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Purpose: This study aimed to investigate the features of progressive keratoconus
by means of machine learning.

Methods: In total, 163 eyes from 127 patients with at least 3 examination records
were enrolled in this study. Pentacam HR was used to measure corneal
topography. Steepest meridian keratometry (K1), flattest meridian keratometry
(K2), steepest anterior keratometry (Kmax), central corneal thickness (CCT), thinnest
corneal thickness (TCT), anterior radius of cornea (ARC), posterior elevation (PE),
index of surface variation (ISV), and index of height deviation (IHD) were input for
analysis. Support vector machine (SVM) and logistic regression analysis were
applied to construct prediction models.

Results: Age, PE, and IHD showed statistically significant differences as the follow-
up period extended. K2, PE, and ARC were selected for model construction.
Logistic regression analysis presented a mean area under the curve (AUC) score of
0.780, while SVM presented a mean AUC of 0.659. The prediction sensitivity of
SVM was 52.9%, and specificity was 79.0%.

Conclusion: It is feasible to use machine learning to predict the progression and
prognosis of keratoconus. Posterior elevation exhibits a sensitive prediction effect.
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Introduction

Keratoconus is a corneal disease featuring progressive ectasia and thinning and typically
occurs in teenagers. Aggravating irregular corneal astigmatism can lead to vision loss and
compromise of life quality with the progression of keratoconus (Ferdi et al., 2019). It is one of
the major causes of blindness.

The effects of various interventions, including rigid gas-permeable contact lenses (RGP),
intrastromal corneal rings, corneal cross-linking (CXL), and corneal graft, have been broadly
investigated over the years. A previous study indicated a remarkable improvement in best-
corrected visual acuity (BCVA) in patients who wear RGP on a long-term basis, while they
show no influence on the progression of keratoconus (Araki et al., 2021). Intrastromal
corneal rings were shown to profoundly promote visual quality but bring in glare and night
vision loss at the same time (Daxer et al., 2010). Not only did CXL surgery improve visual
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quality and prove its safety, but slowed the progression of
keratoconus as well (Hashemi et al., 2013; Hersh et al., 2017;
Wang et al., 2018). The effect of CXL with epithelial removal
using transepithelial phototherapeutic keratectomy (t-PTK)
appeared most notable above all (Kymionis et al., 2012).

Different parameters have been used to evaluate the progression of
keratoconus. Chan et al. pointed out that steeper keratometry and
younger age could lead to more radical progression (Chan et al., 2020).
Another study indicated longitudinalmonitoring of corneal topography
as a vital perspective (Choi and Kim, 2012). Moreover, predictors with
higher efficiency acquired by formulas have shown a new way forward
(Shajari et al., 2019; Kato et al., 2021). Various devices play a vital role in
the diagnosis and evaluation of keratoconus. The most commonly used
protocol is corneal biomechanics combined with topography, including
corneal pachymetry, aberration analysis, and optical coherence
tomography (OCT) (Martinez-Abad and Pinero, 2017).

With the development of artificial intelligence, prediction
efficiency can now be elevated further. Kato et al. used deep
learning to predict the need for CXL and found that pachymetry
mapping combined with age worked as ideal indicators (Kato et al.,
2021), while Ruiz Hidalgo et al. reached a similar conclusion with
machine learning (Ruiz Hidalgo et al., 2016). Al-Timemy et al.
reported high accuracy in the detection of keratoconus with a time-
friendly hybrid deep-learning model (Al-Timemy et al., 2021). The
application of machine learning for keratoconus has shown
preliminary results and needs further investigation.

The most severe stage of keratoconus usually appears in the
second decade of life in Asia. It is inclined to stabilize in the fourth
decade of life (Saini et al., 2004; Duncan et al., 2016). With an early
onset, keratoconus raises the common concerns of progression and
prognosis. Although several studies have investigated single
parameters of keratoconus, a precise prediction model remains to
be developed. This study aims to investigate the progression and
prognosis of keratoconus via machine learning.

Materials and methods

Subjects

This is a retrospective study in compliance with the tenets of the
Declaration of Helsinki and the request of the Ethics Committee of the
Eye and ENTHospital of FudanUniversity (Shanghai, China). Informed
consent was obtained from the subjects after an explanation of the nature
and possible consequences of the study. In total, 163 eyes from
127 patients with keratoconus were recruited. The inclusion criteria
were primary keratoconus with no less than 3 examination records on
PentacamHR in the Eye and ENTHospital of Fudan University and the
interval of each follow-up visit should be no less than 1 month. The
exclusion criteria were as follows: ectasia after refractive surgery, corneal
perforation, history of corneal collagen crosslinking surgery, and history
of systematic diseases and other ocular diseases.

Parameter measurement

Pentacam HR (Oculus, Wetzlar, Germany) was used to analyze
the corneal topography. Based on Scheimpflug rotating technology,

it reconstructs the anterior segment and exhibits corneal features.
Parameters including steepest meridian keratometry (K1), flattest
meridian keratometry (K2), steepest anterior keratometry (Kmax),
central corneal thickness (CCT), thinnest corneal thickness (TCT),
anterior radial curvature (ARC), posterior elevation (PE), index of
surface variation (ISV), index of height deviation (IHD), and staging
were input for analysis.

Machine learning

Clustering and machine learning were combined to construct a
prediction model based on the patients’ group level. A variety of
regression algorithms of machine learning including regression trees
model (CART), support vector machine (SVM), random forest (RF),
and extreme gradient boosting (XGBoost) was conducted. Ten-fold
cross-validation was used for model training. Of the data, 70% were
randomly chosen for the test set and 30% randomly for the training
set. There are 2 sets in 10-fold cross-validation. The training set was
created for learning and the test set for validation, which tests the
efficiency of models. Performing 10-fold cross-validation is meant to
provide a reliable estimate of prediction accuracy, even though it
may require longer processing time. The LASSO (Least Absolute
Shrinkage and Selection Operator) model was used to select the
parameters with the highest performance in SVM and logistic
regression, while the RFE (Recursive Feature Elimination) model
was used to do the same in CART and RF. The parameters of
XGBoost were selected in the model automatically. Mutual
parameters shared by at least four models were defined as the
parameters with the highest performance.

Statistical analysis

Statistical analysis was performed using R version 4.1.12.
Continuous variables were presented as mean ± standard
deviation (SD), and categorical variables were presented as
frequency and percentage. Machine learning was processed with
Python (3.0).

Results

In total, 163 eyes from 127 patients (male, 99; female, 28) were
enrolled in this study with no corneal infection or perforation. The
mean age of diagnosis was 20.1 ± 5.4 years old, ranging from 7 to
34 years old. The mean follow-up time was 55.50 ± 27.75 months.

Parameters fluctuated during follow-up (Table 1; Figure 1). K1,
K2, and Kmax showed a down-up-down trend, while CCT and TCT
shared the same trend. ISV and IHD varied similarly and
simultaneously. The changes in age (p < 0.001), PE (p = 0.009),
and IHD (p = 0.033) were statistically significantly different.

Among all the parameters input, K2, PE, and ARC showed the
highest performance in most models and were screened for machine
learning and logistic regression. The AUC scores of three out of five
prediction models were above 0.500 (Table 2), while the logistic
regression model presented a higher AUC value of 0.780 (Figure 2),
followed by SVM with 0.659. The prediction sensitivity of the
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TABLE 1 Parameters in different stages of follow-up.

Baseline Within 1 month 1–3 months 3–6 months 7–12 months 1–2 years 2–3 years 3–4 years 4–5 years More than 5 years p

n 163 34 42 63 102 130 90 58 44 91

age 20.05 ± 5.39 21.10 ± 5.57 21.33 ± 5.82 20.18 ± 4.81 20.75 ± 5.22 21.40 ± 5.69 22.14 ± 5.40 23.03 ± 4.94 25.02 ± 4.98 25.77 ± 4.62 <0.001

K1 48.25 ± 6.55 48.70 ± 6.25 49.39 ± 7.86 49.53 ± 7.50 49.31 ± 6.18 48.94 ± 6.52 50.09 ± 7.24 51.59 ± 8.06 49.28 ± 5.45 50.86 ± 6.65 0.109

K2 52.11 ± 6.87 52.00 ± 6.35 53.06 ± 8.19 52.59 ± 7.79 52.12 ± 6.47 51.73 ± 6.93 53.54 ± 7.15 54.20 ± 8.23 53.08 ± 5.89 54.24 ± 6.91 0.258

Kmax 59.90 ± 10.88 58.88 ± 10.12 60.50 ± 11.39 60.68 ± 11.79 59.50 ± 10.04 58.39 ± 10.14 59.86 ± 9.68 60.87 ± 11.38 59.40 ± 8.93 61.04 ± 10.10 0.879

CCT 461.45 ± 53.28 466.09 ± 49.89 436.26 ± 47.37 462.87 ± 49.91 456.03 ± 55.39 461.93 ± 51.85 461.71 ± 61.91 451.53 ± 68.49 470.32 ± 58.50 447.12 ± 62.97 0.081

TCT 450.67 ± 54.52 459.29 ± 48.76 428.05 ± 47.08 452.06 ± 48.98 444.50 ± 57.06 449.25 ± 51.46 450.54 ± 68.20 441.12 ± 67.00 456.82 ± 70.07 432.68 ± 67.16 0.093

ARC 6.45 ± 0.93 6.42 ± 0.86 6.29 ± 0.96 6.33 ± 1.04 6.24 ± 0.87 6.35 ± 0.93 6.35 ± 0.82 6.25 ± 0.92 6.50 ± 0.78 6.35 ± 0.85 0.773

PE 61.03 ± 40.37 57.09 ± 34.71 69.73 ± 41.90 70.76 ± 48.35 72.91 ± 47.66 68.31 ± 45.25 69.35 ± 42.46 73.19 ± 58.20 50.99 ± 50.06 50.93 ± 53.55 0.009

ISV 103.29 ± 50.84 95.82 ± 44.26 113.83 ± 48.67 112.16 ± 51.47 107.44 ± 49.93 104.78 ± 52.89 94.48 ± 40.71 101.48 ± 50.53 94.48 ± 38.04 107.87 ± 46.44 0.284

IHD 0.13 ± 0.08 0.13 ± 0.08 0.15 ± 0.08 0.14 ± 0.08 0.14 ± 0.08 0.14 ± 0.08 0.11 ± 0.06 0.12 ± 0.07 0.11 ± 0.08 0.14 ± 0.08 0.033
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logistic regression model reached 0.842, followed by XGBoost
(0.640) and CART (0.619), while SVM showed the highest
prediction specificity with 0.790, followed by logistic regression
(0.737) and RF (0.684).

Discussion

Leading to blindness, keratoconus has an overall incidence of 1/
2000 (Gomes et al., 2015). While a consensus on diagnosis and
treatment has been reached over the past 20 years, the criteria of
progression and prognosis remain to be discussed. To our
knowledge, this study predicted the development of keratoconus
with Pentacam via machine learning for the first time.

It was revealed in our study that changes in age, PE, and IHD
showed statistical significance in the progression of keratoconus,
which has been proved in previous studies. Serving as indications of
elevation, PE shows the variation directly, while IHD does so with a
processed index, which implies the indication effect of posterior
elevation in the progression and prognosis of keratoconus. Younger
age and severity of onset indicate more radical development (Meyer
et al., 2021; Ferdi et al., 2022). Moreover, it was implied that a steeper

Kmax is a risk factor for the progression of keratoconus (Hamilton
et al., 2016). This could be attributed to the interaction between Kmax

and other parameters such as TCT, which becomes thinner with the
steepening of Kmax. While the change is reflected in staging, it fails to
indicate the progression of the disease. Age and PE are relatively
more sensitive and could serve as early warning parameters.

It has been pointed out that ISV is also a sensitive predictor of
the progression of keratoconus (Kanellopoulos and Asimellis, 2013),
which could be related to its role in the staging algorithm of
Pentacam. It was included in the machine learning input to
improve the accuracy of prediction.

FIGURE 1
Changes of parameters during follow-ups.

TABLE 2 Comparison of the performance of prediction models.

SVM CART RF XGBoost Logistic regression

AUC 0.659 0.443 0.479 0.583 0.780

Sensitivity 0.529 0.619 0.571 0.640 0.824

Specificity 0.790 0.238 0.684 0.520 0.737

FIGURE 2
Performance of prediction models. LR, Logistic regression;
Purple line, reference line, showing AUC score of 0.500.
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The AUC value of the logistic regression model was higher than
that of the SVM model. This could be related to the appropriate
condition of both algorithms. While the SVM model is a deep
learning method that is relatively well adapted to limited samples, a
multi-classification task remains a problem. On the contrary, logistic
regression analysis is an ideal method for the prediction of complex
prognosis, which explains the higher AUC value compared to the
SVM model.

The limitations of our study are 1) The sample size is relatively
small and 2) the eye-rubbing habits and genetic backgrounds of
patients remain to be taken into consideration for better stability of
prediction.

In conclusion, posterior elevation serves as a sensitive predictor
of the progression of keratoconus. It is feasible to predict the
development of keratoconus via machine learning.
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