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Diabetic Retinopathy (DR) is a major type of eye defect that is caused by
abnormalities in the blood vessels within the retinal tissue. Early detection by
automatic approach using modern methodologies helps prevent consequences
like vision loss. So, this research has developed an effective segmentation
approach known as Level-set Based Adaptive-active Contour Segmentation
(LBACS) to segment the images by improving the boundary conditions and
detecting the edges using Level Set Method with Improved Boundary Indicator
Function (LSMIBIF) and Adaptive-Active Counter Model (AACM). For evaluating the
DR system, the information is collected from the publically available datasets
named as Indian Diabetic Retinopathy Image Dataset (IDRiD) and Diabetic
Retinopathy Database 1 (DIARETDB 1). Then the collected images are pre-
processed using a Gaussian filter, edge detection sharpening, Contrast
enhancement, and Luminosity enhancement to eliminate the noises/
interferences, and data imbalance that exists in the available dataset. After that,
the noise-free data are processed for segmentation by using the Level set-based
active contour segmentation technique. Then, the segmented images are given to
the feature extraction stage where Gray Level Co-occurrence Matrix (GLCM),
Local ternary, and binary patterns are employed to extract the features from the
segmented image. Finally, extracted features are given as input to the classification
stage where Long Short-Term Memory (LSTM) is utilized to categorize various
classes of DR. The result analysis evidently shows that the proposed LBACS-LSTM
achieved better results in overall metrics. The accuracy of the proposed LBACS-
LSTM for IDRiD andDIARETDB 1 datasets is 99.43% and 97.39%, respectively which
is comparably higher than the existing approaches such as Three-dimensional
semantic model, Delimiting Segmentation Approach Using Knowledge Learning
(DSA-KL), K-Nearest Neighbor (KNN), Computer aidedmethod and Chronological
Tunicate Swarm Algorithm with Stacked Auto Encoder (CTSA-SAE).
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1 Introduction

Diabetic Retinopathy (DR) is one of the most common types of
retinal vascular complication of diabetes mellitus manifested by
elevated blood sugar which severely affects the blood vessels of
retinal tissue (Garifullin et al., 2021; Huang et al., 2022). DR is a
complex condition that can result in vision loss, and projections
indicate that by 2040, approximately 600 million individuals will be
affected by it with one-third of them experiencing diabetic
retinopathy. Diabetic microvascular disease leads to DR which is
classified into three classes such as blood vessel rupture,
hemorrhage, and obstruction of blood vessels. Moreover, DR is
categorized into five stages such as normal, mild, moderate, severe,
and proliferative (Hasan et al., 2021; Xu et al., 2021; Pundikal and
Holi, 2022; Maaliw et al., 2023) based on the severity of disease.
Regular screening is required to aid in early DR identification, and
early DR discovery will allow for thorough monitoring of the DR
progression rate, which can be remarkably quick from early to high
risk. By detecting and treating DR abnormalities early on, it is
possible to prevent 95% of premature, irreversible visual damage as
well as subsequent recurrences. At the initial stage, DR does not
show any symptoms or minor vision impairment in the body parts.
The symptoms of DR include blurred or color vision impairment
and dark strings, which occur in the float of the patient’s vision (Sule,
2022; Ullah et al., 2023). DR can be diagnosed with the help of a laser
or through a surgical procedure known as vitrectomy which inhibits
the changes and helps to retain the vision. Non-Proliferative
Diabetic Retinopathy (NPDR) leads to retinal swelling and
minute blood vessel leaks (Kadan and Subbian, 2021;
Nikoloulopoulou et al., 2023). The extreme phase in DR is
referred to as Proliferative Diabetic Retinopathy (PDR) which
damages the inner tissues of the retina and blocks the flow of
blood (Guo and Peng, 2022; Li et al., 2022; Yan et al., 2022;
Sundaram et al., 2023).

The formation of scar tissue has the maximum probability of
affecting the central and peripheral vision. The manual diagnosis of
DR is a time-consuming method, so computer-aided diagnosis gains
attention among the ophthalmologist (Nallasivan et al., 2021; Ali
et al., 2023). The hard exudates rupture the fatty blood vessels and
worsen the condition of diabetic retinopathy. These hard exudates
are yellow with different sizes and shapes. Since diabetic retinopathy
is considered as a major concern which affects the people, relies a
precise segmentation must be employed to detect and classify the
type of diabetic retinopathy (Atli and Gedik, 2021; Udayaraju et al.,
2023). The researchers were focusing on traditional image
processing approaches such as morphological operations and
threshold segmentation approaches. The existing researches are
limited by heavy dependence of design level and the traditional
lesion segmentation approaches. However, the existing research
based on DR classification has not attained granularity while
distinguishing PDR (Alam et al., 2023). Moreover, deep learning
techniques are used in various applications related to segmentation
and classification. Although deep learning techniques hold
enormous promise for applications involving clinical imaging, the
present techniques call for a greater volume of trained labelled data.
Training datasets frequently include thousands of high-quality
labelled photos, which are expensive to acquire and unavailable
for rare conditions, but are necessary to achieve better outcomes. In

addition to making more data available, enhancing current
techniques to get the same results with less data offers another
potential remedy for these restrictions. Precise segmentation has a
significant stage in classifying DR with better categorization
accuracy (Jebaseeli et al., 2019; Atwany et al., 2022; Chen et al.,
2023). The existing approaches faced problems related to poor
segmentation accuracy due to its incapability in detecting the
boundaries of the image. Moreover, the edges of the images are
not considered as the major part while segmentation which affects
the classification accuracy of the model. So in this research, an
effective segmentation approach by considering the boundary which
makes the classification process easier and aids in better
classification accuracy.

The significant contributions of this research are specified as
follows:

1) In this research, the raw data obtained from IDRiD and
DIARETDB 1 is pre-processed by noise removal using
Gaussian filter, enhancing the color and luminosities of the
image. The pre-processed image was used in the process of
segmentation to improve the image quality.

2) Secondly, segmentation was performed before the stage of
feature extraction and classification. The stage of
segmentation plays an important role in analyzing the retinal
fundus. So, this research introduced LBACS technique to
segment the DR images.

3) The LBACS is comprised with LSMIBIF and AACM which
effectively overcome the limitations of existing approaches in
segmenting the boundaries and edges. The proposed approach
effectively segments the image into partitions and detect the DR
in every individual segments using LSMIBIF and AACM
respectively.

4) The features are extracted using GLCM, LTP and HOG, which
extract the features based on gradient and intensity of the image.
Finally, the classification is performed with the help of LSTM to
classify the type of diabetic retinopathy.

The rest of the paper is structured as follows, Section 2 presents
the related work of this research and Section 3 presents the proposed
method of this research. The results are presented in Section 4, while
the Section 5 presents the overall conclusion of this research.

2 Related works

In this section, recent researches based on diabetic retinopathy
segmentation and classification techniques are discussed. This
section was classified based on the usage of deep learning and
machine learning approaches in classifying the diabetic retinopathy.

2.1 DR classification using deep learning
methods

Rachapudi et al. (2023) developed an optimized classification
method using the Deep Neural Network and Butterfly Optimization
Algorithm (DNN-BOA). After the data acquisition and pre-
processing, the blood vessels were removed with the help of Gray
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Level thresholding, and segmentation was performed with the help
of Modified Expectation Maximization (MEM). The feature
extraction was performed using the GLCM and finally,
categorization was performed using DNN-BOA. However, the
features extracted by the suggested approach had higher
dimensionalities which enhanced the processing time. Dayana
and Emmanuel (2022b) introduced an efficient and optimized
deep neural network along with a Chronological Tunicate Swarm
Algorithm (CTSA) to categorize the severity of diabetic retinopathy.
The U-Net and the fuzzy C-means hybrid entropy model were
utilized to segment the optic disc and blood vasculatures. After this,
the Gabor filter was used to identify the region of lesions and finally,
the classification was performed with the help of a Stacked
Autoencoder with CTSA on chronologic concept. However, the
suggested approach faced misclassification issues while discerning
the mild class DR.

Mondal et al. (2023) introduced an Ensemble Deep Learning
Technique to Detect and categorize diabetic retinopathy. In this
research, two deep learning approaches such as DenseNet101 and
ResNeXt models were used for classification stage. The histogram
equalization was performed using CLAHE and data augmentation
was performed with the help of GAN based augmentation
technique. However, the suggested approach did not perform a
feature map for the whole input data. Dayana et al. (2023)
introduced an improved classification method based on an
optimization approach to grade the severity of the image. The
dilated convolution-based spatial attention U-Net was used in
optic disc segmentation and the entropy-based hybrid approach
was used in the process of segmenting blood vessels. The extraction
of features took place using a layered fusion network and the
classification was performed with the help of a Refined Deep
Residual Network (RDRN) and Tunicate Swarm Spider Monkey
Optimization (TSSMO) algorithm. However, misclassification
occurred while classifying the mild lesions with a dark
background and overlying visuals.

Beham and Thanikaiselvan (2023) introduced an optimized
deep-learning approach for automated retinopathy detection. The
suggested approach introduced an Inception V3 model with a
customized Convolutional Neural Network (CNN) with the
Population-Based Incremental Learning (PBIL) algorithm
referred to as PBIL-CNN. The PBIL-CNN effectively detected the
DR from the color fundus images and helped in the process of
classifying diabetic retinopathy. The suggested approach considered
the feasible fitness function to distinguish the parameters of CNN.
However, the PBIL-CNN exhibited complexities while computing
the deeper samples such as dilation of pupils. Shanthini et al. (2021)
introduced a Segmentation Convolutional Neural Network
(S-CNN) to detect diabetic retinopathy. The S-CNN performed
threshold-based segmentation to categorize the foreground and the
background of the retinal image. The segmentation was performed
with the pixel-based segmentation approach. The layers were
accessed using the two-layer CNN which mitigated the rate of
false positives during DR classification. However, the noise
reduction algorithm used in pre-processing reduced the dark
information fine contrasts. Özçelik and Altan (2023) developed a
robust AI model that makes use of two-dimensional stationary
wavelet transform (2D-SWT) and fractal analysis to handle the
crucial problem of early identification in diabetic retinopathy.

Validated by 10-fold cross-validation, the model used a recurrent
neural network-long short-term memory (RNN-LSTM)
architecture for classification and shown remarkable performance
in diagnosing all stages of DR with low computational cost.
However, the suggested framework faced complexities while
reducing the dimensionality of the features.

Usman et al. (2023) developed an approach of using pre-trained
CNNs such as ResNet50, ResNet152, and SqueezeNet1 to
concentrate on color Fundus Photographs (CFPs) dimensionality
reduction and data preparation. This study was focused to address
issues of existing screening techniques which were frequently
underutilized, delayed diagnosis and impaired vision. This
approach also introduced a Deep Learning Multi-Label Feature
Extraction and Classification (ML-FEC) model. The results have
shown that ResNet152 achieved a low Hamming loss indicating that
it could be useful in large-scale DR screening applications. Alajlan
and Razaque. (2023) have introduced Egret Swarm Optimization
based Hybrid Gated Recurrent Unit (ESOA-HGRU) for classifying
DR. Initially, the input samples are pre-processed using the data
augmentation approach and partitioned as training and testing data.
The hybrid mask region was optimized with the help of Egret Swarm
Optimization to diminish the loss of classifier. Finally, the
classification was performed with the help of ESOA-HGRU.
However, the suggested approach exhibits poor performance for
asymmetric datasets. Math and Fatima (2021) have introduced an
adaptive approach to segment and classify the DR images. Initially,
the data is pre-processed using normalization method and the
scaling is performed to equalize the contrast and illumination.
After this, the CNN based segment level classifier is used to
evaluate the possibilities of DR. Next to the stage of
segmentation, the global aggregation is performed to integrate
the segment level DR images and classification is performed with
the help of CNN. However, the usage of CNN requires more number
of labelled data.

2.2 DR classification using machine learning
methods

Shaukat et al. (2022) introduced a three-dimensional semantic
model to segment the diabetic retinopathy lesions. The pre-
processed input data was fed into the pre-trained Xception
model, and the extracted features were segmented with the help
of Deeplabv3. After this, the feature selection was performed with
the help of the Marine Predictor Algorithm (MPA). Finally, the
classification of DR takes place with the help of a neural network and
K-Nearest Neighbor classifier. However, the classification accuracy
of the suggested approach was diminished for varying sizes of DR
lesions. Kaur and Kaur (2022) developed an automated diagnosis of
diabetic retinopathy based on segmentation and classification using
the K-Nearest Neighbor (KNN) classifier. In the stage of pre-
processing, the unwanted pixels were removed and 2D discrete
wavelet decomposition was applied to extract the boundaries of
blood vessels. Moreover, an adaptive thresholding approach was
used to detect the statistical and geometrical location of the lesions.
Finally, the KNN classifier was used in the process of classifying the
DR lesions. The suggested approach lacked efficiency while
evaluating the high-dimensional features. Jaskirat et al. (2023)
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developed an automated detection and segmentation approach to
detect and segment the exudates of the acquired image retina based
on digital fundus images. The suggested approach enhanced the
quality of the retinal fundus image and removed the false exudate
pixels. Additionally, the mass screening process filtered the
unwanted portion that was not related to diabetic retinopathy.

However, the evaluation of the suggested approach was limited
with a minimal number of retinal images.

Sandhya et al. (2022) introduced a Delimiting Segmentation
Approach Using Knowledge Learning (DS-KL) to enhance the
accuracy of diabetic retinopathy. The suggested approach was
based on the histogram variation classification that detected the

TABLE 1 Comparison of existing methodology, their advantage and limitation in classifying DR.

Author Methodology Advantage Limitation

Rachapudi et al DNN-BOA used in the process of classifying
diabetic retinopathy

Higher dimensions helped in enhancing the
processing time

However, the features extracted by the
suggested approach had higher dimensionalities
which affects the overall classification approach

Dayana and
Emmanuel et al

An efficient and optimized deep neural network
along with a Chronological Tunicate Swarm

Algorithm (CTSA) to categorize the severity of
diabetic retinopathy

Stacked Autoencoder along with CTSA helps in
classification of DR in chronologic order

Misclassification problems in identifying the
moderate class DR

Mondal et al An Ensemble Deep Learning Techniques such as
DenseNet101 and ResNet for classification of DR

The equalization of histogram using CLAHE
performs contrast amplification for each

neighboring pixels

The measure of feature classes was difficult as
feature map of input data was not performed

Dayana et al Refined Deep Residual Network (RDRN) and
Tunicate Swarm Spider Monkey Optimization

(TSSMO) algorithm

The segmentation of optic disc and blood
vasculatures helps in the process of extracting

the appropriate features

Misclassification while classifying the mild
lesions with dark background and overlying

visuals

Beham and
Thanikaiselvan

An optimized deep learning approach
Convolutional Neural Network (CNN) with the
Population-Based Incremental Learning (PBIL)

The parameters of CNN were easily
differentiated from the fitness function

Complexities while computing the deeper
samples such as dilation of pupils

Shanthini et al Segmentation Convolutional Neural Network
(S-CNN) to detect diabetic retinopathy

The two-layer CNN effectively reduced false
positive rate during DR classification

The noise reduction algorithm used in pre-
processing reduced the dark information fine

contrasts

Yusuf Bahri Özçelik
et al

Robust AI model using two-dimensional
stationary wavelet transform (2D-SWT) and also

RNN-LSTM for classification of DR

The 2D-SWT model performs pixel wise
segmentation which minimize the complexities

in extracting the features

The suggested framework does not work for
segmenting the deep samples such as dilated

pupils and the discs

Tiwalade Modupe
Usman et al

Principal component analysis multi-label feature
extraction and classification using pre-trained
CNN and SqueezeNet1 to concentrate on color
Fundus Photographs (CFPs) dimensionality

reduction and data preparation

The usage of CNN and squeeze net 1 minimize
the hamming loss and aids in better

classification results

The complexities occurs while classifying the
complex features such as deep edges of pupil

and iris

Abrar M. Alajlan and
Abdul Razaque

Egret Swarm Optimization based Hybrid Gated
Recurrent Unit (ESOA-HGRU) for

classifying DR

ESOA optimize the loss function and helps to
classify the DR using HGRU

However, the high complex features present at
the edges of the image were unrecognized

Laxmi Math and
Ruksar Fatima

An adaptive approach using CNN based segment
level classifier to evaluate the possibilities of DR

The global aggregation approach was used to
integrate the segmented image to obtain better

classification results

The suggested approach does not works well for
unlabeled datasets

Shaukat et al A three-dimensional semantic model to segment
the diabetic retinopathy lesions and KNN for

classification

The MPA utilized in the feature selection
performs an in-depth search to select the

relevant features

Low classification accuracy for varied sizes of
DR lesions

Kaur and Kaur et al An automated diagnosis of diabetic retinopathy
based on segmentation and classification using

the KNN classifier

2D discrete wavelet decomposition works till
the boundaries of blood vessels which makes

the classification easier

Efficiency of the model is low while evaluating
the high dimensional features

Jaskirat et al An automated detection and segmentation
approach to detect and segment the exudates of
the acquired image retina based on digital fundus

images

Enhanced quality of retina fundus images and
removed eye false exudate pixels. The

unwanted portions which are not related to DR
were removed through mass screening process

Limited number of retinal images resulted in the
minimal performance of the model

Sandhya et al Delimiting Segmentation Approach Using
Knowledge Learning (DS-KL) to enhance the

accuracy of diabetic retinopathy

The histogram variations helped to detect the
exudate regions and also the effected regions
were eliminated by easily by narrowing the

pixel boundaries

Classification errors while categorizing the
complex features of distributed image segments

Douglas Abreu da
Rocha et al

VGG16 Neural network for classification of DR The presence of max pooling layer and the
dense layer evaluate the selected features and

helps in effective DR classification

However, the embedded image visuals of the DR
images cannot be detected due to absence of in-

depth analysis
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exudate regions. The input images were obtained from the variation
that took place from the histogram variations that help to detect the
exudate regions. The segmentation approach discriminated the
affected regions by delimiting the pixel boundaries. However, the
suggested approach faced classification errors while categorizing the
complex features of distributed image segments. Da Rocha et al.
(2022) developed a novel approach of using the VGG16 neural
network to address critical issues of diabetic retinopathy. The
objective of this study was to create a fifth class (class 5) for low-
quality digital retinal images from the DDR, EyePACS/Kaggle, and
IDRiD databases in addition to classifying diabetic retinopathy into
five categories. The methodology included image size modification,
data cleaning, augmentation, class balance, and hyperparameter
tuning. This method improved the standard of diagnosis and
treatment for diabetic retinopathy. The Table 1 depicted below
presents the outcome of key characteristics to highlight the
constraints and proposed solution of the existing researches.

2.2.1 Scientific contribution
The aforementioned existing segmentation approaches did not

consider the edges and the boundary conditions while segmenting
the retinal images. When the segmentation approach does not consider
the edges and the boundaries, the segmentation accuracy is less with
improper boundaries which will affect the overall performance of the
model. So, this research introduces an effective segmentation approach
using LBACS and classification using LSTM to categorize various
classes of DR with better accuracy. Moreover, LSMIBIF and AACM
in LBACS allocate an improved boundary condition and detect the
edges of the pre-processed image respectively. Thus, the proposed
LBACS-LSTM provides better results in both segmentation and
classification of diabetic retinopathy.

3 LBACS-LSTM method

In this research, effective segmentation and classification are
performed with the help of LBACS, and the classification is
performed with the help of LSTM classifier. Diabetic retinopathy
is categorized by employing the following stages; initially, the data is
acquired from publicly available datasets such as IDRID and
DIARETDB1 and the pre-processing is performed with Gaussian
filtering, edge detection sharpening, enhancement of contrast and
luminosity. Then the pre-processed output is fed into the stage of
segmentation where an effective segmentation is performed using
the proposed LBACS. The segmented output is fed into the stage of
feature extraction and finally, the categorization is performed using
the LSTM classifier. Figure 1 presents the block diagram of the
overall process involved in classifying diabetic retinopathy.

3.1 Data acquisition

In this research, the data is obtained from two publicly available
datasets as Indian Diabetic Retinopathy Image Dataset (IDRiD)
(Porwal et al., 2018) and Diabetic Retinopathy Database 1
(DIARETDB 1) (Kaggle, 2023). This section presents a brief
description of those two datasets.

3.1.1 IDRiD
It is a publicly accessible dataset that can be downloaded from IEEE

data port repository. This dataset is comprised of fundus images obtained
from Indian eye clinics using the Kowa VX fundus camera. The captured
IDRiDdataset has a 50-degreefield viewwith a resolution of 4288× 2848.
Figure 2 presents the sample image obtained from the IDRiD dataset.

FIGURE 1
The overall process involved in the classification of diabetic retinopathy using LBACS-LSTM.
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3.1.2 DIARETDB 1
This is a type of publicly available dataset that consists of

89 color fundus images of which 84 have mild NPDR signs, and
the rest of the 5 images are normal images. Specifically, 41 images are
bright lesions and 45 images are darker ones. The resolution of the
pixels present in this dataset is 1500 × 1152 and the angle of vision is
50°. Among 89 images, 28 images are used for training and the
remaining 61 images are for testing. Figure 3 shows the sample
images in the DIARETDB1 dataset.

3.2 Data pre-processing

After the stage of data acquisition, the raw data is pre-processed
to get a pre-processed output without any noise. In this research, the
pre-processing is performed with the help of Gaussian filtering, edge
detection and sharpening, and enhancement of color and
luminosity. In this section, the process involved in the
aforementioned pre-processing techniques are described as follows:

3.2.1 Gaussian filtering
The fundus image is comprised of three bands of red, green, and

blue. The exudates look brighter in color compared to red and blue
channels. The Gaussian filter (González-Ruiz et al., 2023)
smoothens the average value of neighboring pixels and removes
noise, and the high-frequency constituents present in the image are
calculated based on the Eq. 1 as follows:

Ig x, y( ) � Ig x, y( ) × g x, y( ) (1)

Where the Gaussian function is represented as g(x, y), the green
channel component and the Gaussian noise is represented as Ig(x, y)
and Ig(x, y) respectively.

3.2.2 Edge enhancement
It is one of the image processing techniques that improvise the

edge contrast of the image to enhance sharpness of the image. This
process creates a subtle bright and dark highlight of edges in the
image and makes it look more defined.

3.2.3 Enhancement of color and luminosity
After edge enhancement, the color and luminosity of the image are

enhanced with the help of Contrast Limited Adaptive Histogram
Equalization (CLAHE). The CLAHE (Chandni et al., 2022) creates a
realistic formof the image by improvising the color pattern and luminosity
by histogramequalization. The sample image obtained after enhancing the
color and luminosity is represented in Figure 4 as follows.

3.3 Segmentation

After the stage of pre-processing, the pre-processed output is fed
into the stage of segmentation which is performed with the help of
Level-set Based Adaptive-active Contour Segmentation (LBACS)
technique. The following section describes the process involved in

FIGURE 2
Sample images of IDRiD dataset.

FIGURE 3
Sample images obtained from DIARETDB 1.
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segmentation using the proposed LBACS which is the improvisation
made with boundary indicator function in level set function, and
adaptive method in active contour method. The segmentation
efficiency is enhanced with the help of improved boundary
conditions and an adaptive active counter to determine the edges
of the pre-processed image. The detailed information related to the
Level Set Method (LSM), the Level Set Method with Improved
Boundary Indicator Function (LSMIBIF), and Adaptive-Active
counter models are described in the sub-sections below.

3.3.1 Level set method (LSM)
The contour has a zero level set of time-dependent Level Set

Function (LSF) and assumes that LSF considers the negative value
inside zero level contour and positive values at the outside counter.
The Euler’s equation for Distance Regularized Level Set Evolution
(DRLSE) is represented in Eq. 2 as follows:

ϕt � μ div dp ∇ϕ

∣∣∣∣ ∣∣∣∣∇ϕ( ) + λδε ϕ( )div g′ ∇ϕ

∣∣∣∣ ∣∣∣∣
αg′δε ϕ( )( ) (2)

The edge indicator function of DRLSE is denoted as g′ which is
represented in Eq. 3 as follows:

g′ � 1

1 + f
∣∣∣∣ ∣∣∣∣2 (3)

The weighted coefficient values are represented as μ, λ, α, and the
double well potential distance for regularization is represented as dp.
The differentiation of the of initialization process is represented as
∇ϕ. The hat function along variable support is represented as δε. The
existing LSM eliminates the need for re-initialization and utilizes the
binary step function to initialize level set factor. However, the edge
detector function in the existing level set method fails in detecting
the accurate boundaries due to the challenges in illumination and
low intensity issues. So, this research introduces LSMIBIF to set the
appropriate boundary for the pre-processed image.

3.3.2 Level set method with Improved Boundary
Indicator Function (LSMIBIF)

The issues rely on the existing LSM being overwhelmed using
the proposed LSIMIBIF. The improvisation is made in the boundary

indicator function which segments the diabetic retinopathy in
patients. The consideration of boundary function A counter is
combined with a zero level set of level set factor ϕ, and the level
set factor is determined based on Ωin. The Ω0 is known as the zero-
level set where (ϕ� 0), Ωin is the domain inside Ω0 and the domain
outside Ω0 is represented as Ωout. The energy function E(ϕ) is
represented in Eq. 4 as follows:

E ϕ( ) � εimg ϕ, gρ( ) + εreg ϕ, gρ( ) (4)

Where the external energy which is determined with the help of
image attribute is denoted as εimg and the regularization term which
defines the utilized energy is represented as a constraint of LSM. The
improved edge detector is represented in Eq. 5 which is improvised
in the existing boundary condition represented in Eq. 3.

gρ �
1

1 + 1
2 1 − 1 − ∇Iσ| |2/ρ2 1 − ∇Iσ| |2/ρ2(( ) (5)

Where the image smoothening performed with the Gaussian
filter using standard deviation σ is represented as Iσ . The ρ presents
the boundary threshold function based on the standard deviation S
and the value of the boundary threshold is evaluated using the Eq. 6
as follows:

ρ I( ) � 1 + 





S Iσ( )√
3

(6)

The improved boundary indicator is used to exhibit the
expression related to gradient descent value which is presented in
Eq. 7 with three different parts. The first part is based on the
regularization term that excludes the process of re-initialization. The
second part is based on zero level set approach which offers long
term driving for the boundaries of the target. The third part of the
equation is utilized to enhance the region among the neighboring
targets and the evolution rate.

∂ϕ
∂t

� udiv(dp(dp ∇ϕ

∣∣∣∣ ∣∣∣∣∇ϕ + λδε ϕ( )div gρ
∇ϕ

∇ϕ

∣∣∣∣ ∣∣∣∣( )
+ αgρ +mY( )δε ϕ( )) (7)

Where the weighed co-efficient which evaluates each parameter
is represented as u, λ, α andm. The difference in level set factor with
respect to time is represented as ∂ϕ∂t . The divergence is evaluated using
the following parameter is represented as div(.). The gradient
operator of the LSF gradient is represented as ∇ and the Dirac
function is represented as δε which is represented in Eq. 8 as follows:

δε ϕ( ) �
1
2ε

1 + cos
πϕ

ε
( )( ) ϕ

∣∣∣∣ ∣∣∣∣≤ ε
0 ϕ
∣∣∣∣ ∣∣∣∣> ε

⎧⎪⎪⎨⎪⎪⎩ (8)

Where the obtained Heaviside function is represented as δε. The
Dirac function is only useful when used in conjunction with the
integral. Because this Dirac function acquires the boundary near the
zero-level set, the line integral of the boundary indicator with the
active contour is determined by adding the Dirac function. The
external energy is then obtained and used to calculate the contour as
part of the evolution stimulus. The parameter employed in the Dirac
function affects the function. The value of ε needs to be larger to
enhance the capturing range of contour, but the higher contour

FIGURE 4
Sample image obtained after enhancing the color and luminosity.
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range may affect the prediction accuracy. So, the value of ε is
assigned as 1.5.

3.3.3 Adaptive-Active Counter Model (AACM)
AACM is used in the second stage of segmentation where the

edges are detected to minimize the size of visual data and aid in
better classification. The general architectural diagram of the process
involved in segmenting the image using AACM is represented in
Figure 5 as follows:

The energy function of the suggested AACM is comprised with
two terms such as data fitting and regularization term which is
represented in Equation 9 as follows:

EAACM � ER + ED (9)
Where the term related to data fitting and regularization is

represented as ER and ED respectively.

3.3.3.1 Data fitting term
The entropy value of the Shannon information to the image

domain and the proposed image entropy value is represented in Eq.
10 as follows:

Eimg� −∫∫
Ωx

Py,ΩxlogPy,Ωxdxdy (10)

Where the intensity of distributing small circular neighborhoods
is represented as Py,Ωx and the equation of the adaptive scale
operator is denoted in Eq. 11 as follows:

ASO �
1

2πσ
exp − dx

2σ2( ), dx ≤ ρ

0, dx > ρ

⎧⎪⎪⎨⎪⎪⎩ (11)

Where the Euclidean distance from point y to point x is
represented as dx and the radius which is responsible to control

the distance of the radius is represented as ρ, represented in Eq. 12 as
follows:

ρ � θmean 1 − Eimg −min Eimg( )
max Eimg( ) −min Eimg( )( ) (12)

Where the mean operator and the factor related to
normalization are represented as mean and θ respectively. The
images with severe inhomogeneous intensity have blurry regions
with edges and the sub-region cannot be discriminated with the help
of human vision. To overcome this issue, the bias field estimation
term is described based on the membership function for every
individual pixel value. The improved bias field estimation term is
represented in Eq. 13 as follows:

Îϕi y( ) � b x( )um
i x( )Iϕi y( ) + n y( ) (13)

Where the value of fitting intensity is represented as Îϕi(y) and
the value of real intensity value is represented as Iϕi(y). The
dependent membership function is represented as umi (x) which
lies in the point y and the fuzzy index valuem. The varying bias field
related to inhomogeneous intensity is represented as b(x). The
additive noise present in the Gaussian distribution function is
represented as n(y). Based on the semi-Naïve Bayes classifier, the
proposed AACM model is defined in Eq. 14 as follows:

p yΦi|I(y( ) �) ∏N
i�1p yΦi( )p I y( )∣∣∣∣yΦi, um

i y( )( )
p I y( )( ) (14)

Where the respective region area is represented as A and the
Gaussian distribution function with the final energy fitting term ED

is represented in Eq. 15 as follows:

ED � ∑N
i�1
∫∫

ϕi

− kASOp dx( ) ln
1








2πσ i x( )√ exp − I y( ) − b x( )um
i y( )Ii y( )∣∣∣∣ ∣∣∣∣2

2σ i x( )2
⎛⎝ ⎞⎠⎡⎢⎢⎣

+ln A Φi( )
A Ωx( )( )⎤⎦dxdy (15)

3.3.3.2 Regularization term
The stabilized evolution and the smoothened level set function is

represented as ϕ and the regularization term is considered as a
significant component of AACM. In this research, the regularization
term is developed with the help of penalty term and length
regularization term which is represented in Eq. 16 as follows:

ER � uL ϕ � 0( ) + vRp ϕ( ) (16)

Where the constant values which contribute to two terms are
represented as u and v, the occurrence of tiny isolated sections in the
final stage are represented as L(ϕ� 0) and the penalty term to
eradicate re-initialization and retain the signed function at curve
evolution is represented in Eqs. 17, 18 respectively.

L ϕ � 0( ) � ∫
Ω
δ ∇ϕ
∣∣∣∣ ∣∣∣∣( )dxdy (17)

Rp ϕ( ) � ∫
Ω
p ∇ϕ
∣∣∣∣ ∣∣∣∣( )dxdy (18)

FIGURE 5
The process involved in segmentation using AACM.
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Where the Hamilton operator is represented as ∇ and the energy
density function is represented as p(|∇ϕ|). The penalty term for the
flow of gradient descent is represented in Eq. 19 as follows:

∂ϕ
∂t

� − ∂Rp

∂ϕ
� div dp ∇ϕ

∣∣∣∣ ∣∣∣∣( )∇ϕ( ) � div
p′ ∇ϕ

∣∣∣∣ ∣∣∣∣( )
∇ϕ
∣∣∣∣ ∣∣∣∣ ∇ϕ⎛⎝ ⎞⎠ (19)

Where the operator which is related to divergence is represented
as div and the diffusion controlling rate is represented as dp(|∇ϕ|)
and the first order derivative is represented as p(s)which lies among
[0, ∞). Finally, by using the LSMIBIF and AACM, the pre-
processed data is segmented boundary indicator function which
segments the diabetic retinopathy in patients. The AACM detects
the edge of the image obtained from LSMIBIF, also minimizes the
size of visual data and aids in better classification.

3.4 Feature extraction

After segmentation, feature extraction is performed to select
relevant or appropriate features that reduce the complexities while
categorizing the diabetic retinopathy in patients. In this research, the
features from the segmented output are extracted with the help of
Local Ternary Pattern (LTP), Gray Level Co-occurrence Matrix
(GLCM) and Histogram Oriented Gradients (HOG). The steps
involved in extraction of features are presented as follows:

3.4.1 Local Ternary Pattern
LTP (Dayana and Emmanuel, 2022b) is an improved version of

Local Binary Pattern (LBP) which utilizes fixed threshold value to
perform an effective extraction of binary pattern. LTP is computed
using the Eq. 20 as follows:

LTPP,r,τ � ∑P−1
i�0

s Pi − Pc( ) × 3i, s x( ) �
1 x ≥ τ
0 x| |<
−1 x ≤ − τ

⎧⎪⎨⎪⎩ (20)

Where the central pixel value is represented as Pc, the threshold
value is represented as τ and the neighboring pixel value is
represented as Pi. The feature dimensionalities are minimized by
separating the individual ternary pattern into two parts such as
positive and negative. After processing the segmented image using
LTP, the two feature histogram values are acquired for every image.

3.4.2 Gray level Co-occurrence matrix
The Gray Level Co-occurrence Matrix (GLCM) (Patel and Kashyap,

2023) is a kind of second-order statistical approach utilized in the process
of analyzing image textures. The second order evaluates two-pixel pairs of
the actual image. GLCM offers a probable combination of various gray
level images. In this research, features such as contrast, energy, correlation,
homogeneity and entropy are considered to extract features from
segmented images. Moreover, GLCM evaluates interconnected pixels
from the grayscale image of varying angles of 0o, 45o, 90o and 135o.

3.4.3 Histogram Oriented Gradients
Histogram of Oriented Gradients (HOG) (Shaukat et al., 2023) are

characterized by distributing the local intensity gradients and edge
directions. HOG effectively captures and presents the deformations
and the gradient orientation is represented in Eq. 21 as follows:

θXY � tan−1 GY

GX
( ) (21)

Where the gradient values ofX and Y are denoted asGX and GY

respectively.
The features extracted using GLCM, LTP, and HOG are fed as

input for the stage of diabetic retinopathy classification which is
performed with the help of the Long Short Term Memory Classifier
(LSTM) classifier.

3.5 Classification

The features extracted from LTP, GLCM, and HOG are fed into
the phase of classification which is performed using Long Short
Term Memeory (LSTM) (Ewees et al., 2022), a deep learning
classifier. The classification is the final stage where the extracted
features are used to categorize the classes of diabetic retinopathy.
LSTM is a kind of RNN that learns through long term dependencies.
The architectural diagram of LSTM is represented in Figure 6 as
follows:

Cell state is the central component of LSTM which can add or
remove information from cells and selectively permit information to
pass through the door mechanism to accomplish this. The forget
gate, input gate, and output gate make up an LSTM. The input gate
chooses what information to add to the cell state after the forget gate
decides which information to remove from the cell state. The cell
state can be updated once these two points have been established.
The output gate regulates the network’s output. The process of node
present in LSTM is described in Eqs. 22–27 as follows:

f t � σ Wf . ht−1, xt[ ] + bf( ) (22)
it � σ Wi. ht−1, xt[ ] + bi( ) (23)

~Ct � tanh WC . ht−1, xt[ ] + bC( ) (24)
Ct � f t*Ct−1 + it*~Ct (25)

ot � σ W0. ht−1, xt[ ] + b0( ) (26)
ht � ot*tanh Ct( ) (27)

Where, the hidden state of the prior layer is denoted as ht−1,
input for the current layer is denoted as xt. The weight and biased
state are denoted as Wandb respectively. The sigmoid function is
denoted as σ and the output of the forget gate is denoted as ft. The
output from the input gate is represented as it and the intermediate
temporary state is denoted as ~Ct. The state of the cell present in the
prior layer is denoted as Ct−1 and the state of the cell present in the
next layer is denoted as Ct. The output from the output gate and the
hidden state of the succeeding layer is denoted as ot and ht
respectively.

Computing the output of the input and output gate individually
does not provide better performance so, the output from the input
and output gate can be distinguished using the factor 1 − ft. This
helps to improve the cell state for the next layer in the input and
output gate, which is represented in Eq. 28 as follows:

Ct � f t*Ct−1 + 1 − f t( )*~Ct (28)
The classification which is performed with the help of an LSTM

classifier aids in better classification results due to its capability to
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select the image pattern for a longer time duration. The LSTM
effectively classifies the various classes of diabetic retinopathy and
helps the ophthalmologist to categorize the retina of the disease-
affected patients.

4 Results and analysis

In this section, the information related to the experimental
setup, performance metrics used to estimate the efficacy of the
suggested approach, and results obtained through simulation
analysis and comparative analysis are considered to evaluate the
efficiency of the proposed approach.

4.1 Experimental setup

The proposed approach is simulated in Python software and the
system is configured with specifications such as Windows

11 operating system, 16 GB of RAM and Intel i7 processor. The
following python libraries are utilized in this research to evaluate the
efficiency of the proposed approach. The data pre-processing is
performed using the libraries such as NumPy, Pandas and Open CV.
The libraries such as Tensor flow and Scikit-Learn are used to
develop the deep learning classification model and result analysis
respectively.

4.2 Evaluation metrics

The results obtained while evaluating the proposed approach are
estimated by considering the performance metrics such as accuracy,
sensitivity, specificity, precision, and dice co-efficient. The
aforementioned performance metrics can be evaluated using the
mathematical equations listed in Eqs 29–33.

Accuracy: It is defined as the fraction of total number of
samples which are predicted accurately to the total number of
samples.

FIGURE 6
Architectural diagram of LSTM.

TABLE 2 Evaluation of the proposed approach for the IDRiD dataset.

Segmentation models Segmentation accuracy Dice coefficient (%)

FCM 98.52 97.54

RG 96.79 96.11

LSM 96.09 95.88

ACM 97.24 97.03

LBACS 99.87 98.56

TABLE 3 Evaluation of proposed approach for DIARETDB 1 dataset.

Segmentation models Segmentation accuracy Dice coefficient (%)

FCM 95.78 95.23

RG 94.95 94.42

LSM 93.11 92.90

ACM 95.11 94.88

LBACS 96.89 96.56
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Accuracy � TP + TN
TN + TP + FN + FP

× 100 (29)

Sensitivity: It is the type of performance metric used to predict
the true positives and it is the ratio of true positives to the total
number of true positives and the false negatives.

Sensitivity � TP
TP + FN

× 100 (30)

Specificity: It is ratio of proportion of true negatives to the sum
of predicted false positives and true negatives

Specif icity � TN
TN + FP

× 100 (31)

Precision: It is the ratio of proportion of true positive values to
the sum of true positives and predicted false positives.

Precision � TP
FP + TP

× 100 (32)

Dice coef f icient � 2TP
2TP + FP + FN

× 100 (33)

Where, TP is true positive; TN is true negative; FP is false
positive and FN is false negative.

4.3 Simulation results

In this section, the effectiveness of the suggested method is
assessed based on segmentation and classification. The datasets such
as IDRiD and DIARETDB 1 are utilized in evaluating the suggested
method. The efficacy of the LBACS segmentation approach is related
to the efficiency of state-of-art methods used for segmentation, and

TABLE 4 Evaluation of classification performance for IDRiD dataset.

Classifiers Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

RNN 95.23 95.96 96.80 96.82

CNN 93.64 93.23 93.87 94.48

GRU 97.45 98.36 98.10 97.74

GAN 94.89 95.23 95.47 94.99

LSTM 99.43 98.85 98.37 99.55

TABLE 5 Evaluation of classification performance for DIARETDB 1 dataset.

Classifiers Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

RNN 93.23 94.80 94.97 93.91

CNN 90.75 91.23 90.06 90.17

GRU 96.52 95.64 96.62 95.11

GAN 91.87 92.23 90.89 91.45

LSTM 97.39 96.55 98.91 97.12

FIGURE 7
Graphical representation for the performance of the classifier for
IDRiD dataset.

FIGURE 8
Graphical representation for the performance of the classifier for
the DIARETDB 1 dataset.

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Bhansali et al. 10.3389/fbioe.2023.1286966

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1286966


the efficacy of the LSTM classifier is assessed with some of the
existing deep learning classifiers used in classifying diabetic
retinopathy.

4.3.1 Segmentation analysis
In this sub-section, the performance of LBACS is estimated with

existing segmentation approaches such as Level set method (LSM),
Active Contour model (ACM), Fuzzy C Means (FCM) algorithm
and Region growing (RG). The segmentation accuracy is evaluated
by considering the efficiency of the proposed approach while
segmenting the pre-processed image. In other words, it is
represented as ratio of correctly segmented pixels to the total
number of pixels in the pre-processed image. The segmentation
accuracy is mathematically represented in as follows:

SegmentationAccuracy
� Total Number of PixelsNumber of Correctly Segmented Pixels

(34)

The performance of the proposed segmentation approach is
evaluated with the existing segmentation approach based on the
accuracy value obtained at the time of segmentation and the value of
dice co-efficient. Table 2 shows the results obtained while evaluating
the proposed LBACS with the IDRiD dataset, while Table 3 shows
the results obtained while evaluating the proposed LBACS with the
DIARETDB 1 dataset.

The results from Table 1 and Table 2 demonstrate the analysis of
the suggested approach for segmenting diabetic retinopathy by
considering the data obtained from the IDRiD dataset and

TABLE 6 Evaluation of LBACS-LSTM for IDRiD dataset with different K-fold values.

K-values Accuracy (%) Specificity (%) Sensitivity (%) Precision (%)

1 93.49 91.47 90.52 93.30

3 94.72 93.35 94.86 92.55

5 99.43 98.85 98.37 99.55

8 96.14 94.49 95.18 98.32

10 95.17 96.52 94.73 97.73

TABLE 7 Evaluation of LBACS-LSTM for DIARETDB 1 dataset with different K-fold values.

K-values Accuracy (%) Specificity (%) Sensitivity (%) Precision (%)

1 92.09 89.81 90.77 97.14

3 95.56 96.44 94.75 95.35

5 97.39 96.55 98.91 97.12

8 95.07 94.34 96.44 92.05

10 96.67 97.57 97.29 94.07

TABLE 8 Evaluation of memory usage for different K-values for LBACS-LSTM.

K-values Dataset Memory usage (KB)

1 IDRiD dataset 122

3 168

5 173

8 194

10 208

1 DIARETDB 1 dataset 147

3 182

5 218

8 236

10 254

The results from the Table 7 shows that the suggested approach utilized 122 kB of memory when the k-value is assigned as 1 for IDRiD dataset and 147 KB, of memory for the same k-value of 1.

When the value of k is 10, the proposed approach utilized memory of 208 KB, for IDRiD dataset and 254 KB, for DIARETDB, 1 dataset when the k value is assigned as 10.
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DIARETDB 1 dataset, respectively. The obtained outcomes depict
that the suggested methodology achieved better segmentation
accuracy of 99.87% for the IDRiD dataset and 96.89% for the
DIARETDB1 dataset. These results are comparably higher than
the existing methods, and this better result is due to the effectiveness
of the suggested methodology by improving the boundary condition
of the pre-processed image using LSIMBIF, while the AACM detects
the edge of the image obtained from LSMIBIF, furthermore
minimizing the size of visual data and aiding in better classification.

4.3.2 Classification analysis
In this sub-section, the efficiency of the classifiers is assessed for

the IDRiD and DIARETDB 1 datasets. Table 4 and Table 5 show the
graphical representation for evaluation of classification performance
for IDRiD and DIARETDB 1 datasets. The classification accuracy is
the overall accuracy of the model while classifying the types of DR
using the proposed segmentation approach. In other words,

classification accuracy is defined as the accuracy score considered
during classification task. It evaluates the proportion of correctly
classified samples from the total number of samples and it can be
mathematically represented in Eq. 35 as follows:

Classification accuracy
� Total number of correctly classified samples (35)

The results from Table 4 and Table 5 show that the LSTM
classifier used in this research obtains better classification results in
overall metrics when compared with existing classification
approaches. When LSTM is evaluated for the IDRiD dataset it
obtains a classification accuracy of 99.43%, similarly, when LSTM
is evaluated with the DIARETDB 1 dataset, it obtains a
classification accuracy of 97.39%. Thus, the LSTM classifier
with LBACS segmentation achieves better results due to an
effective segmentation performed by LSIMBIF and AACM.
Figures 7, 8 show the graphical representation of the
performance of the classifier for different datasets such as
IDRiD and DIARETDB 1. The LSTM classifier used in this
research have the ability to capture long term dependencies and
the complex patterns of the image. The LSTM generates visual
captions for the image without vanishing gradient problem which

TABLE 9 Evaluation of classification accuracy for varying data usage.

Data usage (%) Models Classification accuracy (%)

IDRiD DIARETDB 1

20 RNN 91.09 89.69

CNN 89.22 87.54

GRU 88.74 92.10

GAN 90.34 86.76

LSTM 94.48 93.25

40 RNN 92.72 90.25

CNN 90.29 87.25

GRU 89.88 93.46

GAN 91.45 88.19

LSTM 96.22 94.76

60 RNN 93.17 91.67

CNN 91.82 88.12

GRU 95.69 94.21

GAN 92.54 89.41

LSTM 97.67 95.22

80 RNN 94.45 92.33

CNN 92.18 89.87

GRU 96.55 95.42

GAN 93.12 90.14

LSTM 98.75 96.64

100 RNN 95.23 93.23

CNN 93.64 90.75

GRU 97.45 96.52

GAN 94.89 91.87

LSTM 99.43 97.39

FIGURE 9
Confusion matrix of (A) IDRiD dataset (B) DIARETDB 1.
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helps in an effective classification and provides better classification
results.

Moreover, the LBACS-LSTM is evaluated with various k-fold
values such as 1,3,5,8 and 10. Table 6 and Table 7 present the
analysis of the proposed approach for different K-fold values.

The results from Table 6 and Table 7 depict that the proposed
approach achieves better value of accuracy, specificity, sensitivity,
and precision for IDRiD and DIARETDB 1 datasets. The LBACS-
LSTM achieves better metrics when the K-value is assigned as 5,

when the K fold is assigned as 5, the data is separated in the ratio of
80% for training and 20% for testing.

After the evaluation of proposed approach with different K-fold
methods, the memory usage of the proposed approach is evaluated
for training. The Table 8 depicted below shows the memory usage of
the proposed approach for different two different datasets such as
IDRiD and DIARETDB 1.

Next to the evaluation ofmemory usage, the scalability of the dataset
is evaluated when the proposed method is evaluated with
20%,40%,60%,80% and 100% of the data obtained from IDRiD
dataset and DIARETDB 1 dataset. The existing classification
approaches such as RNN, CNN, GRU and GAN are used to
evaluate the performance of the LSTM classifier used in this research.
The performance is evaluated based on the classification accuracy as the
evaluation metric. The Table 9 depicted below presents the results
obtained while evaluating the proposed approach.

The results from the Table 8 shows that the LSTM classifier
utilized in this research obtained better classification accuracy when
compared with other existing classification approaches. For
instance, when 20% of the data is used, the classification
accuracy of the proposed approach is 94.48% whereas the
existing classification approaches such as RNN, CNN, GRU and
GAN obtained the classification accuracy of 91.09%, 89.22%, 88.74%
and 90.34% respectively. The better result of the LSTM classifier is
due to the effective segmentation performed using the proposed
LBACS which effectively segments the DR images in a precise
manner by considering the boundary levels.

The efficacy of the LSTM classifier used in this research is
determined with the help of the confusion matrix and Receiver
Operational Characteristics (ROC) curve which are shown in Figure
9 and Figure 10 respectively. The ROC graph depicts the measure of
classification performance and it is graphically represented in True
Positive Rate (TPR) and True Negative Rate (TNR).

4.4 Comparative analysis

The comparison of proposed LBACS-LSTM with the existing
approaches such as three-dimensional semantic model (Jebaseeli
et al., 2019), KNN (Rachapudi et al., 2023), Computer-aided method
(Shaukat et al., 2022), CTSA-SAE (Dayana and Emmanuel, 2022a;
Dayana and Emmanuel, 2022b), DS-KL (Mondal et al., 2023),
ESOA optimized hybrid RCNN-BiGRU (Alajlan and Razaque,
2023) and Adaptive CNN (Math and Fatima, 2021) are described
in this section. Table 10 presents the comparative analysis for IDRiD
dataset and Table 11 depicts the comparative analysis of DIARETDB
1 dataset.

FIGURE 10
ROC of (A) DIARETDB 1 and (B) IDRiD 1.

TABLE 10 Comparative analysis for IDRiD dataset.

Performances
(%)

Three-dimensional semantic models
Jebaseeli et al. (2019)

DS-KL Mondal
et al. (2023)

ESOA optimized hybrid RCNN-BiGRU
Alajlan and Razaque (2023)

LBACS-
LSTM

Accuracy 97 97.67 99 99.43

Sensitivity DNA 92.45 98.4 98.85

Specificity 98 DNA 98.6 98.87

Precision 87 DNA 98.5 99.55
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The results from Table 10 and Table 11 show that the proposed
LBACS-LSTM achieves better performance in overall metrics when
compared with the existing three-dimensional semantic models
(Jebaseeli et al., 2019), KNN (Rachapudi et al., 2023), Computer-
aided method (Shaukat et al., 2022), CTSA-SAE (Dayana and
Emmanuel, 2022b), DS-KL (Mondal et al., 2023) and ESOA
optimized hybrid RCNN-BiGRU (Alajlan and Razaque, 2023)
and Adaptive CNN (Math and Fatima, 2021). The accuracy of
the proposed method for the IDRiD dataset is 99.43% and 97.39%
for the DIARETDB 1 dataset. The data which is not available is
represented as DNA (i.e., Data Not Available). The better result of
the proposed approach is due to the effectiveness of the suggested
method by improving the boundary condition of the pre-processed
image using LSIMBIF, and the AACM detects the edge of the image
obtained from LSMIBIF, and also minimizes the size of visual data
and aids in better classification.

4.5 Discussion

This research is carried out by considering a precise segmentation
and classification of diabetic retinopathy. The proposed LBACS-
LSTM is evaluated with two datasets, namely, IDRiD and
DIARETDB 1. The performance of the proposed segmentation
model is compared with evaluated based on segmentation accuracy
and dice co-efficient. The existing segmentation models such as FCM,
RG, LSM and ACM are used in comparing the performance of the
proposed segmentation model. For instance, by considering IDRiD
dataset, the segmentation accuracy of proposed approach is 98.87%
whereas the existing FCM, RG, LSM and ACM obtains segmentation
accuracy of 98.52%, 96.79%, 96.09% and 97.24% respectively. The
performance of the LSTM classifier used in this research is evaluated
with the existing classification approaches such as RNN, CNN,
GRU, and GAN. The DIARETDB 1 dataset is used to evaluate the
performance of the classifier. The LSTM classifier obtains the
classification accuracy of 97.39% whereas the existing RNN, CNN,
GRU and GAN obtains classification accuracy of 93.23%, 90.75%,
96.52% and 91.87% respectively. In a comparative analysis, the
proposed approach is evaluated with three-dimensional semantic
model and DS-KL for the IDRiD dataset. In the same way, the
proposed method is evaluated with KNN, computer-aided method
and CTSA-SAE for DIARETDB 1 dataset. The LBACS-LSTM obtains
an overall accuracy of 99.43% for IDRiD dataset, whereas the existing
three dimensional semantic model andDS-KL obtain overall accuracy
values of 97% and 97.67%. When the proposed method is evaluated
with DIARETDB 1 dataset, it obtains an overall accuracy value of
97.39%. The value of LBACS-LSTM for the DIARETDB 1 dataset is

comparably higher than KNN, computer aided method, and CTSA-
SAE with accuracies of 95%, 96.78%, and 95.48% respectively. The
better result is due to the effectiveness of the suggested methodology
by improving the boundary condition of the pre-processed image
using LSIMBIF and the AACM. The existing approaches were
incapable to detect the edges of the pre-processed image and aids
in poor segmentation accuracy. But the proposed approach effectively
segments the image into partitions and detect the DR in every
individual segments. This process effectively enhances the
performance of segmenting the images including edges of the
images. Moreover, the suggested approach detects the edge of the
image obtained from LSMIBIF, and minimizes the size of visual data
which further minimizes the complexity while classifying the DR
images.

5 Conclusion

In this research, diabetic retinopathy segmentation and
classification are performed to segment and categorize various
classes of diabetic retinopathy. The LBACS is proposed to perform
an effective segmentation which helps to diminish the complexities
while segmenting the images. After data acquisition, pre-processing
is performed for the removal of noise, enhancing the color and
luminosity of the image. Then, the proposed LBACS is used to
segment the pre-processed image using LSIMBIF with the improved
boundary condition and the AACM is utilized in the process of
detecting the edges of the image obtained from LSMIBIF, while
minimizing the size of visual data and aiding in better classification.
The features are extracted using GLCM, HOG and LTP, finally the
various classes of diabetic retinopathy are categorized with the help
of LSTM. The accuracy of the proposed LBACS-LSTM for IDRiD
and DIARETDB 1 datasets is 99.43% and 97.39% respectively.
Similarly, the sensitivity of the proposed approach is 98.85% for the
IDRiD dataset and 96.55% for the DIARETDB 1 dataset. However,
the segmentation accuracy of the proposed approach is minimized
when the images with extreme noises are subjected as input.

5.1 Future scope

The experimental results show that the proposed approach
obtains better results by means of segmentation and classification.
However, the absence of feature selection probably diminishes the
overall performance of the model in classifying DR images. So, the
optimization based feature selection will be performed in future to
obtain better classification results.

TABLE 11 Comparative analysis for DIARETDB 1 dataset.

Performances
(%)

KNN Rachapudi
et al. (2023)

Computer aided method
Shaukat et al. (2022)

CTSA-SAE Dayana and
Emmanuel. (2022b)

Adaptive CNN Math
and Fatima. (2021)

LBACS-
LSTM

Accuracy 95 96.78 95.48 DNA 97.39

Sensitivity 92.6 92.47 93.29 96.37 96.55

Specificity 87.56 DNA 91.89 96.37 96.49

Precision 96.09 DNA DNA DNA 97.12
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Glossary

Parameter Description

g(x, y) Gaussian function

Ig(x, y) Green channel component

Ig(x, y) Gaussian noise

g′ Edge indicator function

μ, λ, α weighted coefficient values

dp double well potential distance

∇ϕ differentiation of the of initialization process

δε hat function along variable support

ϕ zero level set of level set factor

Ωin level set factor

Ω0 zero-level set

E(ϕ) energy function

εimg the external energy which is determined with the help of image
attribute

σ standard deviation

Iσ Smoothened image

ρ Boundary threshold function

∂ϕ
∂t

The difference in level set factor with respect to time

∇ gradient operator

δε Dirac function

ER data fitting term

ED Data regularization term

Py,Ωx intensity of distributing small circular neighbourhoods

θ Normalization factor

Îϕi
(y) fitting intensity value

Iϕi
(y) real intensity value

umi (x) dependent membership function

b(x) varying bias field related to inhomogeneous intensity

n(y) Gaussian distribution function

ϕ smoothened level set function

p(|∇ϕ|) energy density function

Pc central pixel value

τ threshold value

Pi Neighboring pixel value

GX and GY gradient values of X and Y

ht−1 hidden state of the prior layer

xt input for the current layer

Wandb weight and biased state

f t Forget gate

~Ct Intermediate Temporary state

ot and ht output gate and the hidden state of the succeeding layer

Description Abbreviation

2D-SWT 2-dimensional stationary wavelet transform

ACM Active Contour model

AACM Adaptive-Active Counter Model

CTSA Chronological Tunicate Swarm Algorithm

CFP Colour Fundus Photographs

CTSA-SAE Computer aided method and Chronological Tunicate Swarm
Algorithm with Stacked Auto Encoder

CLAHE Contrast Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

DNN-BOA Deep Neural Network and Butterfly Optimization Algorithm

DSA-KL Delimiting Segmentation Approach Using Knowledge Learning

DS-KL Delimiting Segmentation Approach Using Knowledge Learning

DIARETDB 1 Diabetic Retinopathy Database 1

DR Diabetic Retinopathy

DRLSE Distance Regularized Level Set Evolution

ESOA-HGRU Egret Swarm Optimization based Hybrid Gated Recurrent Unit

FCM Fuzzy C Means

GAN Generative Adversarial Network

GLCM Gray Level Co-occurrence Matrix

IDRiD Indian Diabetic Retinopathy Image Dataset

KNN K-Nearest Neighbor

LSMIBIF Level Set Method with Improved Boundary Indicator Function

LBACS Level-set Based Adaptive-active Contour Segmentation

LSTM Long Short-Term Memory

MPA Marine Predictor Algorithm

MEM Modified Expectation Maximization

ML-FEC Multi-Label Feature Extraction and Classification

PBIL Population-Based Incremental Learning

ROC Receiver Operational Characteristics

RNN-LSTM Recurrent Neural Network-Long Short-Term Memory

RDRN Refined Deep Residual Network

RG Region growing

S-CNN Segmentation Convolutional Neural Network

TNR True Negative Rate

TPR True Positive Rate

TSSMO Tunicate Swarm Spider Monkey Optimization
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