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Introduction: The existing body of literature on the biomechanical implications of
ramp lesions is limited, leaving a significant gap in our understanding of how these
lesions impact joint kinematics and loading in the medial compartment. This
cadaveric biomechanical study aims to address this gap by employing an
innovative Digital Volume Correlation (DVC) method, utilizing 7 Tesla Magnetic
Resonance Imaging (MRI) images under various loading conditions. The primary
objective is to conduct a comprehensive comparison of medial meniscal mobility
between native knees and knees affected by grade 4 ramp lesions. By focusing on
the intricate dynamics of meniscal mobility and extrusion, this work seeks to
contribute valuable insights into the biomechanical consequences of medial
meniscus ramp lesions.

Materials and methods: An initial set of 7T MRI imaging sessions was conducted
on two intact native knees, applying load values up to 1500N. Subsequently, a
second series of images was captured on these identical knees, with the same
loads applied, following the creation through arthroscopy of medial meniscus
ramp lesions. The application of DVC enabled the precise determination of the
three components of displacement and spatial variations in the medial menisci,
both with and without ramp lesions.

Results: The measured directional displacements between native knees and
injured knees indicate that, following the application of axial compression load,
menisci exhibit increased extrusion and posterior mobility as observed
through DVC.

Discussion: Injuries associated with Subtype 4 medial meniscus ramp lesions
appear to elevate meniscal extrusion and posterior mobility during axial
compression in the anterior cruciate ligament of intact knees. Following these
preliminary results, we plan to expand our experimental approach to encompass
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individuals undergoing weight-bearing MRI. This expansion aims to identify
meniscocapsular and/or meniscotibial insufficiency or rupture in patients,
enabling us to proactively reduce the risk of osteoarthritic progression.

KEYWORDS

medial meniscus, ramp lesion, digital volume correlation (DVC), magnetic resonace
imaging (MRI), displacement fields

1 Introduction

In the context of anterior cruciate ligament (ACL)
reconstruction, medial meniscus ramp lesions (RL) and lateral
meniscus posterior ramp lesions are prevalent, accounting for
over one-third of cases in both primary and revision surgeries
(Magosch et al., 2021). Specifically, medial meniscus RLs
(Figure 1) are frequently observed traumatic injuries, with a
prevalence rate of 21.9% (ranging from 9.0% to 41.7%) at the
time of ACL reconstruction (Kunze et al., 2021a; Brophy et al.,
2022). They are defined as a distinct category of injuries occurring
within the posterior horn of the medial meniscus and its
meniscocapsular attachments (Thaunat et al., 2021).

Among the various types of RL, meniscocapsular junction tears,
classified as type 1, are the most common, followed by type 4 lesions,
which involve a complete tear in the red zone of the meniscus
(Thaunat et al., 2021). This underscores the need to understand and
address these specific types of meniscal injuries in the context of
ACL reconstruction, as they play a crucial role in the overall stability
and functionality of the knee joint. Addressing these lesions
effectively is essential for optimizing patient outcomes and

preventing the long-term complications associated with ACL
reconstruction.

At present, understanding of the biomechanical behavior of
meniscus is at the forefront of orthopedic discussions (Kunze et al.,
2021b; Ollivier et al., 2022). Meniscocapsular and meniscotibial
lesions of the posterior horn of the medial meniscus increase
anterior tibial translation, internal and external rotation, and
pivot shift in ACL-deficient knees (Ahn et al., 2011; Engebretsen
et al., 2012; Peltier et al., 2015; Stephen et al., 2016; DePhillipo et al.,
2018; Mouton et al., 2020). However, the available literature
discussing the biomechanical consequences of RL remains
limited. It is not clear whether these lesions affect joint
kinematics and loading in the medial compartment (Chahla
et al., 2016; Seil, 2018). Recently, Krych et al. (2017) and Mariani
et al. (2022) showed that meniscal extrusion was due not only to root
lesions but also to meniscotibial ligament (MTL) injuries. Although
meniscal extrusion is often the consequence of hyper-pressure in the
medial femorotibial compartment, it could also be the cause in
different cases, one of them being RL.

Magnetic Resonance Imaging (MRI) plays a pivotal role in
investigating meniscal injuries, particularly RL. Its ability to

FIGURE 1
Arthroscopic views (A,B) of subtype 4 medial meniscus RL creation by a posteromedial approach. Open view of the knee and its meniscal RL injury
after experimentation (C). MRI sagittal view in sequence T2 DESS of the subtype 4 RL injury (D). Red arrows show the subtype 4 RL.
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provide detailed, non-invasive, and precise imaging significantly
contributes to early detection, appropriate treatment planning, and
successful outcomes for patients dealing with this specific meniscal
injury. From a biomechanical point of view, Digital Volume
Correlation (DVC) is currently used to determine the three
components of displacement and spatial variations of a material
or structure from volume images (Bay et al., 1999; Buljac et al., 2018;
Disney et al., 2018).

The combination of MRI and DVC ensures powerful synergy in
medical imaging and biomechanical analysis. While MRI provides
detailed and high-resolution images of internal structures, capturing
intricate anatomical information, DVC is a sophisticated image
analysis technique used to quantify deformation and strain in
complex structures. The integration of MRI with DVC enhances
biomechanical studies by correlating structural information with
mechanical behavior. This correlation is invaluable in fields such as
orthopedics, where understanding the mechanical properties of
tissues is crucial for the development of effective treatment
strategies and injury prevention programs.

This biomechanical work concerned a case study, of which the
objective was to compare medial meniscal mobility between native
knees and knees with grade 4 RL by a DVC method using 7 Tesla
MRI at different loadings. The hypothesis of this study is that medial
meniscus RL increases meniscal mobility and extrusion.

2 Materials and methods

2.1 Specimen preparation and loading
device

This experimental study was conducted on two cadaveric knees
that had a Normo-axial morphotype with a meniscal (and
cartilaginous state deemed intact during the 7 Tesla MRI (7T
MRI) examination. Specimen preparations were carried out at
the Anatomy Laboratory of the University of Poitiers (DC-2019-
3704 Université de Poitiers). The epidemiological data showed a 63-
year-old man (73 kg, named Knee 1) and an 81-year-old woman
(79 kg, named Knee 2) with no osteoarticular history and whose CT
scan measurements of HKA angle were 178.9° (leg length: 123.4 cm)
and 177.8° (leg length: 127.7 cm) respectively. The knees were then
disarticulated below the hip and above the ankle and dissected,
preserving the entire capsule and peripheral ligaments without
opening the knee joint. Proximal and distal fixations of rigid
polyurethane resin were made in order to facilitate fixation of the
anatomical parts on an MRI-compatible loading bench without
ferromagnetic components and designed specifically for this
series of experiments (Figure 2). The knee was positioned in the
loading device in the sagittal direction, aligning the loading axis with
the orientation of the MRI tube. The loading bench could impose
compression loading up to 1500N. Imposed load ability was
preliminarily calibrated and controlled during experiments by a
specific homemade hydraulic sensor. Biomechanical experiments
were conducted in accordance with established guidelines for
in vitro studies (Wilke et al., 1998). Cadaveric knees from fresh
and non-formalin-fixed specimens were cryopreserved after the
primary dissection phase. Before each experiment, the thawing
protocol consisted of placing the cadaveric segments at room

temperature for 48 h in order to optimize the elasticity/stiffness
relationship and to get closer to the physiological conditions found
in living patients.

2.2 Experimental protocol

Images were acquired using a 7-Tesla scanner (Magnetom Terra,
Siemens Healthineers, Erlangen, Germany) with a dedicated
Transmit/Receive 28-channel knee coil (QED, Mayfield Village,
OH, United States). Anatomical images were acquired using 3D
T2 DESS 0.35 mm isotropic (TR 8ms, TE 2.48 ms, slice 0.35 mm,
464 × 464 matrix size, FA 24°, FOVr 164mm, FOVp 72.4%, 1 Nex,
PAT 2). An initial series of 7TMRI imaging sessions were conducted
on native knees under axial loads of 750N and 1500N, equivalent to
one to two times the body weight load. Subsequently, a second set of
images was captured on the same knees, employing the same loads,
following the creation of grade 4medial meniscus RL (Thaunat et al.,
2021) using a posteromedial instrumental approach under
arthroscopy (Figure 1).

2.3 Digital volume correlation and
assessment criteria

To measure displacement fields through DVC, a sub-volume of
voxels (D) is defined at each voxel in the initial image. The position
of each sub-volume is subsequently determined by assessing the
degree of similarity within the initial image. To achieve this
objective, a correlation sub-volume is characterized by the voxel
values denoted as f( �X) at the reference state, with �X representing
the initial position vector. The position of the desired sub-volume in
the deformed state is designated as �x, and the corresponding grey
levels are denoted as g( �x). The degree of similarity between a sub-
volume in the initial and deformed states is assessed through a
correlation coefficient (Germaneau et al., 2007) established by
optimizing a functional f( �X) − g( �ϕ( �X)), where �ϕ signifies the
material transformation between the deformation states. Tricubic
interpolation of grey levels was employed to attain displacement
field measurements with subvoxel resolution. This non-contact
method facilitates the measurement of volume displacements
within the structure, ranging from 1 µm to several tens of
millimeters (Germaneau et al., 2008; Valle et al., 2019).

The overlay of constrained and unconstrained MRI images was
carried out through semi-automated tibial registration of the image
sequences using 3DSlicer software (Version 4.11, Kitware, France).
Manual segmentation of the medial meniscus was performed by an
experienced surgeon with expertise in medical image analysis,
utilizing the first MRI scan to extract the relevant meniscal area.
This singular segmentation aimed to delineate the specific region of
interest to be analyzed through the DVC process. Given the
stationary nature of the knee bones, meticulous image
registrations were conducted between steps, referencing the bone
structures. This approach ensured precise alignment, facilitating
accurate measurements in the DVC computation area associated
with the meniscus.

The displacement fields were analyzed in three dimensions.
Observation of displacements along the X and Y directions
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facilitated analysis of anteroposterior and lateromedial migration of
the meniscus after axial compression, with the knee positioned in
full extension (Figure 3). The measurement uncertainty provided by
the DVC process for these MRI data was assessed at 0.05 voxel.

3 Results

The red contour in Figure 3 illustrates meniscus migration
during loading. The directional displacements of the medial
meniscus were measured by DVC. Figures 4–7 show the
directional displacement fields obtained by DVC after the
application of 0N, 750N, and 1500N of axial load.

Mean displacements were measured on the posterior segment of
the medial meniscus, anteriorly to the RL. In the lateromedial
direction (X), the mean displacements measured at 1500N load
were −0.983 mm (±0.027 mm) on the knee 1 versus −1.568 mm
(±1.097 mm) on the same knee with RL injury. For knee 2, the mean
displacements measured according to X with the same load were
0.738 mm (±0.133 mm) before and 1.647 mm (±0.031 mm) after RL
injury. Positive or negative values are associated with the knee’s
laterality. With a grade 4 medial meniscal RL, the meniscus increases
its extrusion in the frontal plane (Figures 4, 6).

In the anteroposterior direction (Y), the mean displacements
measured at 1500N load were 0.167 mm (±0.183mm) on knee
1 versus 1.150mm (±0.287mm) on the same knee with RL injury.
For knee 2, the mean displacements measured in Y with the same load
were 0.739 mm (±0.132mm) before and 2.559mm (±0.459mm) after
RL injury.With grade 4RL, the posterior segment of themedialmeniscus
increases its posterior extrusion in the sagittal plane (Figures 5, 7).

FIGURE 2
Anatomical view of a knee segment with its proximal and distal fixations of rigid polyurethane resin (A). MRI-compatible loading bench, (B) pressure
sensor, (C) in situ loading setup in the 7T MRI device (D).

FIGURE 3
Illustration of the orientation of the displacement fields analyzed
in DVC on a coronal MRI slice of a right cadaveric knee.
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All data on the anteroposterior and/or lateromedial migration of
the meniscus after axial compression between native knees and
injured knees are summarized in Table 1.

4 Discussion

The main finding of this study is that medial meniscus RL injury
increases meniscal extrusion, which is defined as the internal

displacement of the medial meniscus with regard to the medial
margin of the tibial plateau, and meniscal posterior mobility during
axial compression. This biomechanical study confirms the hypothesis
that RL could be responsible for meniscal extrusion usually considered
as the result of meniscal root lesion or disruption of the coronary
ligaments or isolatedMTL injury (Chahla et al., 2016; Krych et al., 2017;
Naendrup et al., 2019; Thaunat et al., 2021; Mariani et al., 2022).

Meniscal extrusion is recognized as a significant predictor of
accelerated joint degeneration (Hein et al., 2011; Krych et al., 2017).

FIGURE 4
Observation of the displacement fields (in mm) after DVC assessment for knee 1 according to the lateromedial direction (X).

FIGURE 5
Observation of the displacement fields (in mm) after DVC assessment for knee 1 according to the anteroposterior direction (Y).
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Diagnosing meniscal extrusion is crucial, due not only to the acute
functional limitations it imposes on patients but also because of its
direct association with osteoarthritis (OA), a condition often
observed in the elderly (Sugita et al., 2001; Guermazi et al.,
2015). Meniscal extrusion has been shown to diminish the hoop
function of the meniscus, increasing the risk of knee OA (Ozeki
et al., 2022). In our case, RLs are prevalent meniscal injuries,
typically occurring in cases of ACL rupture or knee laxity
associated with anterior cruciate ligament insufficiency. These
injuries are particularly common in patients under 30 years of

age and male patients (Liu et al., 2011). Current literature
consensus indicates that meniscal extrusion, whether with or
without ACL deficiency, amplifies mechanical loading.
Consequently, abnormal mechanical stress can trigger a
pathological response in joint tissues, leading to cartilage
degradation characteristic of knee OA, particularly in the medial
compartment (Daszkiewicz and Łuczkiewicz, 2021). Similarly, a
significant correlation has been established between the degree of
medial meniscus extrusion and the onset of post-arthroscopic
osteonecrosis of the knee (Yamaguchi et al., 2021).

FIGURE 6
Observation of the displacement fields (in mm) after DVC assessment for knee 2 according to the lateromedial direction (X).

FIGURE 7
Observation of the displacement fields (in mm) after DVC assessment for knee 2 according to the anteroposterior direction (Y).
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Naendrup et al. (2019) found non-significant results on knee
medial stress due to RL injuries. No differences were found with
respect to kinematics, in situ forces in the ACL, or bony contact
forces between intact knees and knees with a ramp lesion. However,
this study was performed on ACL-intact knees with a maximum
axial compression load of 200N on a freedom robotic testing system.
While the same authors think that the indications for RL repair may
be limited, there are a number of reasons that seem to justify
meniscal repair in addition to the risk of OA degeneration due to
RL. Medial menisci with RL are less stable and could progress
toward a bucket-handle tear, especially in subtype 4 or 5 lesions
(Thaunat et al., 2021). In addition, DePhilippo et al. (2018) have
observed that meniscotibial and meniscocapsular lesions of the
posterior segment of the medial meniscus increase knee anterior
tibial translation, internal and external rotation, and pivot shift in
ACL-deficient knees. Optimal treatment has been debated in the
literature, especially for stable RL, although good outcomes have
been shown both with and without repair (Brophy et al., 2022).
Healing rates of RL were significantly better when lesions were
repaired and surgical procedures appeared reliable (Hatayama et al.,
2020). Recently, Park et al. (2022) analyzed the joint capsule adjacent
to themedial meniscus and found that the perimeniscal joint capsule

had collagen fiber orientation similar to that of circumferential
meniscal fibers, potentially playing a role in preventing extrusion.
They also found that the circumferential rim augmentation suture
reduced the degree of meniscal extrusion while restoring meniscal
function, potentially preventing the progression of arthritis in a
rabbit root tear model and by means of porcine knee biomechanical
analysis (Park et al., 2022).

The typical method for quantifying extrusion involves
measuring the distance between the medial edge of the tibial
plateau and the most prominent medial point of the medial
meniscus (Choi et al., 2010). Existing literature suggests that
meniscal extrusion exceeding 3–4 mm can have biomechanical
implications on the tibiofemoral compartment contact area and
pressures (Debieux et al., 2021). It is important to note that our
findings, although lower than these thresholds, pertain to knees
without osteoarthritis (OA) and ACL insufficiency.

Furthermore, even in healthy knees, some studies have
demonstrated meniscal mobility. In an ultrasound-based study,
Kawaguchi et al. (2012) showed that physiologic loading causes
mild meniscal extrusion. Another ultrasound study demonstrated
that the posterior portion experiences greater extrusion than the
anterior portion, particularly as regards the medial meniscus

TABLE 1 Displacement measurement obtained by DVC after application of 0N, 750N, and 1500N axial loads between native knees and injured knees (in mm).

Displacement measurement (mm) KNEE 1

Native Knee Medial Meniscus RL

0N 750N 1500N 0N 750N 1500N

Lateromedial direction (DpX)

Mean −0.046 −0.281 −0.983 0.016 −0.683 −1.568

Min-Max −0.077–0.006 −0.407–0.121 −1.599–0.008 −0.031–0.045 −2.041–0.301 −3.154–0.412

SD 0.015 0.100 0.272 0.019 0.346 1.097

Anteroposterior direction (DpY)

Mean −0.075 0.141 0.167 −0.029 0.318 1.150

Min-Max −0.094–0.005 0.047–0.221 −1.014–0.691 −0.056–0.018 0.104–0.735 1.091–1.732

SD 0.007 0.041 0.183 −0.029 0.105 0.287

KNEE 2

Native Knee Medial Meniscus RL

0N 750N 1500N 0N 750N 1500N

Lateromedial direction (DpX)

Mean 0.018 0.604 0.738 0.014 0.978 1.647

Min-Max −0.026–0.041 0.365–0.967 0.487–0.774 −0.032–0.045 0.13615–2.406 1.101–2.627

SD 0.014 0.137 0.133 0.020 0.505 0.309

Anteroposterior direction (DpY)

Mean −0.029 0.010 0.739 −0.028 1.746 2.559

Min-Max −0.054–0.013 −0.483–0.249 0.480–0.981 −0.052–0.012 0.821–2.582 1.472–3.166

SD 0.010 0.073 0.132 0.013 0.364 0.459
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(Sharafat Vaziri et al., 2022). Additionally, research has explored
meniscal displacements and 3D morphological changes under knee
weight-bearing and early flexion conditions in healthy adults,
utilizing MRI (Liu et al., 2021). Of note, data through MRI
regarding injured knees with volume quantification are lacking.
Our study stands out as the first to evaluate meniscal displacement
using DVC under various axial compression loads. The direct
correlation DVC technique is reliable and reproducible, provided
that study sub-volumes are optimized (Palanca et al., 2015; Marter
et al., 2020).

The study has some limitations. First, it was a cadaver study.
Although we tried to optimize the elasticity/stiffness ratio with
respect to ethical use and institutional thawing procedure, the
performance of this study on fresh cadaver knees would have
allowed us to come even closer to reproducing the physiological
conditions of meniscal displacement in living patients.

Secondly, the study was conducted using only two anatomical
specimens. The results underscored the specific observations
associated with each specimen. Mediolateral extrusion was
comparable between the two knees, while variability was noted in
the anteroposterior direction. In the instance of one knee (knee 2),
native anteroposterior mobility surpassed that of the other. The
results indicated that mobility after RL could be proportionate to
mobility in the intact condition. This work served as a case study and
proof of concept, demonstrating the integration of 7T MRI and
DVC to characterize the mechanical behavior of the meniscus in
knee articulation under loading. While intriguing initial conclusions
were drawn, it is essential to validate these results through additional
experiments involving a larger number of specimens.

This study was conducted with the knee in extension because of
the 7T MRI device. However, extrusion of the meniscus’s medial
body seemed to be greater in full extension compared to any other
flexing angles. Mechanical loading can significantly deform the
menisci in knee extension; however, this effect is limited during
knee flexion (Liu et al., 2021). In contrast, anteroposterior mobility
commonly increases with the rise of knee flexion motion (Sharafat
Vaziri et al., 2022). For this reason, the data concerning lateromedial
displacement (X) appear to be more informative.

It is possible that variability between our results and the findings
of future studies could be due to the characteristics of the created
lesions. The definition of RL is constantly debated, especially in
terms of length. RL has been commonly defined as a 25 mm tear
(Chahla et al., 2016; Balazs et al., 2019). However, during our
experimentation, the RL length we were able to achieve was
20 and 21 mm in accordance with DePhillipo et al. (2018), who
clearly established that the length of the posteromedial
meniscocapsular junction may not exceed 20 mm because
otherwise it would be extended to the midportion of the meniscus.

Utilization of a 7T MRI device brought forth numerous
advantages and advancements. 7T MRI offers spatial resolution
superior to 3TMRI, enabling the capture of highly detailed images of
the knee joint and meniscus. This heightened clarity proves
invaluable when evaluating intricate structures such as meniscal
root attachments and subtle pathological changes within the
meniscus. It bears mentioning that the biomechanical research
presented in this study could be designed for routine use on the
1.5T or 3T scanners commonly employed in clinical practice.
Subsequent studies need to be conducted to assess the capacity of

1.5T or 3T scanners to perform DVC measurements of mechanical
fields within the meniscus with adequate resolution.

5 Conclusion

In this work, original experiments were developed to perform in situ
mechanical loadings of anatomical knee specimens in a 7T MRI device
and tomeasure volume displacements in intact meniscus or after lesion.
Subtype 4 medial meniscus RL injury increases meniscal extrusion and
meniscal posterior mobility during axial compression in ACL-intact
knees. Indeed, themeniscotibial ligament andmeniscocapsular junction
seem to behave like the belt and suspenders of the medial meniscus.
Although these data improve biomechanical knowledge of RL, their
clinical impact in ACL-intact knees must be evaluated in the long term
before proposing systematic arthroscopic repair. Following the proof of
concept developed in this work, the plan is to extend the experimental
approach to encompass individuals undergoing weight-bearing MRI.
This expansion aims to measure in vivo deformation in soft structures,
identifying meniscocapsular and/or meniscotibial insufficiency or
rupture in patients.
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