
segmentation performance.

5.2.3 Loss function analysis
In our work, we use clDice Loss as the loss function to train the

network. In order to prove that clDice Loss is helpful in improving
the mandibular canal segmentation effect, we compared clDice Loss
with Cross-Entropy (CE) Loss and Dice Loss. The specific results are
shown in Table 4. We found that using clDice Loss as the loss
function achieved the optimal Dice coefficient of 0.815. In addition,
we also compared the impact of different hyperparameters λ in
clDice Loss on model segmentation performance. The specific visual
comparison results are shown in Figure 5. The broken part of the
mandibular canal in the segmentation result is marked with arrows.
From the figure, it can be clearly seen that the segmentation result
has the best connectivity when λ = 0.1.

5.2.4 Deep label fusion
In Section 3.3, we proposed a deep label fusion method, which

generated 256 fused labels on a sparse dataset, forming a new deep
fusion dataset. This deep fusion dataset contains richer semantic
information compared to sparse datasets, which can better guide
model training. To verify the effectiveness of this method, we
conducted a performance evaluation, and the specific evaluation
results are shown in Table 5. From the table, it can be seen that the
Dice index has been significantly improved when using our
proposed deep fusion label for pre training. When using 3D Ann
data for training, using our method for pre training is 1.6% higher
than using circular extended data for pre training Dice index.

6 Discussion

In this study, we propose a Transformer-based method for
automatic segmentation of the mandibular canal, which is
capable of simultaneously focusing on local fine-grained details
and global semantic information of the mandibular canal to
segment the mandibular canal with highly consistent accuracy
across the entire CBCT image. We validate the method on the
largest mandibular canal segmentation dataset, and the evaluation
index Dice coefficient exceeds previous research methods.

Due to the low contrast in CBCT images and the close similarity
in grayscale values between the mandibular canal and surrounding
tissues, neural networks face difficulties in effectively distinguishing
the boundaries of the mandibular canal (Waltrick et al., 2013).
Furthermore, the mandibular canal constitutes only a minute
fraction of the total CBCT image volume, leading to a
pronounced class imbalance between foreground and
background. This imbalance causes the network to
disproportionately focus on background features (Dai et al.,
2023). To address these challenges, we employ two pre-

TABLE 3 Quantitative results of different feature fusion methods.

Test HD95 (mm) IoU clDice Dice

Baseline 10.320 0.629 0.92 0.769

Baseline+C 9.550 0.642 0.894 0.777

Baseline+DRC 6.355 0.656 0.912 0.788

Among them, C means to use the traditional convolution module, and DRC means to use the deep residual convolution module. Bold values are reports the optimal result.

TABLE 4 Quantitative results of training models with different loss functions.

Loss function HD95 (mm) IoU clDice Dice

Cross-Entropy (CE) 8.207 0.660 0.907 0.790

Dice 7.828 0.665 0.888 0.795

clDice (λ� 0.5) 9.392 0.656 0.909 0.787

clDice (λ� 0.4) 6.958 0.680 0.927 0.806

clDice (λ� 0.3) 9.550 0.660 0.907 0.789

clDice (λ� 0.2) 5.005 0.681 0.927 0.806

clDice (λ� 0.1) 5.002 0.692 0.933 0.815

Bold values are reports the optimal result.
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processing techniques aimed at mitigating issues related to blurred
boundaries and class imbalances: a cropping method for automated
localization of the mandibular and mental foramina, and Contrast-
Limited Adaptive Histogram Equalization (CLAHE) for image
contrast enhancement. By eliminating extraneous information
and enhancing the contrast between the mandibular canal and its
surrounding tissue, these techniques facilitate precise localization
and segmentation of the mandibular canal. The efficacy of this
contrast enhancement approach has also been successfully validated
in two-dimensional microscopic images as per Wu et al. (2022). As
demonstrated in Section 5, the implementation of these two
preprocessing methods results in an approximate 4%
improvement in Dice coefficient performance.

Secondly, to maintain the connectivity of the segmented
mandibular canal, we incorporated the Transformer architecture
into the segmentation task. This enables the network to learn both
the local fine-grained details and the global semantic information
pertinent to the mandibular canal (Liu et al., 2021). Given the small
volumetric proportion of themandibular canal in the CBCT images, we
introduced a pixel-level feature fusion strategy to augment the network’s
segmentation performance. The deployment of the Deep Residual
Convolution (DRC) module further enriches the network’s
perception of intricate details. Previous studies have substantiated
the efficacy of feature fusion strategies in enhancing the
segmentation performance for small and indistinct targets (Dai
et al., 2023). Our empirical tests show that the feature fusion
module not only improves segmentation performance but also
accelerates model convergence, reducing training time by as much
as 50%. This acceleration is likely attributed to the enhanced perceptual
capabilities conferred by the module, partially ameliorating the slow
convergence typically associated with Transformer models. Regarding
the loss function, we employed the centerline Dice (clDice) loss function
to better account for the tubular topology of the mandibular canal (Shit
et al., 2021). As evidenced in Section 5, there was a 1% increase in the
Dice coefficient, corroborating the effectiveness of this method in
improving the segmentation of tubular structures. Figure 5 clearly
demonstrates enhanced connectivity in the segmentation results, an
outcome of clDice loss function’s calculation of connectivity disparities
between segmented outcomes and the extracted cartilage scaffolding.
This quantification allows the network to focus more on ensuring
connectivity in the segmentation results, thereby significantly
enhancing the morphological integrity of the mandibular canal’s
tubular structure. Similar findings are reported in Huang et al.
(2022) and Pan et al. (2021). Additionally, we leveraged sparse
existing data to generate an augmented dataset through our
proposed Deep Label Fusion technique. Compared to pre-training
on the circle-extension dataset, our method resulted in a 1.6%

increase in the Dice coefficient, reaching a score of 0.840. When
validated on the new version of the ToothFairy dataset, the Dice
coefficient was further improved to 0.844.

In the segmentation performance of CBCT images, our method
achieved the highest performance on the public mandibular canal
dataset (Cipriano et al., 2022b). Although this research work
achieved the best segmentation results overall, there are still certain
limitations. First of all, compared with the CNN network, the
convergence speed of this network needs to be improved. Secondly,
because the pixel changes of the mandibular canal at the mandibular
and mental foramen are not obvious, the segmentation effect of the
mandibular canal at the head and tail of the foramen is poor. Therefore,
we will focus on the first and last features in future research to further
improve the accuracy of the model.

7 Conclusion

In this study, we introduce a Transformer-based method for the
robust segmentation of the mandibular canal. Our approach adeptly
addresses key challenges, including morphological preservation of the
mandibular canal, class imbalance, and ambiguous boundaries,
subsequently achieving substantial improvements in segmentation
metrics. Firstly, we employ Contrast-Limited Adaptive Histogram
Equalization (CLAHE) to enhance image contrast, substantially
ameliorating the low-contrast issues inherent to original CBCT
scans. This step results in a notable increase in the model’s
segmentation accuracy. Secondly, we implement an image
cropping strategy founded on mandibular foramen localization.
This alleviates the class imbalance issue and substantially reduces
extraneous background information, streamlining the segmentation
process. Further, we introduce a specialized pixel-level feature fusion
module known as the Deep Residual Convolution (DRC). This
module not only amplifies the model’s sensitivity to fine details in
smaller targets such as the mandibular canal but also accelerates the
convergence speed of the model, partially mitigating the known slow-
convergence issue associated with Transformer architectures. To
improve the topological integrity of the segmented mandibular
canal, we utilize the centerline Dice (clDice) loss function. This
forces the network to concentrate on maintaining the connectivity
of the segmented structures, enhancing the morphological integrity of
the mandibular canal. Lastly, we deploy a Deep Label Fusion
technique to mine further information from the original, sparsely-
annotated dataset. This step significantly bolsters the model’s
segmentation performance. Our method was rigorously evaluated
on a publicly available mandibular canal dataset. The empirical results
demonstrate that our proposed segmentation approach outperforms

TABLE 5 Analysis of training results using different labels.

Test Pre-training set Training set HD IoU clDice Dice

1 — 3D Ann. 5.002 0.692 0.933 0.815

2 Cir. Exp. 3D Ann. 4.061 0.704 0.947 0.824

3 Deep fusion 3D Ann. 3.213 0.727 0.960 0.840

4 Deep fusion ToothFairy 2.947 0.731 0.961 0.844

Notes: 3D Ann indicates densely labeled data, Cir. Exp. represents circle expansion data, Deep fusion represents synthetic data sets, and ToothFairy represents new version data sets. Bold values

are reports the optimal result.
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existing methods, underscoring its strong potential for application in
the domain of mandibular canal segmentation.
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