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Introduction: Given the possibility of higher ground temperatures in the future,
the pursuit of a cushioning material that can effectively reduce sports injuries
during exercise, particularly one that retains its properties at elevated
temperatures, has emerged as a serious concern.

Methods: A total of 18 man recreational runners were recruited from Ningbo
University and local clubs for participation in this study. Frequency analysis was
employed to investigate whether there is a distinction between non-Newtonian
(NN) shoes and ethylene vinyl acetate (EVA) shoes.

Results: The outcomes indicated that the utilization of NN shoes furnished
participants with superior cushioning when engaging in a 90° cutting
maneuver subsequent to an outdoor exercise, as opposed to the EVA material.
Specifically, participants wearing NN shoes exhibited significantly lower peak
resultant acceleration (p = 0.022) and power spectral density (p = 0.010)
values at the distal tibia compared to those wearing EVA shoes. Moreover,
shock attenuation was significantly greater in subjects wearing NN shoes (p =
0.023) in comparison to EVA shoes. Performing 90° cuttingmaneuver in NN shoes
resulted in significantly lower peak ground reaction force (p = 0.010), vertical
average loading rate (p < 0.010), and vertical instantaneous loading rate (p=0.030)
values compared to performing the same maneuvers in EVA shoes.

Conclusion: The study found that the PRA and PSD of the distal tibia in NN
footwear were significantly lower compared to EVA footwear. Additionally,
participants exhibited more positive SA while using NN footwear compared to
EVA. Furthermore, during the 90° CM, participants wearing NN shoes showed
lower PGRF, VAIL, and VILR compared to those in EVA shoes. All these promising
results support the capability of NN footwear to offer additional reductions in
potential injury risk to runners, especially in high-temperature conditions.
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1 Introduction

The increased public participation in sports over the last few
decades has led to a rise in sport-related pathologies among both
recreational and competitive athletes (Knowles et al., 2006; Marconcin
et al., 2023). In most sports, athletes commonly employ a heel-toe gait
pattern when landing during sports performance (Anderson et al.,
2020). In such instances, pronation at the subtalar joint (STJ) occurs
from the moment of heel strike to midstance (Leung et al., 1998; Phan
et al., 2018). According to Klingman et al. (1997), the pronation of the
STJ is correlated with knee flexion and internal tibial rotation. This
sequence of movements assumes a pivotal role in dampening the shock
when the heel comes into contact with the ground. It is conjectured that
the compensatory internal rotation of the femurmight aid in preserving
alignment during knee extension (Tiberio, 1987; Boutris et al., 2018).
Nevertheless, over the long term, athletes and sports performers face an
elevated likelihood of encountering discomfort, or worse, injuries to the
patellofemoral joint, which has the potential to undermine athletic
prowess (Deng et al., 2022). Furthermore, it has been reported that the
majority of chronic injuries occurring in the lower limbs are intricately
linked to cumulative loading (Van Gent et al., 2007). Particularly
pertinent in the realm of athletics, it is noteworthy that between
35% and 49% of fatigue fractures manifest in the tibia (Crossley
et al., 1999; Bennell et al., 2004). Numerous variables may indeed
exert an impact on bone remodeling, thereby influencing the
performance of fatigued bones. What is evident is that
biomechanics elucidates the extent of mechanical loading endured
by the bone throughout the course of a movement (Levenston and
Carter, 1998; Logerstedt et al., 2022). Upon impact with the ground, the
velocity of the foot decelerates to zero, leading to the generation of great
ground reaction forces (GRF) (Whittle, 1999). This alteration in
momentum leads to the compressive loading of lower extremities,
resulting in an impact shock delivered via the musculoskeletal system.
Consequently, local segment peak accelerations occur at progressively
delayed intervals (Derrick, 2004; Reenalda et al., 2019). The correlation
between tibial acceleration (TA) and bone strain remains enigmatic and
may be intricate due to the influence of localized muscle forces.

It is noteworthy that measuring peak TA using a device directly
attached to the tibia proves to be an effective method for revealing
plausible correlations with essential GRF parameters (Hennig and
Lafortune, 1991). Moreover, due to their convenience, an increasing
number of studies are employing wearable inertial measurement
units (IMUs) to collect TA data. This approach has provided
valuable insights into the mechanisms contributing to the
understanding of stress fractures and joint motion injuries (Yong
et al., 2018; Milner et al., 2022), utilizing technological approaches
such as frequency analysis (Xiang et al., 2022) and machine learning
(Tenforde et al., 2020).

When a runner’s heel strikes the ground, the rapid deceleration
creates a shock wave that travels from the foot to the torso and through
the entire skeletal system. The energy of this shockwave is assimilated
by various components, encompassing footwear, running surfaces,
muscles, bones, and other structural tissues (Derrick et al., 1998).
This process of absorbing impact energy, consequently diminishing
the amplitude of the shock wave between the foot and the head, is
denoted as shock attenuation (SA). In addition to internal forces
(Richards et al., 2018), SA and the magnitude of impact acceleration
emerge as two pivotal variables scrutinized in running research (Milner

et al., 2006), owing to their conjectured correlation with prospective
injuries. Researchers believe that in order to minimize damage to
proximal structures, SA can be achieved through an interplay of passive
and active mechanisms (Derrick et al., 1998; Milner et al., 2006;
Zadpoor and Nikooyan, 2012). Based on the above hypotheses,
previous studies have explored several factors, such as the
performance of eccentric muscle contractions (Mizrahi et al., 2000),
running speed (Sheerin et al., 2019), exercise fatigue interventions
(Flynn et al., 2004), running surface (Boey et al., 2017), and running
shoes (Xiang et al., 2022), while observing and comparing changes in
TA. To be definitive, subjects experienced highly significant changes in
TA at different running speeds, during different motion interfaces, and
under enhanced eccentric muscle contractions. Nevertheless, there is
some controversy surrounding the effect of different footwear types on
TA (Cheung et al., 2006; Sinclair et al., 2013). These disputes mostly
arise due to the variations in footwear conditions and the distinct
production process requirements across different footwear companies.
Indeed, to ascertain the effect of footwear on tibial impact, more
definitive information is required, considering factors such as the
exercise environment, movement standards, and other relevant
variables. It is worth noting that during exercise, the temperature of
the running shoe will naturally increase, which could potentially lead to
a deterioration in its cushioning properties (Kinoshita and Bates, 1996).

Indeed, this is often a factor that is overlooked by researchers.
Amidst the ongoing escalation of average global temperatures,
particularly in the realm of extreme climatic conditions, running
footwear may pose an augmented risk of injury to the runner as it
experiences heightened temperatures during outdoor exercise
engagement (Ebi et al., 2021). This emphasizes the importance of
investigating and addressing the impact of temperature changes on
running shoe properties for the safety and well-being of athletes.
Given the potential for higher ground temperatures in the future, the
quest for a cushioning material that can effectively reduce sports
injuries during exercise, particularly one that retains its properties at
elevated temperatures, has emerged as an urgent necessity. Drawing
from the findings of impact dynamics and materials development
studies (de Goede et al., 2019), it has been demonstrated that non-
Newtonian (NN) fluid materials possess the capability to effectively
manage impact force or acceleration decay scenarios. Therefore, in
the development of sports protective equipment (Hrysomallis, 2009;
Schmitt et al., 2010; La Fauci et al., 2023), designers utilize the
viscoelastic and permanent deformation properties of NN fluid to
minimize the impact damage of solids on the human body.
Undoubtedly, the specific temperature may exert a discernible
influence on the functionality of non-Newtonian fluid materials.
The effectiveness of these materials in SA and protective equipment
largely depends on maintaining the appropriate temperature during
their usage. Past investigations have demonstrated that a substantial
elevation in the temperature of EVA footwear can lead to a notable
surge in the vulnerability to lower limb injuries when individuals
partake in physical activities (Shariatmadari et al., 2010). It’s worth
noting that M. Hojjat et al. observed that the rheological properties
of non-Newtonian fluids exhibited shear-thinning behavior
following an increase in temperature (Hojjat et al., 2011).
Therefore, the incorporation of materials with NN fluid
properties into footwear has the potential to provide protection
for athletes during outdoor running or sports activities, particularly
when the temperature of the footwear rises. By leveraging the unique
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characteristics of NN fluid, footwear can better adapt to varying
impact conditions, ensuring enhanced SA, and reducing the risk of
injuries for athletes.

2 Materials and methods

In this section, we primarily delineate the research hypothesis of
this endeavor, elucidate the precise steps undertaken for data
acquisition, and expound upon the methodologies employed for
data processing throughout the experiment. Subsequently, the
statistical analysis approach is detailed. In essence, two IMUs
were affixed to the anterolateral distal aspects of the tibia in the
subjects. This was carried out to juxtapose the TA and mechanical
attributes of the subjects when executing a 90°CM while clad in both
EVA and NN footwear.

2.1 Working research hypothesis

The research hypothesis of this study was that there would be
significant differences in tibial acceleration and attenuation when
participants wore NN shoes during outdoor running sessions for
extended periods, as compared to EVA shoes. By examining the
impact attenuation and SA of these shoes, this study aims to assess
their effectiveness in providing protection and comfort to athletes
during outdoor activities in elevated temperatures.

2.2 Participants

Considering the potential differences in TA and impact
attenuation due to gender (Sinclair et al., 2012), a total of
18 man recreational runners (age: 24.32 ± 1.20 years, height:
1.78 ± 0.04 m, mass: 64.61 ± 1.22 kg, BMI: 20.22 ± 0.41 kg/m2)
were recruited from Ningbo University and local clubs for
participation in this study. A statistical power analysis was
performed employing G*Power software, employing a moderate
effect size to mitigate the risk of a type II error and ascertain the
minimum number of participants requisite for this inquiry
(Erdfelder et al., 1996). The input parameters for this experiment
were tailored as follows: the effect size was set at 0.4, the significance
level (Alpha) at 0.05, the test efficacy (Power) at 0.8, the number of
measurements at 3, and the Nonsphericity at 0.5. The sample size
employed in this study was adequate to yield statistical power
exceeding 80%. The inclusion criteria for participants consisted
of recreational level runners, right leg-dominant, and habitual
rearfoot strikers. Recreational runners are defined as individuals
who engage in running activities 2–4 times per week and cover a
distance of at least 20 kilometers per week (Liu et al., 2020). To be
eligible for the experiment, the recruited runners had to exhibit no
lower limbs injuries or foot deformities in the 6 months preceding
the testing Before data collection, all subjects were fully familiarized
with testing procedures and different running shoes. All data
collection was obtained at the same time of day to minimize the
effects of diurnal variation on experimental results. Additionally, all
participants were provided with the option to withdraw from the
experiment at any stage of testing, and written informed consent was

obtained from each participant before commencement of the study.
The Ethics Committee of the Ningbo University Research Institute
granted approval for this study (RAGH202208193312), which was
conducted in adherence to the principles of the Declaration of
Helsinki.

2.3 Experiment protocol

The test was divided into three parts, with the first part aimed at
determining whether all subjects met the inclusion criteria. In
accordance with a previous study, the dominant foot was
determined to be the right foot based on the single-legged hop
for distance test. The rearfoot strike pattern was characterized by
employing the strike index, denoting the center of pressure within
the initial 0%–33% of the foot length at contact, as measured by the
Footscan® pressure plate (Rsscan International, Olen, Belgium).

The second part of the test consisted of an outdoor five-
kilometer even-paced running session in EVA and NN shoes.
Participants engaged in a standardized warm-up routine,
comprising a 5-min jog at a self-selected pace on a motorized
treadmill, along with several stretching exercises. The participants
were blinded to the type of shoe used during testing, and shoes
were assigned to participants in a random sequence. Afterwards,
the participants wore EVA or NN footwear for a 5-kilometer
outdoor run, with 18 participants trained in an average outdoor
temperature of 38.12 ± 1.20 degrees Celsius. The run was
completed at an average pace of 10.8 ± 0.5 km/h. Following
3 days of rest, the subjects once again engaged in a five-
kilometer outdoor run, this time wearing EVA or NN shoes,
under similar temperature conditions.

The third part of the test involved subjects wearing EVA and NN
shoes and collecting the surface temperature of the running shoes
immediately after completing a 5-kilometer outdoor run. Immediately
after the outdoor run, tibial impact testing was conducted in the
laboratory. This involved the simultaneous collection of the subject’s
vertical ground reaction force and accelerometer data. Indeed, the
frequent requirement to perform unexpected or anticipated cutting
maneuver (CM) while running or engaging in outdoor activities poses
a significant risk of injury (Nagano et al., 2016). Previous studies have
confirmed that there is a greater risk during 90° CM. Therefore, in this
study, 90° CM was chosen as the impact test action. This was used to
assess the effects of footwear and other variables on tibial impact
during lateral movements, which were common in various sports and
outdoor activities.

The IMUs (IMeasureU V1, Auckland, New Zealand;
dimensions: 40 mm × 28 mm × 15 mm, weight: 12 g, resolution:
16 bit) were affixed to the proximal and distal anteromedial regions
of the tibia on the dominant leg of each participant using straps.
Precisely, two Inertial Measurement Units (IMUs) were situated on
the anterior medial aspect of the tibia, exactly 2 centimeters
proximal to the ankle and 3 centimeters from the tibia’s proximal
end (Laughton et al., 2003), and securely fastened with athletic tape
up to an acceptable tension level. The vertical axis of the
accelerometer was aligned with the tibia (as depicted in Figure 1)
(Tenforde et al., 2020). The tension of the belt was carefully adjusted
to a level where the acceleration traces for a given impact force
remained insensitive to the accelerometer attachment force. This
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measure was taken to ensure the reproducibility of the data collected
during the study (Mizrahi and Susak, 1982). Subsequently,
participants performed 90° CM at the corner of the laboratory’s
six-meter track, maintaining a running speed consistent with
outdoor conditions. IMUs were synchronized with an embedded
AMTI force platform (AMTI, Watertown, MA, United States),
which was placed in the center of the pathway.

A single-beam electronic timing gate (Brower Timing Systems,
Draper, UT, United States) was employed to record and control the
subject’s running speed. During the experiment, each participant
performed 90° CM 10 times, and after completing each set of CM,
the subject was given a 1-min rest period before the next set. This
approach ensures sufficient recovery time between trials to minimize
fatigue and maintain the consistency of data collection.

FIGURE 1
Data of raw TA (left) and the IMU fixed position (right). The orange shaded portion of the TA raw data represents the acceleration data recorded
during the CMs.

FIGURE 2
Experimental shoes were used by the participants. (A) indicate the non-Newtonian fluid (NN) shoe; (B) indicate the EVA shoe; (C) indicate the
material property of non-Newtonian fluid as well as the location of cushion materials within the midsole.
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2.4 Footwear characteristics

NN shoes (as shown in Figure 2A) were developed and
manufactured by the Japanese manufacturer (Descente Ltd.,
Kabushiki−gaisha Desanto, Osaka, Japan). The same
manufacturer, Descente Ltd., also produced the EVA shoes
utilized in this investigate (as shown in Figure 2B). In the NN
shoes, the NN material was placed in a triangular area on the heel
of the midsole (as shown in Figure 2C). The NN materials and
preparation methods used in the footwear have been disclosed in
a patent of invention (patent publication No: CN116285389A),
and the material properties comply with the national
requirements for the production of the footwear in question
(Figure 2C).

2.5 Data collection and processing

AMTI was utilized to collect GRF data during the CM at a
frequency of 1,000 Hz. As for the GRF of CM, a vertical threshold of
20N was utilized to detect foot strike and toe-off events, thus
delineating the stance phase (Yu et al., 2021). To reduce the
influence of random noise, the GRF data were filtered using a
low-pass, second-order Butterworth filter with a cut-off frequency
set at 20 Hz (David et al., 2018). All of the GRF magnitudes were
scaled to body mass. This study addresses the vertical GRF
associated with the 90° CM performed by the subjects. The key
parameters to be compared and analyzed are the peak ground
reaction force (PGRF), vertical average loading rate (VALR), and
vertical instantaneous loading rate (VILR) (Jiang et al., 2021). These
parameters are essential in understanding the impact forces
experienced during the CM and their potential implications for
injury risk and performance.

The IMUs collected TA data at a frequency of 500 Hz while the
subjects were wearing both types of footwear.

To eliminate a linear trend, the raw data signal underwent a
process of subtraction, wherein a least-squares best-fit line was
deducted from it (Shorten and Winslow, 1992). Subsequently, the
collected data was filtered using a second-order Butterworth low-
pass filter with a cutoff frequency set at 60 Hz (Hennig and
Lafortune, 1991). While axial acceleration is commonly reported,
recent recommendations suggest evaluating resultant acceleration
(RA) (Sheerin et al., 2019; Milner et al., 2020). Calculated RA was
completed using the following formula:

RA �
����������
x2 + y2 + z2

√

x, y, and z represent the acceleration variations in the coronal,
sagittal, and transverse planes of the IMU, respectively (shown in
Figure 1, right).

Peak resultant acceleration (PRA) was identified as the peak
occurring between 50% and 60% of stance. Time-domain and
frequency parameters from the accelerometers at both ends of
the tibia were computed using a custom MATLAB R2018b
program (The MathWorks, Natick, MA, United States). Time-
domain parameters were determined based on the last stance
phase performed by each participant. To achieve this, the power
spectrum was analyzed by converting the time-domain signal to

frequency using a discrete fast Fourier transform (FFT). The
unfiltered TA data from each stance stage underwent detrending
and were subsequently extended with zeros to achieve a total of
2048 data points, ensuring periodicity. To determine the power of
the standing-phase TA in the frequency domain, the power spectral
density (PSD) was calculated using a square window (Shorten and
Winslow, 1992). The PSD analysis was conducted within the
frequency range from 0 to the Nyquist frequency (FN) and then
normalized into 1 Hz bins (Gillespie and Dickey, 2003). A transfer
function has been previously used to determine the degree of SA in
human running by calculating the ratio of each frequency bin the
distal and proximal tibia signal (i.e., the transmissibility of each
frequency component) (Hamill et al., 1995). The transfer function
was computed across all frequencies ranging from 0 to FN, aiming to
ascertain the extent of SA taking place between the distal and
proximal tibia. This calculation was achieved by:

Shock attenuation � 10 × log10 PSDp tibia/PSDd tibia( )
At each of the frequencies, the transfer function determined the

gain or attenuation, measured in decibels, between the distal and
proximal tibia signals. Positive values signified a gain, indicating an
increase in signal strength, while negative values denoted
attenuation, representing a reduction in signal strength.

2.6 Statistical analysis

All discrete feature data, including PGRF, VALR, VILR, and
PRA, are presented as mean ± standard deviation. A one-way
repeated measures analysis of variance (ANOVA) was conducted
to assess the impact of shoe condition (differentiating between NN
and EVA footwear) on the discrete data. A significance level of p <
0.05 was considered acceptable. The post hoc pairwise comparison
was conducted using the Bonferroni correction, which adjusted the
significance level to p < 0.033. The Shapiro-Wilk test was utilized to
evaluate the normal distribution of RA, PSD, and SA during the 90°

CM. Following the results of the normality test (Pataky et al., 2015),
SPM1D or SNPM1D analysis was conducted to examine the
differences in RA, PSD, and SA when wearing different footwear,
respectively. For this analysis, MATLAB R2018b (The MathWorks,
Natick, MA, United States) was used to perform all the statistical
calculations.

3 Results

Following the completion of the 5-kilometer run, the midsole
temperature of the NN footwear escalated from 22.53°C ± 0.43°C to
54.84°C, while the midsole temperature of the EVA footwear rose
from 22.46°C ± 0.52°C to 50.87°C. As indicated in Table 1, there was
no statistically significant difference in the PRA of the proximal tibia
between the two types of footwear (p = 0.270). Additionally, the time
of foot contact with the ground during the 90° CMwas nearly similar
for both footwear conditions (p = 0.550). The ANOVA revealed a
statistical difference in the PRA of the distal tibia between the two
shoe conditions (p = 0.022). In comparison to EVA shoes, subjects
exhibited significantly lower values for PGRF (p = 0.020), VALR (p <
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0.010), and VILR (p = 0.030) when performing 90° CM while
wearing the NN footwear.

Based on the results of the Shapiro-Wilk test, it was determined
that RA, PSD, and SA did not follow a normal distribution (p <
0.05). As a result, these non-normally distributed data were analyzed
using the SNPM1D method. As depicted in Figure 3, when
comparing the changes in RA with different footwear (Figures
3A, B), it was observed that RA in the distal tibia was
significantly higher in the peak region when wearing EVA
footwear compared to NN footwear (p = 0.011, 47%–61 stage).

As depicted in Figures 3B, C, the PSD in the lower frequency range
of the distal tibia exhibited a statistically significant difference
between the NN and EVA footwear (p = 0.010). The EVA
footwear exhibited significantly greater PSD power at low
frequencies compared to the NN footwear. As shown in Figures
E, F, the NN footwear demonstrated significantly greater SA at
higher frequencies (10–13 Hz) compared to the EVA footwear (p =
0.023). However, there was no significant variation in SA at lower
frequencies (3–8 Hz) between the two types of footwear (as shown in
Figures E, G).

TABLE 1 The ANOVA results in the discrete characteristics of the two types of shoes {data were presented in mean [standard deviation (SD)]}.

Discrete characteristics NN EVA F−Value p−Value

PRA at distal tibia (g) 14.21 (1.17) 15.37 (2.28) 1.423 p = 0.022

PRA at proximal tibia (g) 7.99 (3.61) 10.45 (1.94) 2.367 p = 0.270

PGRF (N/kg) 2.43 (0.19) 2.61 (0.30) 5.662 p = 0.010

VALR (N/kg/s) 85.23 (23.14) 95.16 (28.02) 12.511 p < 0.010

VILR (N/kg/s) 154.27 (28.33) 160.24 (37.22) 17.312 p = 0.030

Contact Time (s) 0.24 (0.03) 0.23 (0.02) 0.932 p = 0.550

The bold values are meant to indicate that there is statistical significance in the group.

FIGURE 3
The results of the TA processing in the time and frequency domains for the two types of footwear (NN and EVA) were plotted. These encompass the
following variables: RA of the proximal tibia (A), RA of the distal tibia (B); PSD of the proximal (C) and distal (D) tibia; SA from the distal tibia to the proximal
tibia (E), and changes in SD of SA in the tibia for non-Newtonian (F) and EVA (G) footwear. (A) (B) (C) (D) (E) The curves depicted in the figures represent the
mean changes for the corresponding variables. The deeply shaded areas correspond to the station phases or frequency bands wherein a significant
main effect was detected based on the SNPM1D test.
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4 Discussion

The primary objective of this study was to examine the
alterations in time and frequency domain attributes of TA in
subjects wearing different types of footwear after completing a 5-
kilometer run in higher temperature conditions. The research
focused on comparing the impact and SA performance of
running shoes embedded with NN footwear and EVA running
shoes. Through the analysis of TA in both time and frequency
domains, the study aimed to elucidate the potential advantages of
using NN footwear in offering functional cushioning and decreasing
sports-related injuries during exercise in hot environments.

These findings indicate that both types of footwear experienced
significant temperature increases during the running activity in
higher temperature conditions, with the NN footwear showing a
slightly higher temperature rise compared to the EVA footwear.
Based on the 90° CM test conducted after the temperature change
of the footwear, the study found that the PRA at the distal tibia was
significantly lower in NN shoes compared to EVA shoes.
Additionally, the PGRF, VALR, and VILR were also
significantly lower in NN shoes than in EVA shoes, as indicated
in Table 1.

An ideal approach for precisely assessing injury risk in runners
would involve direct in-vivo measurement of bone strain.
Nevertheless, this approach is invasive and impractical for routine
use, as it necessitates surgical implantation of strain gauges or other
invasive methods (Liu et al., 2009). Consequently, it has become a
widely employed approach to attach accelerometers to the body
segments of interest to calculate the corresponding impact forces
(Gruber et al., 2014). Previous studies have aimed to observe the
protective impact of running shoes on the human body during
exercise. This has been achieved by investigating the effect of
various footwear conditions, such as traditional footwear (Sinclair
and Sant, 2017), minimalist footwear (Sinclair et al., 2013), and
customized footwear (Laughton et al., 2003) on alterations in TA.
This study builds on previous research and contributes to the
understanding of how global temperature changes may impact the
performance and function of footwear.

It was readily evident from the time and frequency domain
results for TA that distinct footwear conditions led to alterations in
distal TA. In the time-domain analysis, the waveforms of TA
exhibited differences in their shape and amplitude, indicating
variations in impact forces and loading patterns on the tibia
between the two types of shoes. These changes are crucial
indicators of how the footwear’s cushioning and SA properties
influenced the tibial response to impact forces during the CM.
Previous studies have established that RA effectively mitigated the
impact of accelerometer misalignment and accounted for loading
forces across all three axes (Norris et al., 2014). The joint kinematics
observed at impact, including greater heel vertical velocity,
increased lower leg angle, reduced knee flexion angle, and an
extended stride length, contribute to higher TA levels upon
impact (Potthast et al., 2010). However, throughout the
experimental process, we maintained consistency requirements
for all factors except the footwear condition. Thus, it is highly
plausible that the decreased PRA of the distal tibia in heel strike
mode could suggest that the NN footwear might have offered
superior mechanical cushioning during braking, in conjunction

with the active mechanism of the body’s muscular contraction.
Compared to NN shoes, EVA shoes resulted in greater TA power
magnitude in the lower range. This aligns with previous studies
indicating that employing heel strikes leads to increased power
amplitude at lower frequencies (Oakley and Pratt, 1988). As the heel
strike mode of running involves reduced knee flexion and velocity, it
induces an elevation in the power amplitude of the tibial signal
below 10 Hz. In other words, engaging in running with NN shoes
may lead to an increase in a specific knee flexion angle, where a
compliant knee assumes a more significant role in active shock
attenuation during rearfoot running compared to the ankle. No
significant alteration in impact force and impact attenuation was
observed in the proximal tibia when wearing different footwear,
which could be attributed to the mechanical cushioning function of
the footwear predominantly acting from the ankle to the distal tibia
(Schütte et al., 2018). The mechanical cushioning function of
footwear, typically concentrated in the midsole area, proves
particularly effective in mitigating impact forces transmitted to
the distal tibia. When the foot contacts the ground during
running, the cushioning materials in the midsole efficiently
absorb and disperse impact energy, thereby reducing the forces
exerted on the distal tibia and safeguarding the lower limb against
excessive loading.

Consequently, for knee injury prevention, it becomes crucial to
consider additional measures that focus on mechanical cushioning or
training tools that enhance active cushioning. This is especially
important as the knee plays a more substantial role in shock
absorption of external forces compared to the ankle (Hamill et al.,
2014). Furthermore, NN footwear exhibited a greater SA effect in the
higher frequency domain when compared to EVA footwear. This
indicates that the tibia is able to dissipate a higher amount of shock load
with NN footwear (Gruber et al., 2014). SA can be considered an
accelerometry variable that may offer a more precise reflection of
impact severity, particularly when the effective mass is not constant.
The extent of required attenuation can modify the runner’s kinematics
and performance, making it a critical factor to consider (Derrick, 2004).
Prior research has validated that higher PGRF, VAIL, and VILR may
elevate the risk of injury in runners (Logan et al., 2010). Conversely,
higher impact and loading rates could suggest that the footwear
provides insufficient cushioning, thereby increasing the risk of lower
extremity injuries. The findings presented in Table 1 demonstrated
that, with no alteration to other footwear properties, the footwear with
only the addition of NN material exhibited substantial changes in
PGRF, VAIL, and VILR. Indeed, the significant changes in PGRF,
VAIL, and VILR illustrated the positive impact of NN material on the
footwear’s shock-absorbing capabilities. The study emphasizes the
potential of employing advanced materials in sports footwear design
to enhance athlete performance and reduce the risk of injury,
particularly in situations where elevated temperatures may affect the
cushioning properties of the footwear.

In the process of interpreting the results, it is crucial to
acknowledge several limitations inherent in the current study.
Specifically, only male runners who habitually employ a rearfoot
strike pattern were recruited as participants. Hence, it is important
to note that these findings are not applicable to habitual mid- and
forefoot strike runners. Ultimately, it’s imperative to note that this
study was conducted within a controlled laboratory setting and the
impact of similar training in runners’ more natural environment
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remains unknown. In addition, future studies should also consider
the biomechanical effects associated with gender differences.

5 Conclusion

The study found that the PRA and PSD of the distal tibia in NN
footwear were significantly lower compared to EVA footwear.
Additionally, participants exhibited more positive SA while using
NN footwear compared to EVA. Furthermore, during the 90° CM,
participants wearing NN shoes showed lower PGRF, VAIL, and VILR
compared to those in EVA shoes. All these promising results support
the capability of NN footwear to offer additional reductions in potential
injury risk to runners, especially in high-temperature conditions.
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